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Broadcasting and gossiping are known to be NP-hard problems. This paper deals with approximation algorithms for such problems. We consider both round-complexity and step-complexity in the telephone model. After an overview of previously derived approximation algorithms, we present new strategies for broadcasting and gossiping in any graphs. Broadcasting strategies are based on the construction of edge-disjoint spanning trees. Gossiping strategies are based on on-line computation of matchings along with the gossiping process. Our approximation algorithms for broadcasting o er almost optimal complexity when the number of messages to be broadcasted is large. We show that our best approximation algorithm for gossiping performs optimally in many cases. We also show experimentally that it can perform faster than the best known handmade algorithms in some particular cases.

1 Introduction

Information dissemination problems

Given a connected and undirected graph G, an information dissemination problem on G consists in realizing a communication pattern known in advance between the vertices of G. Broadcasting and gossiping are two famous information dissemination problems. In broadcasting, a single node knows a piece of information that it wants to send to all the other nodes of the network. In gossiping, all nodes know some piece of information, a gossip, and they want t o e x c hange their pieces so that, at the end, all the nodes will be aware of the whole information.

Information dissemination algorithms are not only interesting as graph theoretical parameters, but also as software kernels for high performance communication networks. They are helpful for the design of parallel and/or distributed algorithms 30]. Because of that, information dissemination has received a lot of interest from researchers in the past. These problems were approached following several di erent manners.

The rst one consists, given a particular graph G selected because of its interest in other domains (as network architecture for parallel computer), to compute the broadcast time and the gossip time of G. W e refer to [START_REF] Laforest | Disjoint spanning trees of small depth[END_REF][START_REF] Garey | Computers and Intractability: a guide to theory of NP-completeness[END_REF][START_REF] Hromkovic | Optimal algorithms for dissemination of information in some interconnection networks[END_REF] for surveys of results obtained in this direction.

Another approach consists, given a particular problem, to nd networks allowing to solve this problem in a minimum time with minimum communication facilities (typically the number of edges). This yields to the construction of minimum broadcast or minimum gossip networks. W e refer to 4, 1 5 , 2 7 , 41] for recent results in this domain.

Approximation algorithms

It is only recently that a third approach has been considered: given a speci c information dissemination problem P (as the broadcasting problem or the gossiping problem), deriving a general algorithm A that returns, for any graph G, an algorithm A G] that solves P on G.

Unfortunately, but not surprisingly, the problem of nding the minimum number of rounds necessary to broadcast an atomic message from one processor to all the others is NP-hard 16](see [START_REF] Wu | Heuristic algorithms for broadcasting in point-to-point computer networks[END_REF] for his proof), even for particular class of graphs, see 34]. Therefore, the general broadcast problem is hard to attack (as well as for the gossip problem), and one cannot hope to nd optimal information dissemination algorithms in a reasonable (i.e. polynomial) amount of time. This is why A generally only produces approximate solutions A G], for all the graphs G.

The e ciency of an approximation algorithm A is measured by its complexity ( w e are looking for polynomial approximation algorithms) and by the e ciency of the communication algorithms generated. In particular, one usually tries to express the complexity o f A G] as a function of the complexity of the considered information dissemination problem on G, or as function of static characteristics of G (diameter, degree, bisection,: : : ).

Telephone model and complexity measurements

Approximation algorithms were derived under the following communication constraints (usually called telephone model): communications proceed by a serial-parallel sequence of calls. Many calls can be performed in parallel, but a given call involves exactly two neighboring vertices, and a vertex can participate to at most one call at a time. Two v ertices participating to the same call can exchange all the information they know. The total number of calls necessary to complete some speci ed information dissemination problem is called the call-complexity of that problem. Even if the call-complexity gives interesting information about the di culty of solving a problem (see 17]), one often prefers other measures directly related to several notions of time. The most usual consists in counting the number of rounds.

De nition 1 A r ound is composed of the set of calls performed at a same given time. The roundcomplexity of an information problem P on a graph G is the minimum number of rounds necessary to solve P on G.

In particular, the round-complexity of broadcasting from node x of graph G is denoted by b R (G x), and the round-complexity of broadcasting in G is denoted by

b R (G), that is b R (G) = max x b R (G x).
Similarly, the round-complexity of gossiping in G is denoted by g R (G). Clearly, for any graph of order n,

log 2 n b R (G) g R (G) 2b R (G) ; 1 2n ; 3 (1)
Hypercubes satisfy log 2 n = b R (G) = g R (G), and the star of n vertices (one center and n ;1 l e a ves) satis es g R (G) = 2 b R (G) ; 1 = 2 n ; 3. We h a ve also: for any graph of maximum degree and

diameter D, D b R (G) D (2)
because it is possible to broadcast in at most D rounds in any shortest paths spanning tree of G of depth D and maximum degree .

Similarly, given an approximation algorithm A for the broadcasting problem (resp. the gossiping problem), the number of rounds necessary to complete A G] on a graph G is denoted by b R (A G]) (resp. g R (A G])). The general objective is to derive approximation algorithms for the broadcasting and the gossiping problem such that, for any graph G, b R (A G]) (resp. g R (A G])) di ers from b R (G) (resp. g R (G)) by a small multiplicative or additive factor.

Previous works

The problem of nding heuristic algorithms for broadcasting in point-to-point n e t works was initiated by S c heuermann and Wu. In 37], they present a formulation of the broadcast problem based on maximum matching: a broadcast from a vertex u of a graph G = ( V E ) is simply a sequence

fug = V 0 E 1 V 1 E 2 V 2 : : : E k V k = V such that, for any i 2 f 1 2 : : : k g, 1. V i V and E i E ,
2. E i is a (maximum) matching between V i;1 and ;(V i;1 ) where, for any s e t S of vertices, ;(S) denotes the set of all the neighbors of the vertices in S but S , a n d 3. V i = V i;1 E i (V i;1 ), where, for any s e t S of vertices and any matching M between S and ;(S), M (S) denotes the set of the vertices of ;(S) that are matched by M to vertices in S .

This formulation allows Scheuermann and Wu t o d e r i v e a recursive formula b R (G S ) = 1 + min M fb R (G S M (S))g

where the minimum is taken over all the maximum matchings M between S and ;(S). They present several heuristics to solve this recurrence. However, although they give some experimental results to illustrate the e ciency of their approach, no bounds were derived on the broadcast complexity of their solutions. In fact, it was shown in 24] that even the best heuristics can be ( p n) 1 times worse than optimal for some particular graphs.

Kortsarz and Peleg have then present e d i n 2 4 ] an approximation algorithm A KP that polynomially computes a scheme that completes a broadcast in minimum time within a constant factor of the optimal plus an additive factor of O( p

n). More precisely, b R (A KP G]) 2 O(b R (G) + p n)
for any graph G of order n. This approximation algorithm is based on a decomposition of G in clusters of size p n and on the use of a solution for a restricted version of the so called minimum weight cover problem. Howeve r , a s i t w as pointed out by the authors, the algorithm in 24] i s n o t e cient when applied to graphs of small broadcast time, namely when b R (G) 2 o( p n).

Ravi has recently presented in 36] a polynomial approximation algorithm A R that appears to be particularly e cient for fast broadcast graphs. In particular, his algorithm satis es

b R (A R G]) 2 O( log 2 n log log n b R (G))
for any graph G of order n. This algorithm is based on the so called poise of a graph. The poise P (T) of a tree T is the quantity: maximum degree of T plus diameter of T . The poise P (G) o f a graph G is the minimum poise of any of its spanning tree. Ravi showed that the poise of a graph is strongly related to its broadcast time. More precisely, h e s h o wed that b R (G) 2 (P(G)) and b R (G) 2 O(P (G) log n log log n ) for any graph G of order n. Since computing the poise of a graph is NP-hard, Ravi developed a polynomial algorithm for computing a tree T such that P (T) 2 O(log n P (G) + l o g 2 n). His approximation algorithm directly follows this result.

Feige, Peleg, Raghavan and Upfal have d e r i v ed in 11] a simple but quite e cient randomized broadcast algorithm A RB . The algorithm A RB performs as follows: repeat for all v 2 V , in parallel do if v has already received the message then v sends the message to a randomly and uniformly chosen neighbor end.

To study the performances of their algorithm, 1 All along this paper, O(f), (f), and o(f) denote the sets of functions that are asymptotically upper bounded, lower bounded, and negligible in front of a function that di ers from f by a constant, respectively.

They show that for every network G of order n, m a x i m um degree and diameter D: bC (A RB G]) 2 O( (D + log n)) but that A RB can performs better is some particular case for instance, bC (

A RB Q d ]) 2 (log n)
where Q d is the d-dimensional hypercube. Moreover, they show that for almost all random graphs G of order n and whose edges are present independently with probability p, w e h a ve b R (A RB G]) 2 (log n) if p (1 + ) log n n for some xed constant > 0.

Step-complexity

From Equation 1, we h a ve g R (G) 2 (b R (G)) for any graph G. Moreover, a gossiping can be performed in two phases by rst accumulating (a reverse broadcast) all the pieces of information in some particular vertex, and then broadcasting the single message obtained by a concatenation of all the pieces of information from this vertex to all the others. For any approximation algorithm B for broadcasting, we denote by B 2 the corresponding two-phases approximation algorithm for gossiping. Thus, all the algorithms B for the broadcasting problem that we h a ve previously described give adapted solutions B 2 for the gossiping problem. The main criticism about this is that the number of exchanged messages increases exponentially during the rst phase, and the message broadcasted during the second phase has size n. C o u n ting 1 when manipulating messages of size (n) might not re ect the real complexity of the problem.

One can re ne the study of the complexity of information dissemination problems under the telephone model by counting not only the number of rounds, but also the sum of the maximum number of pieces of information exchanged during each successive round. During a call between two v ertices x and y, if they exchange k x pieces of information (a piece is supposed to be atomic) from x to y, a n d k y pieces of information from y to x, then this call requires k = m a x fk x k y g steps.

A round requires the maximum, over all the calls of that round, of the number of steps of these calls. The rounds being synchronized, r rounds require P r i=1 k i steps where k i is the number of steps of round i, for all i.

De nition 2 A step is the operation consisting of transmitting an atomic piece of information during a call between two vertices. The step-complexity of an information problem P on a graph G is the minimum number of consecutive steps necessary to solve P on G.

In particular, the step-complexity of a gossiping in G is denoted by g S (G), and, given an approximation algorithm A for the gossiping problem, the number of steps necessary to complete A G] on a graph G is denoted by g S (A G]). Clearly, for any graph of order n, g S (G) 

2 (n + b R (G)) (3) 
since every vertex must receive at least n ; 1 pieces of information, and a gossiping includes at least one broadcasting. Therefore, the two-phases gossiping algorithm obtained by accumulating and broadcasting yields a quite ine cient algorithm when considering the number of steps:

g S (B 2 G]) 2 O(n b R (B G]))
where B is a polynomial approximation algorithm for broadcasting under the telephone model with the minimum number of rounds. This is at least b R (G) times worse than the lower bound of Equation 3. Also, when broadcasting a message that is not an atomic piece of information but composed of k pieces of information, then again algorithms derived to minimize the number of rounds might b e ine cient. Indeed, let b S (G x) be the step-complexity of a broadcasting from a node x of a graph G, and let b S (G) = max x b S (G x) be the step-complexity of a broadcasting in G. W e h a ve, b S (G) 

2 (k + b R (G)) (4)
when broadcasting a message of size k. On the other hand, B satis es b

S (B G]) 2 O(k b R (B G]))
which i s a t l e a s t b R (G) times worse than the bound of Equation 4.

Our results

In this paper, we focus on both measurements: round and step-complexity. More precisely, w e present a polynomial approximation algorithm for broadcasting that almost matches the bound of Equation 4for large k. This result is based on the construction of edge-disjoint spanning trees in the considered graph ( denotes the edge-connectivity of the graph). Pieces of information move without con ict along the edges of the tree.

Concerning gossiping, we present s e v eral strategies to construct e cient approximation algorithms. All strategies are based on matchings of di erent kinds. O -line matching are computed in advance, and the gossiping proceeds by a succession of exchanges along the edges of the matchings. On-line matchings are more e cient. In this case, the matching used at round t of an approximation algorithm for gossiping depends on the way the information ows during the t ;1 previous rounds.

In particular, we present the Dynamic Weights algorithm that is shown to work asymptotically quite e ciently on particular graphs, and is experimentally shown to work well on about all the usual examples of graphs used to interconnect processors of a parallel computer. In fact, we h a ve sometimes observed that the DW approximation algorithm performs faster than the best known handmade algorithms for some particular graphs.

Extensions

We extend our results in two directions.

First, we consider the so-called store-and-forward routing model, and show that the approximation algorithms derived in Section 2 and 3 apply in this case, and can o er good performances in practice.

Our second direction of investigation consists in studying the so-called telegraph model. In this abstract model, information cannot traverse an edge in both directions simultaneously, This strongly reduces the performances of the broadcasting and gossiping algorithms derived to satisfy this constraint. We show that our best approximation algorithm for gossiping does not su er too much of this restriction, and applies in the telegraph model with almost the same e ciency as in the telephone model.

Organization of the paper

The next section is devoted to broadcasting. Section 3 deals with the gossiping problem. Finally, section 4 presents results obtained in both store-and-forward and telegraph models.

Broadcasting

In all this section, the size of the message to be broadcasted is denoted by k, and we recall that the best known polynomial approximation algorithm for broadcasting when counting only the number of rounds is denoted by B .

The following result shows that it is easy to design e cient algorithms that minimize the number of steps from e cient algorithms designed to minimize the number of rounds. This is particularly true when k 2 O( bR(B G]) ) where is the maximum degree of the considered graph G.

Theorem 1 There exists a polynomial time approximation algorithm A for broadcasting such that, for any graph G of maximum degree , b S (

A G]) 2 O(k + b R (B G])).
Proof. Let G be any graph of maximum degree . The algorithm A G] proceeds as follows. Consider a broadcast tree T induced by B on G. The edges of T are labeled by the time at which they are used in B . Let `(e) be the label of an edge e of the tree T . The i-th piece of information of the message is sent through e at time (i ; 1) T + `(e) where T is the maximum degree of T .

The rst piece is known by all the vertices after a time b R (B G])). Every T steps, a new piece is received by a l l t h e v ertices. Thus this algorithms takes a total time b R (B G])) + (k ; 1) T .

However, for long messages (k b R (G)), the result of Theorem 1 is times worse than the bound of Equation 4. The next result shows that one can be much more e cient for long messages. Before stating this result, recall that the chromatic index 2] of a graph G is the minimum number q such that it is possible to label all the edges of G with numbers in f0 : : : q ;1g, e a c h n o d e h a ving all its incident edges labeled with di erent n umbers. Vizing's Theorem (see 2]) says that for any graph of maximum degree , the chromatic index q of G satis es q + 1. The bad news is that knowing whether or not q = is NP-complete 16]. The good news however is that nding a coloring of the edges of a graph G with at most + 1 colors is polynomial (from the proof of Vizing's Theorem). This result is the base of Theorem 2.

The telephone model implies that when two nodes x and y of a graph G communicate during a call, they exchange their information, that is links are full-duplex and the underlying communication network could be represented by a symmetric digraph G where G denotes the digraph obtained from G by replacing every edge (x y) o f G by t wo symmetric arcs x y and y x .

Theorem 2 There exists a polynomial time approximation algorithm A for broadcasting such that, for any graph G of maximum degree and edge-connectivity , b S (A G]) = ( + 1)d k e + h, where h is independent of k.

Proof. Following Menger's Theorems (see 33]), Edmonds 8] (see also 32]) has shown that for any v ertex r of a nite digraph H , there exists arc-disjoint spanning trees of H rooted at r ( is the arc-connectivity of the digraph H ). If the edge-connectivity of a graph G is , then is also the arc-connectivity o f G . T h us, for any v ertex r of a nite digraph G , there exists arc-disjoint spanning trees of G rooted at r, that is spanning trees of G where any e d g e ( x y) appears at most in two trees, each using (x y) in a distinct direction. Let us call T 1 T 2 : : : T a f a m i l y o f s u c h trees.

Assume the edges of G are colored with at most + 1 colors c 1 c 2 : : : c +1 . The broadcasting algorithm proceeds as follows: split the message of k pieces in packets P 1 P 2 : : : P , e a c h c o mposed of at most d k e pieces. Packet P i is broadcasted using T i . Pieces of information are sent i n a pipelined fashion, and edges colored c j are used every +1 steps, at time j j + +1 j +2( +1) : : : . Every + 1 rounds, at least one piece of each p a c ket has been sent b y the root. Therefore, after ( + 1)d k e rounds, the root has completed its broadcast. In time at most ( + 1)h, where h is the maximum depth of the spanning trees, the remaining packets still in the networks will reach their destinations. This time additional is independent o f k. This result yields two remarks. First, if = a n d i f ( b y c hance) the coloring obtained in polynomial time has colors, then the approximation algorithm described in Theorem 2 is asymptotically optimal when k tends to in nity, and the lower bound of Equation 4is reached (replace by , and + 1 by in the statement of Theorem 2). Note also that the term corresponding to o(k) in Theorem 2 is strongly dependent on the maximum depth of disjoint spanning trees of a graph G. Unfortunately, minimizing this parameter has been shown to be NP-hard by N. Alon (see 3] and 13]).

Gossiping

Any gossiping algorithm under the telephone model can be described by a sequence of matchings, each matching corresponding to a set of calls performed during the same round. Conversely, a n y sequence of matching M 1 M 2 : : : M r yields a communication algorithm described by: at round i, each pairs of extremities of the edges of M i exchange all the information they are aware of. It is therefore natural to describe gossiping algorithms by sequences of matchings.

O -line matchings

People were recently interested in studying the structure of the matching sequence, and see what happens if one forces this sequence to be composed of the repetition of a same subsequence: M 1 M 2 : : : M r = M 1 : : : M s M 1 : : : M s : : : M 1 : : : M s = (M 1 M 2 : : : M s ) t

This approach g i v es rise to a class of approximation algorithms that (1) look for some sequence of matchings M 1 M 2 : : : M s in a graph G, and (2) apply the corresponding communication algorithm by repetition of this sequence. Liestman and Richards were the rst to consider such an approach (see 31]). They assume that the subsequence M 1 M 2 : : : M s is obtained by a coloration of the edges of the graphs with s colors. They study this strategy in paths, cycles, trees and meshes to produce the best adapted gossip algorithm. They also show the following lemma:

Lemma 1 (Liestman and Richards) If there exists a coloring of a graph G of diameter D with k colors, then g R (G) D(k ; 1) + 1.

Proof. Each edge is colored. Therefore any edge is used every k rounds, and any piece of information will be routed on a path of length D in less than k + ( k ; 1)(D ; 1) = D(k ; 1) + 1 rounds.

In this model, Labhan, Hedetniemi and Laskar 28] h a ve proposed approximation algorithms for gossiping in trees. In 21, 20], Hromkovic et al. consider the so called systolic gossiping. I n this case, the choice of the subsequence M 1 M 2 : : : M s is enlarged (and is not necessarily chosen among chromatic matchings). In particular two matchings M i and M j might h a ve common edges. As Liestman and Richards, they consider particular cases like cycles and trees but did not give a general way of nding the appropriate subsequence M 1 M 2 : : : M s for all graphs.

This approach yields the following result that improves by a factor of two the gossiping time resulting of an algorithm that (1) accumulates all the information in some node in at most D rounds, and (2) broadcasts the whole information from that node in at most D rounds (see Equation 2).

Theorem 3 There exists a polynomial time approximation algorithm A for gossiping such that, for any graph G of maximum degree and diameter D, b R (A G]) D + 1 .

Proof. As we said in Section 2, it is possible to polynomially nd a coloring of the edges of G with at most + 1 colors. The result then directly follows Lemma 1

Although the approximation algorithm A of Theorem 3 is quite attractive because of its simplicity, it can be quite ine cient. For instance, let us take a similar example as in 24], and consider the sparse wheel S W n of n vertices and p n rays: a center node x 0 , and n ;1 other nodes organized in a cycle x 1 x 2 : : : x n;1 the center is connected to vertices x 1 x p n+1 x 2 p n+1 : : : x ( p n;1) p n+1 .

It is easy to check that b R (SW n ) 2 ( p n). Therefore, g R (SW n ) 2 ( p n). However, there exits a ( p n + 1)-coloring of the edges of S W n such that g R (A S W n ]) 2 (n): color the edges of the cycle with O(1) colors, and each r a y with a di erent color. Indeed, the information of x 0 needs (n) rounds to reach a node of the form x k p n+ p n 2 because the edges of the cycle are used every ( p n) rounds. Thus the approximation algorithm of Theorem 3 can be O( p n) t i m e w orse than the optimal.

In fact, A is particularly ine cient when a node of high degree implies a large chromatic index and let therefore many edges are often inactive during the gossiping. In the following, we will focus on a more dynamic approach, where the matchings are chosen on-line and not xed statically before the gossiping algorithm starts.

On-line matching

Our gossiping algorithms will proceed as follows: This strategy depends on the way the matching M is chosen at each phase. In the following, we will explore two main directions.

In the rst case, each edge has a xed weight at the beginning and weights evolve a s t h e communication algorithm goes on: the matching M i , c hosen at phase i, i s a m a t c hing of maximum weight and the weights of the edges not in M i are increased following some given rule so that the next matching M i+1 selects other edges.

The other approach consists in computing new weights for the edges after each phase. For instance the weight of an edge can be de ned by the number of pieces of information that knows one of its extremities but that the other does not know.

Before analyzing these two approaches, let us recall that a matching of k edges is maximum if there does not exist any other matching with more than k edges. A matching is maximal if it is not possible to add an edge to that matching. (Of course, a maximal matching is not necessarily maximum.) A matching is of maximum weight if the sum of the weights of its edges is maximum. (Again, a matching of maximum weight is not necessarily maximum, but if all the weights are positive, then a matching of maximum weight is maximal.)

In the following, the weight o f a n e d g e e is denoted by w(e), and the matching chosen at phase i is denoted by M i . W e s a y that a generic gossiping algorithm converges if, for any graph G, the gossiping completes in G in a nite time.

Increasing weights

Our rst approach is formalized as follows: at the beginning, all the weights are set to 1. During the algorithm, all matchings are chosen to be of maximum weight. It means that M 1 is a maximum matching. The weights evolve b y successive m ultiplication by a xed constant > 1. At phase i > 1, if e = 2 M i;1 then w(e) w(e), otherwise w(e) is not modi ed. We denote by -IW the corresponding approximation algorithm (for -Increasing Weights).

Theorem 4 For any > 1, the approximation algorithm -IW converges.

Proof. Let > 1 and let G = ( V E ) b e a n y graph. Let us show that there does not exist t such that there is an edge e 2 E that is never selected in M i for any i > t .

The proof is by c o n tradiction. Let S be the set of edges e such that there exist t e satisfying e = 2 M i 8i > t e . I f S 6 = then let t 0 = maxft e e 2 S g. F or any edge e 2 E and any t i m e t 1, let (e t) = jfi t e = 2 M i gj:

For any t t 0 and any e 2 S , w e h a ve w(e) = (e t0)+t;t0 . F or any e = 2 S , w e h a ve 8r 1 9t r j (e t) t ; r that is e has been selected r times before time t. L e t e 2 S , l e t r > log jEj ; (e t 0 ) + t 0 and let t > t 0 such that (e t) t ; r 8e = 2 S: Then 8e 2 S w(e) > jEj t;r P f = 2S w(f ). Therefore at least an edge of S must be selected in M t t > t 0 , a contradiction.

The proof directly follows since 8e 2 E 8t 1 9t 0 t j e 2 M t 0 :

This implies that any p a t h o f G is traversed in a nite time.

Note that the fact that is a scalar is important in the proof of Theorem 4. For instance, consider the case where ~ is a vector of jEj components e e 2 E . In Figure 1, such a case is illustrated with e = 10 for all the edges but the central edge e c , a n d ec = 2. Since log 2 10 > 2, the edge e c is never selected and the information cannot cross from one side of the network to the other side. The e ciency of the approximation algorithm -IW is strongly related to the value of . Consider for instance the path P 4 = fx 1 x 2 x 3 x 4 g of 4 vertices. The edge (x 2 x 3 ) will be selected not before round t such that t;1 > 2, and then -IW P 4 ] w i l l b e v ery slow i f is too close to 1. Of course, choosing a large solves the problem in this case. In fact, it is possible to show that if 2 (jEj), then for any graph G = ( V E ) of maximum degree and diameter D, g R ( -IW G]) 2 O( D log n). This bound is obtained by estimating the frequency at which a n edge can be selected in a matching. However this bound is much w orse than the one derived in Theorem 3, and does not re ect the real behavior of this algorithm. For instance, let us consider again the sparse wheel S W n of n vertices and p n rays. If is large enough, a cycle edge is selected once every O(1) rounds and the information of all the vertices x k p n+1 : : : x (k+1) p n+1 is concentrated in x k p n+1 in O( p n) rounds. Again, if is large enough, a ray is selected every O( However, even if computing the matching on-line as in the -IW approximation algorithm tends to limit the time during when an edge is not used, the fact that this time strongly depends on makes -IW very di cult to tune. Moreover, the choice of the matching in both A and -IW depends mainly on the topology of the network, and not really on the way the information ows inside the network. We present b e l o w another approach that takes into account the knowledge of each n o d e a t a n y time during the gossiping.

Dynamic weights

Our second approach is formalized as follows. Again, all along the algorithm, all matchings are chosen to be of maximum weight. At e a c h phase i 1, the weights are computed as For every neighboring nodes x and y, l e t I x!y be the set of pieces of information that knows x but that does not know y. F or any edge e = ( x y), we s e t w(e) = jI x!y j + jI y!x j. The weight w(e) represents the number of pieces of information that will cross e if e is selected in the matching of the current phase. We denote by DW the corresponding approximation algorithm (for Dynamic Weights). Theorem 5 The approximation algorithm DW converges.

Proof. Let G = ( V E ) b e a n y connected graph. Let I t x be the set of pieces of information known by x 2 V after phase t. (Of course, I t x n 8x 2 V 8t 1.) If there exists x such that jI t x j < n then P x2V jI t+1 x j > P x2V jI t x j because otherwise I t x = I t x 0 8x x 0 2 V . Therefore there exists t such that jI t

x j = n 8x 2 V .

To g i v e a a vor of the e ciency of the DW approximation algorithm, we h a ve derived the following results:

Property 1 Let C n and P n be r espectively the cycle and the path of n vertices.

g R (DW P n ]) = g R (P n ) = ( n if n is odd n ; 1 if n is even g R (DW C n ]) = g R (C n ) = d n 2 e:
Note that the chromatic approximation algorithm does not reach s u c h performances since it directly follows the results in 31] t h a t g R (A C n ]) = 3 4 n + O(1).

Proof. The complexity of the DW algorithm is easy to compute for the path of any length, and the cycle of even size. In both cases, two m a t c hing alternate and allow to complete a gossiping in the speci ed time. The cycle C n = fx 0 x 1 : : : x n g of odd size must be considered separately.

Indeed, at each round, only n 2 edges are selected. Assume that the two consecutive edges not selected at the rst round are (x 0 x 1 ) and (x 1 x 2 ). At the second round, one of these two edges is selected. Assume without loss of generality that it is (x 0 x 1 ). Then (x 1 x 2 ) and (x 2 x 3 ) are the two consecutive edges that are not selected at round 2. It is not di cult to see that, at round r, (x r;1 x r ) and (x r x r+1 ) are the two consecutive edges that are not selected. The rst even value of n for which the DW K n ] is not round-optimal is 14 (Knodel 23] h a s

shown that for n even, it is possible to gossip in dlog 2 rounds). Our experiment shows that the DW algorithm performs well on K 14 during the 3 rst rounds (that is the global amount o f information known by e a c h v ertex double at each round). Unfortunately, the way in which the information ows in the fourth round is not enough to complete the gossiping in K 14 . F or n odd, the general structure of the DW K n ] consists in a gossiping among n ; 1 v ertices plus a broadcast from the non informed vertex to all the other. This doubles at least the usual gossiping time of This property m ust be kept in mind when implementing the DW algorithm for a given graph: the labeling of the vertices has a great in uence on its performances.

Meshes P p P q

Figures 2(d) and (e) present experimental results on two dimensional meshes. Compared to the optimal, the performances (in terms of rounds) are quite good: always less than the optimal time plus 2 in our experiments.

Torus C p C q Figures 3(a In our experiments (that may h a ve been helped by the usual labeling of the torus), we h a ve a l w ays obtained optimal results (in term of both number of rounds and steps) when p and q are both even.

In the general case, the round-complexity o f DW C p C q ] i s a l w ays between the known lower and upper bounds of the round-complexity of the gossiping in C p C q .

Cube-connected-cycle C C C d 

Extensions

Communications in store-and-forward routed parallel computers

In a store-and-forward routed parallel computer, a message proceeds along a path P = fx 0 x 1 : : : x `g of length `in `successive phases. At phase i, 1 i `, the message is sent b y x i;1 to x i , a n d stored in the memory of x i . A t the next phase, x i will forward the message to x i+1 . Many experiments 6, 12] h a ve shown that the time of a neighbor-to-neighbor communication in many computers can be modeled by + L where is the start-up time necessary to set up the communication, and L is the propagation time proportional to the size L of the message ( 1 is the bandwidth of each c o m m unication link). Though it can be more di cult to handle (see 14]), this model re ects, in some sense, both step-complexity ( b y looking at the dominating term in ) a n d round-complexity ( b y looking at the dominating term in ).

In fact, given any approximation algorithm A for gossiping, one can hope that its completion time in a store-and-forward routed parallel computer of topology G will be of the form g R (A G]) + g S (A G]) :

However, there exist graphs G for which the store-and-forward gossiping time is larger than g R (G) + g S (G) . T h i s i s t ypically the case when the round-optimal gossiping algorithm on G is di erent from the step-optimal gossiping algorithm in G. The cycle C n , n odd, is an example of such a graph: g R (C n ) = n+1 2 , g S (C n ) = n ; 1, but we do not know if it is possible to gossip in n+1 2 + ( n ; 1) (see 14]). However, choosing an e cient approximation algorithm depends on the tradeo between and . The DW gossiping algorithm based on the di erences of knowledge between neighbors of the networks is quite appropriate to that problem since it tends to minimize simultaneously the total start-up times and the total propagation times.

In the broadcasting case, the dominating term in the complexity of the algorithm described in Theorem 2 corresponds to the propagation time of the broadcasting algorithm. However, the o(k) term cannot be neglected in store-and-forward routed networks since it depends on the start-up time, and is usually much larger than . The adapted solution is pipelining 22, 3 9 ] where, instead on sending the information contained in each p a c ket piece after piece, pieces are rst grouped in sub-packets. Then the sub-packets play the role of the pieces, being sent one after the other through the network. Computing the number of pieces that must form each sub-packet is critical and is described in detail in 14].

Telegraph model

In the telephone model (also called 2-way m o d e ) , c o m m unication links are full-duplex, that is they can be used simultaneously in both directions. In the telegraph (also called 1-way mode), links are half-duplex, that is they are bidirectional but they cannot be used simultaneously in both directions.

The telegraph model appears to be much more tricky than the telephone model. For instance, in the telegraph model, for any graph G of order n, 2 + dlog n 2 e g R (G) where = 1+ p 5 2 7, 9, 29, 4 0 ]. This bound must be compared to Equation 1. To g i v e a n i d e a o f the di culty, the complexity of gossiping in the complete graph K n is not known for all the values of n, and the complexity of gossiping in hypercube is totally unknown (it belongs to the interval 1:44 log 2 n 1:88 log 2 n], see 25]).

However, our approach applies also in the telegraph model. For instance, Theorem 1 directly applies. Theorem 2 does not directly apply because the proof is based on trees that use edges in both directions simultaneously. Nevertheless, this theorem can be adapted to the half-duplex constraint b y using b 2 c edge-disjoint spanning trees (the existence of such trees has been shown by Kundu 26]).

For gossiping, the same approximation algorithm as for the telephone model applies. The rule is that for any edge e = ( x y), w(e) = maxfjI x!y j jI y!x jg and the information goes from x to y if jI x!y j > jI y!x j, and from y to x otherwise.

The experimental results show that this approach is e cient. We experiment the DW algorithm in the telegraph model on the complete graph, the hypercube, and the cycle of even size (quite a few results are known about other topologies 14]), and consider only the round-complexity (the step-complexity of gossiping has not been yet investigated for the usual topologies in the half-duplex model 14]). Figure 5(a) presents results obtained on the complete graph. Even if the number of rounds is larger than the optimal (about 1:44 log 2 n 7, 9, 29, 40]), it stays not larger than a constant factor times this optimal. Same remarks hold for the hypercube (Figure 5(b)). In the case of the cycle of even size, the number of rounds of the DW algorithm is n whereas the optimal gossiping algorithm performs in n 

  M exchange messages along the edges of M until all the vertices get everything

Figure 1 :

 1 Figure 1: Evolution of the weights during the rst four steps of a gossiping algorithm that does not converge. (Edges in the matching are represented by dashed lines.)

  the center x 0 is aware of all the information in O( p n) rounds. By symmetry, x 0 broadcasts the whole information in O( p n) rounds. Hence the gossiping completes in O( p n) rounds. Therefore, -IW can be ( p n) times faster than the chromatic gossiping A .

  Figure 2(c) gives the experimental results obtained on the d-dimensional hypercube Q d . Theseresults strongly depends on the labeling of the vertices. For instance, for the \usual" labeling L (two nodes are linked by an edge if and only if their binary representations di er in exactly one bit), the DW gossiping algorithm has performed optimally in term of both round and step. However, Figure2(c) shows that, for other labelings, the DW gossiping algorithm may be less e cient, even with a slight modi cation of the labels: L 0 (x) = L(x) + 13 mod n and L 00 (x) = L(x) + 7 m o d n.

  Figures 3(a) and (b), and Figure 4(b) present experimental results on two dimensional tori.In our experiments (that may h a ve been helped by the usual labeling of the torus), we h a ve a l w ays obtained optimal results (in term of both number of rounds and steps) when p and q are both even. In the general case, the round-complexity o f DW C p C q ] i s a l w ays between the known lower and upper bounds of the round-complexity of the gossiping in C p C q .

Figures 2

 2 Figures 2(f) and 4(c) present experimental results on d-dimensional C C C . The round-complexity of DW C C C d ] is about the same as the best known upper bound for this graph (it can even perform faster in some cases). The step-complexity o f DW C C C d ] is close to the general lower bound n ;1 for even order, and n for odd order.

Figure 4 :

 4 Figure 4: Experimental step-complexity of the DW approximation algorithm

Figure 5 :

 5 Figure 5: Experimental round-complexity of the DW approximation algorithm in telegraph model.

  Thus the gossiping time of DW C n ] i s d n 2 e. (The optimality of the results can be checked easily 10].) Similar results can be obtained for the step-complexity:Property 2 Let C n and P n be r espectively the cycle and the path of n 4 vertices.

	g S (DW P n ]) = g S (DW C n ]) =	( 2n ; 2 if n is odd 2n ; 3 if n is even ( n if n is odd n ; 1 if n is even
	In all cases (but P n , n odd), these results are optimal.
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Proof. Bermond, Gargano, Rescigno and Vaccaro have shown in 5] that g S (P n ) = 2 n ; 3. In the case n even, this bound is reached by DW P n Indeed, as we s a w in the proof of Property 1 , there are two selected matching that alternate during the gossiping: one with n 2 edges, and another with n 2 ; 1 edges. These matching allow t o g o s s i p i n 2 n ; 3 steps. Unfortunately, DW P n ] i s n o t optimal when n is odd and di ers from the optimal gossiping by one. Indeed, if n is odd, there are two matching, both with n;1 2 edges, that alternates. This yields a gossiping time of 2n ; 2 steps. During the gossiping DW C n ] on the even cycle, the rst round consists of exchanging one packet, and, during the n 2 ;1 other rounds, two p a c kets are exchanged at each round. That gives n ;1 steps in total. When n in odd, the matching chosen at each round is composed of n;1 2 edges. Moreover, at each round, two consecutive edges are not selected in the matching. It is easy to see, as in the proof of Property 1, that these pairs of edges \rotate" (say c l o c kwise) around the cycle. This phenomenon slows down the information ow going counter clockwise by 1 step, but does not slow down the information ow going clockwise. This yields a gossiping time of 1 + 2 n;1 2 = n steps. In the following, we experimentally study the DW approximation algorithm for gossiping.

Experimental comparisons

We h a ve experimented the DW approximation algorithm on several graphs as, in particular, the complete graph on n vertices K n , the d-dimensional hypercube Q d , t h e d-dimensional cubeconnected-cycle C C C d 35], the d-dimensional shu e-exchange S E d 30], the two dimensional meshes and tori (P p P q and C p C q ), and the d-dimensional star-graph S d 1]. All these graphs are often considered as e cient i n terconnection networks for parallel computers. We comment the results of our experiments below. We compare these results with the best ones known in the literature 14].

Figures 2 and3 present results on the round-complexity as a function of characteristic parameters of the graph (number of nodes, or dimension). Figure 4 present results on the step-complexity, again as a function of characteristic parameters of the graphs.

Note that the execution of the DW approximation algorithm depends on the chosen matching algorithm: two di erent matching algorithms may produce di erent results using the DW approximation algorithm.

The complete graph K n

Figures 2(a) and (b), and Figure 4(a) give the results obtained on complete graph. The DW algorithm performs quite well. In particular, it is easy to see that, for n = 2 k , the DW approximation algorithm is optimal: Property 3 Let K 2 k be the complete graph on 2 k vertices,