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Abstract

Broadcasting and gossiping are known to be NP�hard problems� This paper deals
with approximation algorithms for such problems� We consider both round�complexity
and step�complexity in the telephone model� After an overview of previously derived
approximation algorithms� we present new strategies for broadcasting and gossiping
in any graphs� Broadcasting strategies are based on the construction of edge�disjoint
spanning trees� Gossiping strategies are based on on�line computation of matchings
along with the gossiping process� Our approximation algorithms for broadcasting o�er
almost optimal complexity when the number of messages to be broadcasted is large� We
show that our best approximation algorithm for gossiping performs optimally in many
cases� We also show experimentally that it can perform faster than the best known
handmade algorithms in some particular cases�

Keywords� Broadcasting� Gossiping� Approximation algorithms

R�esum�e

La di�usion et l��echange total sont des probl�emes NP�durs� Cet article traite d�algorithmes
d�approximation pour ces probl�emes� Nous consid�erons �a la fois la complexit�e en temps
et en taille de messages dans le mod�ele �t�el�ephone�� Apr�es un bref aper	cu des al�
gorithmes d�approximation existants� nous pr�esentons de nouvelles strat�egies pour la
di�usion et l��echange total dans un graphe quelconque� Les strat�egies pour la di�usion
sont bas�ees sur la construction d�arbres de recouvrement ar
etes�disjoints� Celles pour
l��echange total sont bas�ees sur le calcul de couplages tout au long du processus d��echange
total� Nos algorithmes d�approximation pour la di�usion ont une complexit�e presque
optimale lorsque le nombre de messages di�us�es est grand� Nous montrons que notre
meilleur algorithme d�approximation pour l��echange total s�ex�ecute optimalement dans
de nombreux cas� Nous montrons� exp�erimentalement� que cet algorithme peut dans
certains cas� produire des algorithmes d��echange total plus rapides que les meilleurs
algorithmes connus�

Mots�cl�es� Di�usion� �Echange Total� Algorithmes d�approximation
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� Introduction

Information dissemination problems

Given a connected and undirected graph G� an information dissemination problem on G consists in
realizing a communication pattern known in advance between the vertices of G� Broadcasting and
gossiping are two famous information dissemination problems� In broadcasting� a single node knows
a piece of information that it wants to send to all the other nodes of the network� In gossiping� all
nodes know some piece of information� a gossip� and they want to exchange their pieces so that� at
the end� all the nodes will be aware of the whole information�

Information dissemination algorithms are not only interesting as graph theoretical parameters�
but also as software kernels for high performance communication networks� They are helpful for the
design of parallel and�or distributed algorithms ���� Because of that� information dissemination
has received a lot of interest from researchers in the past� These problems were approached following
several di�erent manners�

The �rst one consists� given a particular graphG selected because of its interest in other domains
�as network architecture for parallel computer�� to compute the broadcast time and the gossip time
of G� We refer to ��� ��� ��� for surveys of results obtained in this direction�

Another approach consists� given a particular problem� to �nd networks allowing to solve this
problem in a minimum time with minimum communication facilities �typically the number of
edges�� This yields to the construction of minimum broadcast or minimum gossip networks� We
refer to �� ��� ��� ��� for recent results in this domain�

Approximation algorithms

It is only recently that a third approach has been considered� given a speci�c information dis�
semination problem P �as the broadcasting problem or the gossiping problem�� deriving a general
algorithm A that returns� for any graph G� an algorithm AG� that solves P on G�

Unfortunately� but not surprisingly� the problem of �nding the minimum number of rounds nec�
essary to broadcast an atomic message from one processor to all the others is NP�hard ����see ���
for his proof�� even for particular class of graphs� see ���� Therefore� the general broadcast prob�
lem is hard to attack �as well as for the gossip problem�� and one cannot hope to �nd optimal
information dissemination algorithms in a reasonable �i�e� polynomial� amount of time� This is
why A generally only produces approximate solutions AG�� for all the graphs G�

The e�ciency of an approximation algorithm A is measured by its complexity �we are looking
for polynomial approximation algorithms� and by the e�ciency of the communication algorithms
generated� In particular� one usually tries to express the complexity of AG� as a function of the
complexity of the considered information dissemination problem on G� or as function of static
characteristics of G �diameter� degree� bisection�� � � ��

Telephone model and complexity measurements

Approximation algorithms were derived under the following communication constraints �usually
called telephone model�� communications proceed by a serial�parallel sequence of calls� Many calls
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can be performed in parallel� but a given call involves exactly two neighboring vertices� and a
vertex can participate to at most one call at a time� Two vertices participating to the same call
can exchange all the information they know� The total number of calls necessary to complete some
speci�ed information dissemination problem is called the call�complexity of that problem� Even if
the call�complexity gives interesting information about the di�culty of solving a problem �see �����
one often prefers other measures directly related to several notions of time� The most usual consists
in counting the number of rounds�

De�nition � A round is composed of the set of calls performed at a same given time� The round�
complexity of an information problem P on a graph G is the minimum number of rounds necessary
to solve P on G�

In particular� the round�complexity of broadcasting from node x of graph G is denoted by
bR�G� x�� and the round�complexity of broadcasting in G is denoted by bR�G�� that is bR�G� �
maxx bR�G� x�� Similarly� the round�complexity of gossiping in G is denoted by gR�G�� Clearly� for
any graph of order n�

log� n � bR�G� � gR�G� � �bR�G�� � � �n� � ���

Hypercubes satisfy log� n � bR�G� � gR�G�� and the star of n vertices �one center and n�� leaves�
satis�es gR�G� � �bR�G�� � � �n � �� We have also� for any graph of maximum degree � and
diameter D�

D � bR�G� � �D ���

because it is possible to broadcast in at most �D rounds in any shortest paths spanning tree of G
of depth D and maximum degree ��

Similarly� given an approximation algorithm A for the broadcasting problem �resp� the gossiping
problem�� the number of rounds necessary to complete AG� on a graph G is denoted by bR�AG��
�resp� gR�AG���� The general objective is to derive approximation algorithms for the broadcasting
and the gossiping problem such that� for any graph G� bR�AG�� �resp� gR�AG��� di�ers from
bR�G� �resp� gR�G�� by a small multiplicative or additive factor�

Previous works

The problem of �nding heuristic algorithms for broadcasting in point�to�point networks was initi�
ated by Scheuermann and Wu� In ���� they present a formulation of the broadcast problem based
on maximum matching� a broadcast from a vertex u of a graph G � �V�E� is simply a sequence

fug � V�� E�� V�� E�� V�� � � � � Ek� Vk � V

such that� for any i � f�� �� � � � � kg�

�� Vi � V and Ei � E�

�� Ei is a �maximum� matching between Vi�� and ��Vi��� where� for any set S of vertices� ��S�
denotes the set of all the neighbors of the vertices in S but S� and

�� Vi � Vi�� � Ei�Vi���� where� for any set S of vertices and any matching M between S and
��S�� M�S� denotes the set of the vertices of ��S� that are matched by M to vertices in S�
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This formulation allows Scheuermann and Wu to derive a recursive formula

bR�G� S� � �  min
M
fbR�G� S �M�S��g

where the minimum is taken over all the maximum matchingsM between S and ��S�� They present
several heuristics to solve this recurrence� However� although they give some experimental results
to illustrate the e�ciency of their approach� no bounds were derived on the broadcast complexity
of their solutions� In fact� it was shown in ��� that even the best heuristics can be !�

p
n�� times

worse than optimal for some particular graphs�

Kortsarz and Peleg have then presented in ��� an approximation algorithm AKP that polyno�
mially computes a scheme that completes a broadcast in minimum time within a constant factor
of the optimal plus an additive factor of O�

p
n�� More precisely�

bR�AKP G�� � O�bR�G�  
p
n�

for any graph G of order n� This approximation algorithm is based on a decomposition of G in
clusters of size

p
n and on the use of a solution for a restricted version of the so called minimum

weight cover problem� However� as it was pointed out by the authors� the algorithm in ��� is not
e�cient when applied to graphs of small broadcast time� namely when bR�G� � o�

p
n��

Ravi has recently presented in ��� a polynomial approximation algorithm AR that appears to
be particularly e�cient for fast broadcast graphs� In particular� his algorithm satis�es

bR�ARG�� � O�
log� n

log log n
bR�G��

for any graph G of order n� This algorithm is based on the so called poise of a graph� The poise
P �T � of a tree T is the quantity� maximum degree of T plus diameter of T � The poise P �G� of a
graph G is the minimum poise of any of its spanning tree� Ravi showed that the poise of a graph
is strongly related to its broadcast time� More precisely� he showed that

bR�G� � !�P �G�� and bR�G� � O�P �G�
logn

log log n
�

for any graph G of order n� Since computing the poise of a graph is NP�hard� Ravi developed
a polynomial algorithm for computing a tree T such that P �T � � O�logn P �G�  log� n�� His
approximation algorithm directly follows this result�

Feige� Peleg� Raghavan and Upfal have derived in ��� a simple but quite e�cient randomized
broadcast algorithm ARB � The algorithm ARB performs as follows�

repeat

for all v � V � in parallel do

if v has already received the message then
v sends the message to a randomly and uniformly chosen neighbor"

end�

To study the performances of their algorithm� Feige et al� consider the almost sure coverage time

bC�ARB G�� of a network G� that is de�ned by

Prob

�
�� all the vertices have receivedthe message after 
bC�ARB G��
rounds of ARB G�

�
�� � �� �

n
�

�All along this paper� O�f�� ��f�� and o�f� denote the sets of functions that are asymptotically upper bounded�
lower bounded� and negligible in front of a function that di�ers from f by a constant� respectively�
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They show that for every network G of order n� maximum degree � and diameter D�


bC�ARB G�� � O���D logn��

but that ARB can performs better is some particular case" for instance�


bC�ARBQd�� � #�logn�
where Qd is the d�dimensional hypercube� Moreover� they show that for almost all random graphs
G of order n and whose edges are present independently with probability p� we have

bR�ARB G�� � #�logn�
if p � ��  �� logn

n
for some �xed constant � � ��

Step�complexity

From Equation �� we have gR�G� � #�bR�G�� for any graph G� Moreover� a gossiping can be
performed in two phases by �rst accumulating �a reverse broadcast� all the pieces of information in
some particular vertex� and then broadcasting the single message obtained by a concatenation of all
the pieces of information from this vertex to all the others� For any approximation algorithm B for
broadcasting� we denote byB� the corresponding two�phases approximation algorithm for gossiping�
Thus� all the algorithms B for the broadcasting problem that we have previously described give
adapted solutions B� for the gossiping problem� The main criticism about this is that the number
of exchanged messages increases exponentially during the �rst phase� and the message broadcasted
during the second phase has size n� Counting � when manipulating messages of size #�n� might
not re$ect the real complexity of the problem�

One can re�ne the study of the complexity of information dissemination problems under the
telephone model by counting not only the number of rounds� but also the sum of the maximum
number of pieces of information exchanged during each successive round� During a call between
two vertices x and y� if they exchange kx pieces of information �a piece is supposed to be atomic�
from x to y� and ky pieces of information from y to x� then this call requires k � maxfkx� kyg steps�
A round requires the maximum� over all the calls of that round� of the number of steps of these
calls� The rounds being synchronized� r rounds require

Pr
i�� ki steps where ki is the number of

steps of round i� for all i�

De�nition � A step is the operation consisting of transmitting an atomic piece of information
during a call between two vertices� The step�complexity of an information problem P on a graph G
is the minimum number of consecutive steps necessary to solve P on G�

In particular� the step�complexity of a gossiping in G is denoted by gS�G�� and� given an
approximation algorithm A for the gossiping problem� the number of steps necessary to complete
AG� on a graph G is denoted by gS�AG��� Clearly� for any graph of order n�

gS�G� � !�n bR�G�� ���

since every vertex must receive at least n � � pieces of information� and a gossiping includes at
least one broadcasting� Therefore� the two�phases gossiping algorithm obtained by accumulating
and broadcasting yields a quite ine�cient algorithm when considering the number of steps�

gS�B��G�� � O�n� bR�B�G���
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where B� is a polynomial approximation algorithm for broadcasting under the telephone model
with the minimum number of rounds� This is at least bR�G� times worse than the lower bound of
Equation ��

Also� when broadcasting a message that is not an atomic piece of information but composed of
k pieces of information� then again algorithms derived to minimize the number of rounds might be
ine�cient� Indeed� let bS�G� x� be the step�complexity of a broadcasting from a node x of a graph
G� and let bS�G� � maxx bS�G� x� be the step�complexity of a broadcasting in G� We have�

bS�G� � !�k  bR�G�� ���

when broadcasting a message of size k� On the other hand� B� satis�es

bS�B�G�� � O�k � bR�B�G���

which is at least bR�G� times worse than the bound of Equation ��

Our results

In this paper� we focus on both measurements� round and step�complexity� More precisely� we
present a polynomial approximation algorithm for broadcasting that almost matches the bound of
Equation � for large k� This result is based on the construction of � edge�disjoint spanning trees in
the considered graph �� denotes the edge�connectivity of the graph�� Pieces of information move
without con$ict along the edges of the tree�

Concerning gossiping� we present several strategies to construct e�cient approximation algo�
rithms� All strategies are based on matchings of di�erent kinds� O��line matching are computed in
advance� and the gossiping proceeds by a succession of exchanges along the edges of the matchings�
On�line matchings are more e�cient� In this case� the matching used at round t of an approximation
algorithm for gossiping depends on the way the information $ows during the t� � previous rounds�
In particular� we present the Dynamic Weights algorithm that is shown to work asymptotically
quite e�ciently on particular graphs� and is experimentally shown to work well on about all the
usual examples of graphs used to interconnect processors of a parallel computer� In fact� we have
sometimes observed that the DW approximation algorithm performs faster than the best known
handmade algorithms for some particular graphs�

Extensions

We extend our results in two directions�

First� we consider the so�called store�and�forward routing model� and show that the approxi�
mation algorithms derived in Section � and � apply in this case� and can o�er good performances
in practice�

Our second direction of investigation consists in studying the so�called telegraph model� In
this abstract model� information cannot traverse an edge in both directions simultaneously� This
strongly reduces the performances of the broadcasting and gossiping algorithms derived to satisfy
this constraint� We show that our best approximation algorithm for gossiping does not su�er too
much of this restriction� and applies in the telegraph model with almost the same e�ciency as in
the telephone model�
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Organization of the paper

The next section is devoted to broadcasting� Section � deals with the gossiping problem� Finally�
section � presents results obtained in both store�and�forward and telegraph models�

� Broadcasting

In all this section� the size of the message to be broadcasted is denoted by k� and we recall that the
best known polynomial approximation algorithm for broadcasting when counting only the number
of rounds is denoted by B��

The following result shows that it is easy to design e�cient algorithms that minimize the number
of steps from e�cient algorithms designed to minimize the number of rounds� This is particularly

true when k � O�bR�B��G��
�

� where � is the maximum degree of the considered graph G�

Theorem � There exists a polynomial time approximation algorithm A for broadcasting such that�
for any graph G of maximum degree �� bS�AG�� � O�k� bR�B�G����

Proof� Let G be any graph of maximum degree �� The algorithm AG� proceeds as follows�
Consider a broadcast tree T induced by B� on G� The edges of T are labeled by the time at which
they are used in B�� Let ��e� be the label of an edge e of the tree T � The i�th piece of information
of the message is sent through e at time �i� ���T  ��e� where �T is the maximum degree of T �
The �rst piece is known by all the vertices after a time bR�B�G���� Every �T steps� a new piece
is received by all the vertices� Thus this algorithms takes a total time bR�B�G���  �k � ���T � �

However� for long messages �k � bR�G��� the result of Theorem � is � times worse than the
bound of Equation �� The next result shows that one can be much more e�cient for long messages�
Before stating this result� recall that the chromatic index �� of a graph G is the minimum number
q such that it is possible to label all the edges of G with numbers in f�� � � � � q��g� each node having
all its incident edges labeled with di�erent numbers� Vizing�s Theorem �see ��� says that for any
graph of maximum degree �� the chromatic index q of G satis�es � � q � �  �� The bad news
is that knowing whether or not q � � is NP�complete ���� The good news however is that �nding
a coloring of the edges of a graph G with at most �  � colors is polynomial �from the proof of
Vizing�s Theorem�� This result is the base of Theorem ��

The telephone model implies that when two nodes x and y of a graph G communicate during a
call� they exchange their information� that is links are full�duplex and the underlying communication
network could be represented by a symmetric digraph G� where G� denotes the digraph obtained
from G by replacing every edge �x� y� of G by two symmetric arcs x� y and y� x�

Theorem � There exists a polynomial time approximation algorithm A for broadcasting such that�
for any graph G of maximum degree � and edge�connectivity �� bS�AG�� � �� ��d k�e h� where
h is independent of k�

Proof� Following Menger�s Theorems �see ����� Edmonds �� �see also ���� has shown that for
any vertex r of a �nite digraph H � there exists � arc�disjoint spanning trees of H rooted at r �� is
the arc�connectivity of the digraph H�� If the edge�connectivity of a graph G is �� then � is also
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the arc�connectivity of G�� Thus� for any vertex r of a �nite digraph G�� there exists � arc�disjoint
spanning trees of G� rooted at r� that is spanning trees of G where any edge �x� y� appears at most
in two trees� each using �x� y� in a distinct direction� Let us call T�� T�� � � � � T� a family of such
trees�

Assume the edges of G are colored with at most � � colors c�� c�� � � � � c�	�� The broadcasting
algorithm proceeds as follows� split the message of k pieces in � packets P�� P�� � � � � P�� each com�
posed of at most d k

�
e pieces� Packet Pi is broadcasted using Ti� Pieces of information are sent in a

pipelined fashion� and edges colored cj are used every � � steps� at time j� j � �� j ��� ��� � � ��

Every �  � rounds� at least one piece of each packet has been sent by the root� Therefore�
after ��  ��d k

�
e rounds� the root has completed its broadcast� In time at most ��  ��h� where

h is the maximum depth of the � spanning trees� the remaining packets still in the networks will
reach their destinations� This time additional is independent of k� �

This result yields two remarks� First� if � � � and if �by chance� the coloring obtained
in polynomial time has � colors� then the approximation algorithm described in Theorem � is
asymptotically optimal when k tends to in�nity� and the lower bound of Equation � is reached
�replace � by �� and �  � by � in the statement of Theorem ��� Note also that the term
corresponding to o�k� in Theorem � is strongly dependent on the maximum depth of � disjoint
spanning trees of a graph G� Unfortunately� minimizing this parameter has been shown to be
NP�hard by N� Alon �see �� and �����

� Gossiping

Any gossiping algorithm under the telephone model can be described by a sequence of matchings�
each matching corresponding to a set of calls performed during the same round� Conversely� any
sequence of matching M��M�� � � � �Mr yields a communication algorithm described by� at round i�
each pairs of extremities of the edges of Mi exchange all the information they are aware of� It is
therefore natural to describe gossiping algorithms by sequences of matchings�

O��line matchings

People were recently interested in studying the structure of the matching sequence� and see what
happens if one forces this sequence to be composed of the repetition of a same subsequence�

M��M�� � � � �Mr � M�� � � � �Ms�M�� � � � �Ms� � � � �M� � � � �Ms

� �M��M�� � � � �Ms�
t

This approach gives rise to a class of approximation algorithms that ��� look for some sequence of
matchingsM��M�� � � � �Ms in a graph G� and ��� apply the corresponding communication algorithm
by repetition of this sequence�

Liestman and Richards were the �rst to consider such an approach �see ����� They assume
that the subsequence M��M�� � � � �Ms is obtained by a coloration of the edges of the graphs with
s colors� They study this strategy in paths� cycles� trees and meshes to produce the best adapted
gossip algorithm� They also show the following lemma�
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Lemma � �Liestman and Richards�
If there exists a coloring of a graph G of diameter D with k colors� then gR�G� � D�k� ��  ��

Proof� Each edge is colored� Therefore any edge is used every k rounds� and any piece of
information will be routed on a path of length D in less than k  �k � ���D � �� � D�k � ��  �
rounds� �

In this model� Labhan� Hedetniemi and Laskar ��� have proposed approximation algorithms
for gossiping in trees� In ��� ���� Hromkovic et al� consider the so called systolic gossiping� In
this case� the choice of the subsequence M��M�� � � � �Ms is enlarged �and is not necessarily chosen
among chromatic matchings�� In particular two matchings Mi and Mj might have common edges�
As Liestman and Richards� they consider particular cases like cycles and trees but did not give a
general way of �nding the appropriate subsequence M��M�� � � � �Ms for all graphs�

This approach yields the following result that improves by a factor of two the gossiping time
resulting of an algorithm that ��� accumulates all the information in some node in at most �D
rounds� and ��� broadcasts the whole information from that node in at most �D rounds �see
Equation ���

Theorem � There exists a polynomial time approximation algorithm A� for gossiping such that�
for any graph G of maximum degree � and diameter D� bR�A�G�� � �D ��

Proof� As we said in Section �� it is possible to polynomially �nd a coloring of the edges of G
with at most �  � colors� The result then directly follows Lemma � �

Although the approximation algorithm A� of Theorem � is quite attractive because of its sim�
plicity� it can be quite ine�cient� For instance� let us take a similar example as in ���� and consider
the sparse wheel SWn of n vertices and

p
n rays� a center node x�� and n�� other nodes organized

in a cycle x�� x�� � � � � xn��" the center is connected to vertices x�� xpn	�� x�pn	�� � � � � x�pn���pn	��
It is easy to check that bR�SWn� � #�

p
n�� Therefore� gR�SWn� � #�

p
n�� However� there exits

a �
p
n  ���coloring of the edges of SWn such that gR�A�SWn�� � !�n�� color the edges of the

cycle with O��� colors� and each ray with a di�erent color� Indeed� the information of x� needs
!�n� rounds to reach a node of the form x

k
p
n	

p
n

�

because the edges of the cycle are used every

!�
p
n� rounds� Thus the approximation algorithm of Theorem � can be O�

p
n� time worse than

the optimal�

In fact� A� is particularly ine�cient when a node of high degree implies a large chromatic index
and let therefore many edges are often inactive during the gossiping� In the following� we will focus
on a more dynamic approach� where the matchings are chosen on�line and not �xed statically before
the gossiping algorithm starts�

On�line matching

Our gossiping algorithms will proceed as follows�
Generic gossiping algorithm

repeat

compute a matching M "
exchange messages along the edges of M "

until all the vertices get everything
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This strategy depends on the way the matching M is chosen at each phase� In the following� we
will explore two main directions�

In the �rst case� each edge has a �xed weight at the beginning and weights evolve as the
communication algorithm goes on� the matching Mi� chosen at phase i� is a matching of maximum
weight and the weights of the edges not in Mi are increased following some given rule so that the
next matching Mi	� selects other edges�

The other approach consists in computing new weights for the edges after each phase� For
instance the weight of an edge can be de�ned by the number of pieces of information that knows
one of its extremities but that the other does not know�

Before analyzing these two approaches� let us recall that a matching of k edges is maximum if
there does not exist any other matching with more than k edges� A matching is maximal if it is
not possible to add an edge to that matching� �Of course� a maximal matching is not necessarily
maximum�� A matching is of maximum weight if the sum of the weights of its edges is maximum�
�Again� a matching of maximum weight is not necessarily maximum� but if all the weights are
positive� then a matching of maximum weight is maximal��

In the following� the weight of an edge e is denoted by w�e�� and the matching chosen at phase
i is denoted by Mi� We say that a generic gossiping algorithm converges if� for any graph G� the
gossiping completes in G in a �nite time�

Increasing weights

Our �rst approach is formalized as follows� at the beginning� all the weights are set to �� During
the algorithm� all matchings are chosen to be of maximum weight� It means thatM� is a maximum
matching� The weights evolve by successive multiplication by a �xed constant � � �� At phase
i � �� if e �� Mi�� then w�e� � �w�e�� otherwise w�e� is not modi�ed� We denote by ��IW the
corresponding approximation algorithm �for ��Increasing Weights��

Theorem � For any � � �� the approximation algorithm ��IW converges�

Proof� Let � � � and let G � �V�E� be any graph� Let us show that there does not exist t such
that there is an edge e � E that is never selected in Mi for any i � t�
The proof is by contradiction� Let S be the set of edges e such that there exist te satisfying
e ��Mi� 	i � te� If S 
� � then let t� � maxfte� e � Sg� For any edge e � E and any time t � �� let

��e� t� � jfi � t� e ��Migj�

For any t � t� and any e � S� we have w�e� � ���e�t��	t�t�� For any e �� S� we have

	r � �� �t � r j ��e� t� � t � r

that is e has been selected r times before time t� Let e � S� let

r � log� jEj � ��e� t��  t�

and let t � t� such that
��e� t� � t� r� 	e �� S�
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Figure �� Evolution of the weights during the �rst four steps of a gossiping algorithm that does
not converge� �Edges in the matching are represented by dashed lines��

Then 	e � S�w�e� � jEj�t�r � P
f ��S w�f�� Therefore at least an edge of S must be selected in

Mt� t � t�� a contradiction�

The proof directly follows since

	e � E� 	t � �� �t� � t j e �Mt� �

This implies that any path of G is traversed in a �nite time� �

Note that the fact that � is a scalar is important in the proof of Theorem �� For instance�
consider the case where 	� is a vector of jEj components �e� e � E� In Figure �� such a case is
illustrated with �e � �� for all the edges but the central edge ec� and �ec � �� Since log� �� � ��
the edge ec is never selected and the information cannot cross from one side of the network to the
other side�

The e�ciency of the approximation algorithm ��IW is strongly related to the value of �� Con�
sider for instance the path P
 � fx�� x�� x�� x
g of � vertices� The edge �x�� x�� will be selected
not before round t such that �t�� � �� and then ��IWP
� will be very slow if � is too close
to �� Of course� choosing a large � solves the problem in this case� In fact� it is possible to
show that if � � !�jEj�� then for any graph G � �V�E� of maximum degree � and diameter D�
gR���IWG�� � O��D logn�� This bound is obtained by estimating the frequency at which an
edge can be selected in a matching� However this bound is much worse than the one derived in
Theorem �� and does not re$ect the real behavior of this algorithm� For instance� let us consider
again the sparse wheel SWn of n vertices and

p
n rays� If � is large enough� a cycle edge is selected

once every O��� rounds and the information of all the vertices xkpn	�� � � � � x�k	��
p
n	� is concen�

trated in xkpn	� in O�
p
n� rounds� Again� if � is large enough� a ray is selected every O�

p
n�

rounds� Therefore the center x� is aware of all the information in O�
p
n� rounds� By symmetry�

x� broadcasts the whole information in O�
p
n� rounds� Hence the gossiping completes in O�

p
n�

rounds� Therefore� ��IW can be !�
p
n� times faster than the chromatic gossiping A��

However� even if computing the matching on�line as in the ��IW approximation algorithm tends
to limit the time during when an edge is not used� the fact that this time strongly depends on �

makes ��IW very di�cult to tune� Moreover� the choice of the matching in both A� and ��IW
depends mainly on the topology of the network� and not really on the way the information $ows
inside the network� We present below another approach that takes into account the knowledge of
each node at any time during the gossiping�

��



Dynamic weights

Our second approach is formalized as follows� Again� all along the algorithm� all matchings are
chosen to be of maximum weight� At each phase i � �� the weights are computed as follows� For
every neighboring nodes x and y� let Ix�y be the set of pieces of information that knows x but
that does not know y� For any edge e � �x� y�� we set w�e� � jIx�yj  jIy�xj� The weight w�e�
represents the number of pieces of information that will cross e if e is selected in the matching of
the current phase� We denote by DW the corresponding approximation algorithm �for Dynamic
Weights��

Theorem 	 The approximation algorithm DW converges�

Proof� Let G � �V�E� be any connected graph� Let Itx be the set of pieces of information known
by x � V after phase t� �Of course� Itx � n� 	x � V� 	t � ��� If there exists x such that jItxj 
 n
then

P
x�V jIt	�

x j �P
x�V jItxj because otherwise Itx � Itx� � 	x� x� � V � Therefore there exists t such

that jItxj � n� 	x � V � �

To give a $avor of the e�ciency of the DW approximation algorithm� we have derived the
following results�

Property � Let Cn and Pn be respectively the cycle and the path of n vertices�

gR�DW Pn�� � gR�Pn� �

�
n if n is odd
n � � if n is even

gR�DW Cn�� � gR�Cn� � dn
�
e�

Note that the chromatic approximation algorithm does not reach such performances since it
directly follows the results in ��� that gR�A�Cn�� �

�

n  O����

Proof� The complexity of the DW algorithm is easy to compute for the path of any length� and
the cycle of even size� In both cases� two matching alternate and allow to complete a gossiping
in the speci�ed time� The cycle Cn � fx�� x�� � � � � xng of odd size must be considered separately�
Indeed� at each round� only n

�
edges are selected� Assume that the two consecutive edges not

selected at the �rst round are �x�� x�� and �x�� x��� At the second round� one of these two edges
is selected� Assume without loss of generality that it is �x�� x��� Then �x�� x�� and �x�� x�� are the
two consecutive edges that are not selected at round �� It is not di�cult to see that� at round r�
�xr��� xr� and �xr� xr	�� are the two consecutive edges that are not selected� Thus the gossiping
time of DW Cn� is dn�e� �The optimality of the results can be checked easily ����� �

Similar results can be obtained for the step�complexity�

Property � Let Cn and Pn be respectively the cycle and the path of n � � vertices�

gS�DW Pn�� �

�
�n� � if n is odd
�n� � if n is even

gS�DW Cn�� �

�
n if n is odd
n� � if n is even

In all cases �but Pn� n odd�� these results are optimal�
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Proof� Bermond� Gargano� Rescigno and Vaccaro have shown in �� that gS�Pn� � �n � �� In
the case n even� this bound is reached by DW Pn�� Indeed� as we saw in the proof of Property ��
there are two selected matching that alternate during the gossiping� one with n

�
edges� and another

with n
�
� � edges� These matching allow to gossip in �n � � steps� Unfortunately� DW Pn� is not

optimal when n is odd and di�ers from the optimal gossiping by one� Indeed� if n is odd� there are
two matching� both with n��

�
edges� that alternates� This yields a gossiping time of �n� � steps�

Also� Bermond� Gargano� Rescigno and Vaccaro have shown in �� that� for any Hamiltonian
graph G of n vertices�

gS�G� �

�
n if n is odd
n� � if n is even

During the gossiping DW Cn� on the even cycle� the �rst round consists of exchanging one packet�
and� during the n

�
�� other rounds� two packets are exchanged at each round� That gives n�� steps

in total� When n in odd� the matching chosen at each round is composed of n��
�
edges� Moreover�

at each round� two consecutive edges are not selected in the matching� It is easy to see� as in
the proof of Property �� that these pairs of edges �rotate� �say clockwise� around the cycle� This
phenomenon slows down the information $ow going counter clockwise by � step� but does not slow
down the information $ow going clockwise� This yields a gossiping time of �  �n��

�
� n steps� �

In the following� we experimentally study the DW approximation algorithm for gossiping�

Experimental comparisons

We have experimented the DW approximation algorithm on several graphs as� in particular�
the complete graph on n vertices Kn� the d�dimensional hypercube Qd� the d�dimensional cube�
connected�cycle CCCd ���� the d�dimensional shu%e�exchange SEd ���� the two dimensional
meshes and tori �Pp � Pq and Cp � Cq�� and the d�dimensional star�graph Sd ��� All these graphs
are often considered as e�cient interconnection networks for parallel computers� We comment
the results of our experiments below� We compare these results with the best ones known in the
literature ����

Figures � and � present results on the round�complexity as a function of characteristic parame�
ters of the graph �number of nodes� or dimension�� Figure � present results on the step�complexity�
again as a function of characteristic parameters of the graphs�

Note that the execution of the DW approximation algorithm depends on the chosen matching
algorithm� two di�erent matching algorithms may produce di�erent results using the DW approx�
imation algorithm�

The complete graph Kn

Figures ��a� and �b�� and Figure ��a� give the results obtained on complete graph� The DW
algorithm performs quite well� In particular� it is easy to see that� for n � �k� the DWapproximation
algorithm is optimal�

Property � Let K�k be the complete graph on �k vertices�

gR�DW K�k�� � gR�K�k� � k
gS�DW K�k�� � gS�K�k� � �k � �
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The �rst even value of n for which the DW Kn� is not round�optimal is �� �Knodel ��� has
shown that for n even� it is possible to gossip in dlog� ne rounds�� Our experiment shows that
the DW algorithm performs well on K�
 during the � �rst rounds �that is the global amount of
information known by each vertex double at each round�� Unfortunately� the way in which the
information $ows in the fourth round is not enough to complete the gossiping in K�
� For n odd�
the general structure of the DW Kn� consists in a gossiping among n� � vertices plus a broadcast
from the non informed vertex to all the other� This doubles at least the usual gossiping time of
dlog� ne  � for n odd ��� �this is what happened for n � ���

The hypercube Qd

Figure ��c� gives the experimental results obtained on the d�dimensional hypercube Qd� These
results strongly depends on the labeling of the vertices� For instance� for the �usual� labeling L
�two nodes are linked by an edge if and only if their binary representations di�er in exactly one bit��
the DW gossiping algorithm has performed optimally in term of both round and step� However�
Figure ��c� shows that� for other labelings� the DW gossiping algorithm may be less e�cient� even
with a slight modi�cation of the labels� L��x� � L�x�  �� mod n and L���x� � L�x�  � mod n�
This property must be kept in mind when implementing the DW algorithm for a given graph� the
labeling of the vertices has a great in$uence on its performances�

Meshes Pp � Pq

Figures ��d� and �e� present experimental results on two dimensional meshes� Compared to the
optimal� the performances �in terms of rounds� are quite good� always less than the optimal time
plus � in our experiments�

Torus Cp � Cq

Figures ��a� and �b�� and Figure ��b� present experimental results on two dimensional tori� In
our experiments �that may have been helped by the usual labeling of the torus�� we have always
obtained optimal results �in term of both number of rounds and steps� when p and q are both even�
In the general case� the round�complexity of DW Cp� Cq� is always between the known lower and
upper bounds of the round�complexity of the gossiping in Cp � Cq�

Cube�connected�cycle CCCd

Figures ��f� and ��c� present experimental results on d�dimensional CCC� The round�complexity
ofDW CCCd� is about the same as the best known upper bound for this graph �it can even perform
faster in some cases�� The step�complexity of DW CCCd� is close to the general lower bound n� �
for even order� and n for odd order�

Star�graph Sd

Figures ��c� and ��d� present experimental results on star�graphs� The round�complexity of
DW Sd�� d � �� �� �� is much closer to the optimal than the best known upper bound� The re�
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sult on the step complexity are also quite good� In fact� they are optimal for d � �� �� ��

Shu
e�exchange SEd

Figures ��d� presents experimental results on shu%e�exchange� Gossiping in this graph is still an
open problem� However our results shows that gossiping and broadcasting in the shu%e�exchange
must have similar round�complexities� Indeed� the round�complexity of DW SEd� is quite close to
the round�complexity of broadcasting in SEd�

� Extensions

Communications in store�and�forward routed parallel computers

In a store�and�forward routed parallel computer� a message proceeds along a path P � fx�� x�� � � � � x�g
of length � in � successive phases� At phase i� � � i � �� the message is sent by xi�� to xi� and
stored in the memory of xi� At the next phase� xi will forward the message to xi	��

Many experiments �� ��� have shown that the time of a neighbor�to�neighbor communication
in many computers can be modeled by �  L� where � is the start�up time necessary to set up the
communication� and L� is the propagation time proportional to the size L of the message � �

�
is the

bandwidth of each communication link�� Though it can be more di�cult to handle �see ����� this
model re$ects� in some sense� both step�complexity �by looking at the dominating term in �� and
round�complexity �by looking at the dominating term in ���

In fact� given any approximation algorithm A for gossiping� one can hope that its completion
time in a store�and�forward routed parallel computer of topology G will be of the form

gR�AG���  gS�AG����

However� there exist graphs G for which the store�and�forward gossiping time is larger than
gR�G��  gS�G�� � This is typically the case when the round�optimal gossiping algorithm on G
is di�erent from the step�optimal gossiping algorithm in G� The cycle Cn� n odd� is an example
of such a graph� gR�Cn� �

n	�
�
� gS�Cn� � n � �� but we do not know if it is possible to gossip

in n	�
�
�  �n � ��� �see ����� However� choosing an e�cient approximation algorithm depends on

the tradeo� between � and � � The DW gossiping algorithm based on the di�erences of knowledge
between neighbors of the networks is quite appropriate to that problem since it tends to minimize
simultaneously the total start�up times and the total propagation times�

In the broadcasting case� the dominating term in the complexity of the algorithm described in
Theorem � corresponds to the propagation time of the broadcasting algorithm� However� the o�k�
term cannot be neglected in store�and�forward routed networks since it depends on the start�up
time� and � is usually much larger than � � The adapted solution is pipelining ��� ��� where� instead
on sending the information contained in each packet piece after piece� pieces are �rst grouped in
sub�packets� Then the sub�packets play the role of the pieces� being sent one after the other through
the network� Computing the number of pieces that must form each sub�packet is critical and is
described in detail in ����
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Telegraph model

In the telephone model �also called ��way mode�� communication links are full�duplex� that is they
can be used simultaneously in both directions� In the telegraph model �also called ��way mode��
links are half�duplex� that is they are bidirectional but they cannot be used simultaneously in both
directions�

The telegraph model appears to be much more tricky than the telephone model� For instance�
in the telegraph model� for any graph G of order n�

�  dlog�
n

�
e � gR�G�

where  � �	
p
�

�
�� �� ��� ���� This bound must be compared to Equation �� To give an idea of

the di�culty� the complexity of gossiping in the complete graph Kn is not known for all the values
of n� and the complexity of gossiping in hypercube is totally unknown �it belongs to the interval
���� log� n� ���� log� n�� see �����

However� our approach applies also in the telegraph model� For instance� Theorem � directly
applies� Theorem � does not directly apply because the proof is based on trees that use edges
in both directions simultaneously� Nevertheless� this theorem can be adapted to the half�duplex
constraint by using b�

�
c edge�disjoint spanning trees �the existence of such trees has been shown by

Kundu �����

For gossiping� the same approximation algorithm as for the telephone model applies� The rule
is that for any edge e � �x� y�� w�e� � maxfjIx�yj� jIy�xjg and the information goes from x to y if
jIx�yj � jIy�xj� and from y to x otherwise�

The experimental results show that this approach is e�cient� We experiment the DW algorithm
in the telegraph model on the complete graph� the hypercube� and the cycle of even size �quite a
few results are known about other topologies ����� and consider only the round�complexity �the
step�complexity of gossiping has not been yet investigated for the usual topologies in the half�duplex
model ����� Figure ��a� presents results obtained on the complete graph� Even if the number of
rounds is larger than the optimal �about ���� log� n �� �� ��� ����� it stays not larger than a constant
factor times this optimal� Same remarks hold for the hypercube �Figure ��b��� In the case of the
cycle of even size� the number of rounds of the DW algorithm is n whereas the optimal gossiping
algorithm performs in n

�  d
p
�ne � � rounds ��� �Figure ��c���
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Figure �� Experimental round�complexity of the DW approximation algorithm �to be continued�

��



3.0

5.0

7.0

9.0

11.0

(a) Torus
at least one dimension is odd

DW Gossiping
Lower Bound Gossiping
Upper Bound Gossiping

4*3 3*5 5*5 5*7 6*7 9*7
4.0

6.0

8.0

10.0

12.0

(b) Torus
Both dimensions are even

DW Gossiping
Optimal Gossiping

10*104*6 6*6 4*8 8*6 10*12

3.0 3.5 4.0 4.5 5.0
0.0

5.0

10.0

15.0

20.0

(c) Star Graph

DW Gossiping
Lower Bound Gossiping
Upper Bound Gossiping

2 3 4 5 6 7 8
0.0

10.0

20.0

(d) Shuffle Exchange

DW Gossiping
Optimal Broadcast

Figure �� �continued� Experimental round�complexity of the DW approximation algorithm

��



0.0 50.0 100.0 150.0
0.0

50.0

100.0

150.0

200.0

(a) Complete Graph
N even

DW Gossiping
Optimal Gossiping

20.0

40.0

60.0

80.0

100.0

120.0

(b) Torus
 both dimensions are even

DW Gossiping
Optimal Gossiping

4*6 4*8 6*6 6*8 10*10 10*12

3 4 5 6 7
0.0

500.0

1000.0

1500.0

(c) Cube Connected Cycle

DW Gossiping
Optimal Gossiping (n-1)

3.0 3.5 4.0 4.5 5.0
0.0

50.0

100.0

150.0

(d) Star Graph

DW Gossiping
Optimal Gossiping (n-1)

Figure �� Experimental step�complexity of the DW approximation algorithm

��



0 50 100 150
0.0

5.0

10.0

15.0

20.0

(a) Complete Graph

DW Gossiping
Near-Optimal Gossiping (1.44 log n)

3 4 5 6 7 8
0.0

5.0

10.0

15.0

20.0

(b) Hypercube

DW Gossiping
Lower Bound 
Upper Bound 

0 10 20 30 40
0.0

10.0

20.0

30.0

40.0

(c) Cycle
N even

DW Gossiping
Optimal Gossiping

Figure �� Experimental round�complexity of the DW approximation algorithm in telegraph model�

��


