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Abstract

The Besicovitch and Weyl pseudometrics on the space AZZ of biin�nite
sequences measure the density of di�erences in either the central or arbi�
trary segments of given sequences� The Besicovitch and Weyl spaces are
obtained from AZZ by factoring through the equivalence of zero distance�
We consider cellular automata as dynamical systems on the Besicovitch
and Weyl spaces and compare their topological and dynamical properties
with those in the Cantor space�

Keywords� Cellular automata� dynamical systems

R�esum�e

Les peudo�m	etriques de Besicovitch et Weyl sur l
espace AZZ des suites
biin�nies mesure la densit	e des di�	erences dans la partie centrale ou dans
une partie arbitraire d
un suite donn	ee� Les espaces de Besicovitch et
Weyl sont obtenus en factorisant AZZ par la relation d
	equivalence ��etre
a une distance nulle�� Nous consid	erons les AC comme des systemes
dynamiques sur ces espaces et nous comparons leurs propri	et	es topolo�
giques et dynamiques avec celles dans l
espace de Cantor�

Mots�cl�es� Automates cellulaires� systemes dynamiques
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Abstract

The Besicovitch and Weyl pseudometrics on the space AZZ of biin�

�nite sequences measure the density of di�erences in either the central

or arbitrary segments of given sequences� The Besicovitch and Weyl

spaces are obtained from A
ZZ by factoring through the equivalence of

zero distance� We consider cellular automata as dynamical systems on

the Besicovitch and Weyl spaces and compare their topological and

dynamical properties with those in the Cantor space�

� Introduction

A cellular automaton consists of a biin�nite array of cells containing letters
from a �nite alphabet� which are updated according to a local interaction
rule� Cellular automata have been of considerable interest both as models
of physical and biological phenomena and in symbolic dynamics as homo�
morphisms of the shift �Hedlund ����� They display a large spectrum of dy�
namical behaviors ranging from stable to chaotic dynamics and they could
also support universal computation� For survey� see Wolfram ����� Culik II�
Hurd and Yu ��� or Blanchard� Maass and K�urka ����

When a cellular automaton is conceived as a dynamical system� the space
of biin�nite sequences is equipped with product topology� which makes it
homeomorphic to the Cantor space� In the Cantor space� the shift map has
many chaoticity properties like sensitivity to initial conditions and topo�
logical transitivity� However� the shift may be regarded as a shift of the
observation point� in which the con�guration does not change at all� To
distinguish the shift from chaotic cellular automata� which really change the
structure of con�gurations� Cattaneo et al� ���� consider a shift invariant
Besicovitch pseudometric� which has been also used in the study of almost
periodic functions �see e�g� Besicovitch ����� Besicovitch pseudometrics mea�
sures the density of di�erences in the central part of two given sequences�
The Besicovitch space is obtained factoring the space of biin�nite sequences
by the equivalence of zero distance� A variant of this approach is the Weyl
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pseudometric� which measures the density of di�erences in arbitrary seg�
ments of two given sequences� Downarowicz and Iwanik ��� show that the
Weyl space is pathwise connected and incomplete� The Besicovitch space is
also pathwise connected but complete� Both spaces are in�nite�dimensional
and neither separable nor locally compact�

Cellular automata are continuous with respect to both Besicovitch and
Weyl pseudometrics� so they yield dynamical systems in both Besicovitch
and Weyl spaces� In the present paper we compare topological and dy�
namical properties of cellular automata in these spaces with those in the
Cantor space� When passing from either Besicovitch or Weyl spaces to Can�
tor space� cellular automata preserve chaoticity properties like topological
transitivity and sensitivity� Vice versa� when passing from the Cantor space
to either Weyl or Besicovitch space� cellular automata preserve chain transi�
tivity an stability properties like equicontinuity� existence of equicontinuity
points and stability of periodic points� Finally� in neither the Weyl nor Besi�
covitch space holds the Hedlund theorem saying that cellular automata are
exactly continuous maps commuting with the shift� We thus obtain in these
spaces a class of shift commuting maps� which are not given by any local
rule�

� Dynamical systems

A dynamical system is a continuous map f � X � X of a nonempty metric
space X to itself� The n�th iteration fn � X � X of f is de�ned by
f��x� � x� fn���x� � f�fn�x��� A point x � X is �xed� if f�x� � x� It is
periodic� if fn�x� � x for some n � �� The least positive n with this property
is called the period of x� The orbit of x is the set o�x� � ffn�x� � n � �g�
A set Y � X is positively invariant� if f�Y � � Y � A point x � X is
equicontinuous �x � E�f�� if the family of maps fn is equicontinuous at X �
i�e� x � E�f� i�

��� � ����� � ����y � B��x����n � ���d�fn�y�� fn�x�� � ���

The map f is equicontinuous i�

��� � ����� � ����x � X���y � B��x����n � ���d�fn�y�� fn�x�� � ���

For an equicontinuous system E�f� � X � Conversely if E�f� � X and X is
compact� then f is equicontinuous� A system �X� f� is sensitive �to initial
conditions�� i�

��� � ����x � X���� � ����y � B��x����n � ���d�fn�y�� fn�x�� � ���

A sensitive system has no equicontinuous point� there exist� however� sys�
tems with no equicontinuity points which are not sensitive� A system �X� f�
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is �positively� expansive i�

��� � ����x �� y � X���n � ���d�fn�x�� fn�y�� � ��

A positively expansive system on a perfect space is sensitive�
A system �X� f� is �topologically� transitive� if for any nonempty open

sets U� V � X there exists n � � such that f�n�U� � V �� �� If X is
perfect and if the system has a dense orbit� then it is transitive� Conversely�
if �X� f� is topologically transitive and if X is compact� then �X� f� has a
dense trajectory� Indeed� the set fx � X � o�x� � Xg is residual in this
case� An ��chain �from x� to xn� is a sequence of points x�� � � � � xn � X such
that d�f�xi�� xi��� � � for � 	 i � n� A system �X� f� is chain transitive� if
for any � � � and any x� y � X there exists a ��chain form x to y�

A �xed point x � X is stable if it is equicontinuous and there exists
its neighbourhood U 
 x� such that for every y � U � lim

n��
fn�y� � x� A

periodic point x with period n is stable if it is stable for fn�

� Cantor� Weyl and Besicovitch spaces

Let A be a �nite alphabet with at least two letters� The binary alphabet
is denoted by � � f�� �g� For n � IN � denote by An the set of words over
A of length n� A� � �n��A

n the set of �nite words over A� We consider
also words u � A�j�k� indexed by an interval of integers �j� k�� Denote by AZZ

the set of biin�nite sequences of letters from A� The i�th letter of a point
x � AZZ is denoted by xi� and x�j�k� � xj � � �xk � A�j�k� is the segment of x

between indices j and k� For u � A�j�k�� u� is the in�nite repetition of u� i�e�
�u��m�n	k�j��
 � um for n � ZZ and m � �j� k�� The cylinder of u � A�j�k�

is the set
�u� � fx � AZZ � x�j�k� � ug �

The Cantor metric on AZZ is de�ned by

dC�x� y� � ��k where k � minfjij � xi �� yig

so dC�x� y� � ��k i� x��k�k� � y��k�k�� The cylinders are clopen sets for
dC � It is well known that all Cantor spaces �with di�erent alphabets� are
homeomorphic� The Cantor space is compact� totally disconnected and
perfect�

The Weyl pseudometric on AZZ is given by

dW �x� y� � lim sup
l��

max
k�ZZ

�fj � �k � �� k� l� � xj �� yjg

l
�

Here � means the number of elements of a set� so dW �x� y� � � i�

��l� � IN���l � l����k � ZZ���fj � �k� �� k� l� � xj �� yjg � l��
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For x � AZZ denote by ex � fy � AZZ � dW �y� x� � �g and XW � fex � x �
AZZg the Weyl space over alphabet A� Clearly every two Weyl spaces �with
di�erent alphabets� are homeomorphic� The Weyl pseudometric could be
considered also on the set AIN of unilateral sequences� For x� y � AIN put

dW �x� y� � lim sup
l��

max
k�IN

�fi � �k � �� k� l� � xi �� yig

l
�

The map � � AZZ � AIN de�ned by ��x� � x�x��x�x��x� � � � yields a
homeomorphism between unilateral and bilateral Weyl spaces� In fact � is
uniformly continuous� so it preserves completeness�

The Besicovitch pseudometric on AZZ is given by

dB�x� y� � lim sup
l��

�fj � ��l� l� � xj �� yjg

�l� �

so dB�x� y� � � i�

��l����l � l����fj � ��l� l� � xj �� yjg � ��l� ���� �

For x � AZZ put again ex � fy � AZZ � dW �y� x� � �g and XB � fex �
x � AZZg the Besicovitch space over alphabet A� Clearly every two Besicov�
itch spaces �with di�erent alphabets� are homeomorphic and they are also
homeomorphic to the unilateral Besicovitch space obtained by the following
pseudometric

dB�x� y� � lim sup
l��

�fi � ��� l� �� � xi �� yig

l
� x� y � AIN �

Since dB�x� y� 	 dW �x� y�� the identity yields a continuous map I � XW �
XB�

Both Weyl and Besicovitch spaces are homogeneous� For any u � �ZZ �
f � �ZZ � �ZZ de�ned by f�x�i � xi � ui mod � is a homeomorphism� which
sends �� to u� Using Toeplitz sequences� Downarowicz and Iwanik ��� show
that the Weyl space is pathwise connected� Using the same technique we
prove the same result for the Besicovitch space and we show that both spaces
are in�nite dimensional�

A sequence x � AIN is Toeplitz� if every its subword occurs periodically�
i�e� if

��n � IN���p � ����j � IN��xn�jp � xn�

Toeplitz sequences are constructed by �lling in successively periodic parts�
For an alphabet A denote by eA � A � fg� For x� y � eAIN � T �x� y� � eAZZ is
the point obtained by replacing the stars in x by y� Let ti be the increasing
sequence of all integers for which xti � � Then put

T �x� y�ti �

�
xi if xi �� 
yi otherwise�
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Consider a map f � f�� �g�� eAZZ de�ned by induction f��� � ��

f�x� � � � xn��� � T �f�x� � � � xn�� ���
�� if xn � �

f�x� � � � xn��� � T �f�x� � � � xn�� ���
�� if xn � �

Thus

f��� � �  �  �  �  �  �  � � �

f��� � �  �  �  �  �  � � � �

f���� � ���  ���  ���  � � �

f���� � �  ���  ���  �� � � �

f���� � ��  ���  ���  � � � �

f���� � ���  ���  ��� � � �

For a real number x � ��� �� with binary expansion x �
�X
i��

xi�
�i put

f�x� � lim
n��

f�x� � � �xn�� If �
nx is not integer for any n� then x has a unique

expansion and f�x� � f�� �gZZ� On the other hand if �nx is an integer for
some n� then x has two binary expansions� but f�x� is the same for both
expansions� It contains exactly one hole� which could be �lled in so that
f�x� is periodic� If jx�yj � ��m� then x���m� � y���m�� so dW �x� y� � ��m���
so f � ��� ��� XW is continuous�

Proposition � The Weyl and Besicovitch spaces are pathwise connected
and in�nite dimensional�

Proof� Consider the continuous map f � ��� �� � XW constructed above�
For a given u � �ZZ we construct a continuous map g � ��� �� � �ZZ by
g�x�i � uif�x�i� so XW and therefore also XB is pathwise connected� To
show that XW is in�nite dimensional� construct for any n an embedding
g � ��� ��n � XW of an n�dimensional cube by

g�x�� � � � � xn� � f�x��� � � � f�xn��f�x��� � � � f�xn�� � � � �

The following proof is adapted from Marcinkiewicz �����

Proposition � The Besicovitch space is complete�

Proof� We use the unilateral Besicovitch space� Let x	n
 � AIN be a Cauchy
sequence� There exists a subsequence x	nj
 such that dB�x	nj��
� x	nj
� �
��j��� Choose a sequence lj of positive integers such that lj�� � �lj and
for every l � lj

�fi � ��� l� � x
	nj��

i �� x

	nj

i g � l � ��j�� �
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It follows that for k � j and l � lk

�fi � ��� l� � x
	nk

i �� x

	nj

i g � l � ��j �

De�ne x � AIN by xt � x
	nj

t if lj 	 t � lj�� and arbitrarily if t � l�� If

k � j and lk 	 l � lk��� then

�fi � ��� l� � xi �� x	nj
 	 lj � lj�� ��fi � ��� lj��� � x
	nj��

i �� x

	nj

i g� � � ��

lk�fi � ��� lk� � x
	nk��

i �� x

	nj

i g�

l�fi � ��� l� � x
	nk

i �� x

	nj

i g

	 lj � �lj�� � � � �� lk � l���j 	 lj � �l � ��j

It follows dB�x� x	nj
� 	 � � ��j � so x	nj
 converges to x and since x	n
 is a
Cauchy sequence� it converges to x as well� �

To show further properties of the Weyl and Besicovitch spaces� we use Stur�
mian sequences �see e�g� de Luca ���� or Blanchard and K�urka ����� For an
irrational x � ��� �� de�ne S�x� � �IN by

S�x�n �

�
� if � � nx� k � �� x for some k � IN

� otherwise�

S�x� is called Sturmian sequence with density x�

Lemma � If x� y � ��� �� and x�y are all irrational� then

DW �S�x�� S�y�� � DB�S�x�� S�y�� � x��� y� � ��� x�y �

Proof� Consider dynamical system �rotation of the torus�

T �a� b� � �a� x mod �� b� y mod ��

de�ned on the torus IR��ZZ�� Then T is uniquely ergodic with Lebesgue
measure as the invariant measure� We have S�x�n �� S�y�n i�

Tn��� �� � ��� �� x�� ��� y� ��� ��� x� ��� ��� �� y� �

This set has Lebesgue measure x��� y� � y��� x�� �

Proposition � The Weyl and Besicovitch spaces are neither separable nor
locally compact�

Proof� For any � � a � b � � there exists an uncountable set Eab � �a� b�
such that for all x� y � Eab� x� y and x�y are all irrationals� From Lemma �
we have that for every x� y � Ea�b it holds

a��� b� � dW �S�x�� S�y�� � dB�S�x�� S�y��� b��� a��
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It follows that neither XW nor XB is separable �i�e� they do not have a
countable base�� Since b���a� can be arbitrarily small� and since both XW

and XB are homogeneous� neither XW nor XB is locally compact� �

Let f � AZZ � AZZ be a map which is W �continuous �or B�continuous��

Then f�ex� � gf�x�� so ef � XW � XW de�ned by ef�ex� � gf�x� is continuous
and �XW � ef� �or �XB� ef�� is a dynamical system� We refer to these systems
when speaking about dynamical W �properties �or B�properties� of a map
f � In virtue of the relation dB�x� y� 	 dW �x� y� we have

Proposition � Let f � AZZ � AZZ be a map which is both W �continuous
and B�continuous� Then
�� If f is W �equicontinuous� then it is B�equicontinuous�
�� If f has a W �equicontinuity point� then it has a B�equicontinuity point�
�� If f is W �transitive� then it is B�transitive�
�� If f is W �chain transitive� then it is B�chain transitive�
�� If f is B�expansive� then it is W �expansive�
	� If f is B�sensitive� then it is W �sensitive�

In both Weyl and Besicovitch spaces we have

Proposition � Let �X� f� be a dynamical system on a non�separable space
X� If �X� f� is transitive� then it is sensitive�

Proof� There exists � � � and an uncountable set E � X such that for
every x� y � E� x �� y we have d�x� y� � ��� We show that � is a sensitivity
constant for �X� f�� Let x � X � For every n � � there is at most one z � E

whose distance from fn�x� is less than ��� Since E is uncountable� there
exists z � E such that d�fn�x�� z� � �� for all n � �� By transitivity� in
every neighborhood U of x there exists y � U such that d�fn�y�� z� � � for
some n� It follows

d�fn�x�� fn�y�� � d�fn�x�� z�� d�z� fn�y�� � ��� � � � �

� Cellular automata

A cellular automaton is a C�continuous map f � AZZ � AZZ which commutes
with the shift 	 � AZZ � AZZ de�ned by 	�x�i � xi��� Every cellular
automaton is de�ned by some local rule F � A�r�� � A with radius r � �
by

f�x�i � F �xi�r � � � xi�r�

It follows that any cellular automaton is continuous for both Weyl and Besi�
covitch pseudometrics� We compare now topological and dynamical prop�
erties of cellular automata in the Cantor� Weyl and Besicovitch spaces� We
refer to these properties using subscripts C� W or B�
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Proposition � A cellular automaton f � AZZ � AZZ is surjective i
 it is
W �surjective i
 it is B�surjective �i�e� i
 ef � XW � XW or ef � XB � XB

is surjective��

Proof� Clearly� if f is surjective� then so is ef � Suppose that ef � XW � XW is
surjective� By a theorem of Hedlund ���� f is surjective i� every block u � A�

has a preimage� Consider the periodic point x � u�� By the assumption
there exists y � AZZ such that dW �f�y�� x� � �� It follows that in y one can
�nd blocks which are mapped to u� �

Proposition 	 If a cellular automaton f is C�equicontinuous� then it is
W � equicontinuous and therefore also B�equicontinuous�

Proof� By the assumption for � � � there exists � � ��m such that for
every x� y � AZZ if x��m�m� � y��m�m�� then fn�x�� � fn�y�� for every n � ��
Therefore� if x�j�m�k�m� � y�j�m�k�m� � then fn�x��j�k� � fn�y��j�k� for every
n � �� For a given � � � put � � �

�m�� and suppose that dW �x� y� � �� so
there exists l� such that for all l � l� and all k � ZZ

�fi � �k � �� k � l� � xi �� yig � l�

Thus in the interval �k � �� k � l�� fn�x� may di�er from fn�y� only in one
of the end intervals �k � �� k � m�� �k � l �m � �� k � l� or in an interval
�i�m� i�m� for some i with xi �� yi� It follows that

cardfi � �k � �� k � l� � fn�x�i �� fn�y�ig � l���m� �� � �m

If l� � �m� then

�fi � �k� �� k� l� � fn�x�i �� fn�y�ig

l
� ���m� �� � �

so dW �fn�x�� fn�y�� � �� Thus f is W �equicontinuous� �

Proposition 
 If a cellular automaton f has a C�equicontinuity point� then
it has a W �equicontinuity point and therefore also a B�equicontinuity point�

Proof� Let r be the radius of f and z � AZZ be a C� equicontinuity point
of f � For � � ��r there exists � � ��m such that whenever y��m�m� �
z��m�m� � u � A�m��� then fn�y���r�r� � fn�z���r�r� for all n � �� We show
that x � u� is a W �equicontinuity point� For given � � � put � � �

m��r�� �
If dW �x� y� � �� then there exists l� such that for all l � l� and all k � ZZ

�fi � �k � �� k� l� � xi �� yig � l��

Every change in one of the blocks x�k���k��m��� � u with k � j��m � ��
may change only this block or m� r positions in any of its two neighboring
blocks� i�e� at most �m� �r� � positions� Thus

�fi � �k� �� k� l� � fn�x�i �� fn�y�ig

l
� ���m� �r � �� � �

�



and dW �fn�x�� fn�y�� � �� �

The following result is implicit in Hurley ���

Lemma � If x � AZZ is a C�stable periodic point of a cellular automaton
f � then 	�x� � x�

Proof� We can assume that x is a �xed point� since fn is a cellular automaton
too� If x is a stable �xed point with an attracting neighborhood x � �u� �
U � then 	�x� is a stable �xed point with attracting neighborhood 	��u���
For k large enough �u� � 	k�u� and �u� � 	k���u� are both nonempty� For
y � �u� � 	k�u� and z � �u�� 	k���u� we get

	k�x� � lim
n��

fn�y� � x � lim
n��

fn�z� � 	k���x�

so 	�x� � x� �

Proposition � If x � AZZ is a C�stable periodic point of a cellular automa�
ton f � then ex is both W �stable and B� stable�

Proof� By Lemma �� x � a� for some a � A� By the proof of Proposition
�� ex is both W �equicontinuous and B�equicontinuous� Since x is C� stable�
there exists m � � such that for a�m�� � A��m�m�� lim

n��
fn�y� � x for every

y � �a�m���� It follows that there exists s such that f s�a�m��� � �a�m���
with a�m�� � A��m���m���� so a
s spread in s steps at least one �eld in both
directions� For the Weyl pseudometric consider a neighborhood

U � fy � AZZ � dW �y� x� � �
�m��g

For y � U there exists l such that for every k

�fi � �k � �� k� l��m� ��� � yi �� ag � l

so every subword of y of length l��m� �� contains ��m�� as a subword� It
follows that for t � s�l � ����m� ��� f t�y� � x� so x is W �stable� For the
Besicovitch pseudometric use neighbourhood U � fy � AZZ � dB�y� x� �

�
�m��g� �

Proposition �� If a cellular automaton f is W �sensitive or �B�sensitive��
then it is C�sensitive�

Proof� If f is W sensitive� it has no W �equicontinuity point� so by Proposi�
tion � it has no C�equicontinuity point and by Theorem � in K�urka ���� it
is C�sensitive� �

Proposition �� If a cellular automaton f is W �transitive or B�transitive�
then it is C�transitive�

�



Proof� Let f be B�transitive and u� v � A��m�m�� We show that �u� �
f�n�v� �� � for some n � �� Consider spatially periodic points u�� v��
By the assumption for � � �

�	�m��
 there exists x � AZZ and n � � with

dB�x� u
�� � � and dB�y� v

�� � �� where y � fn�x�� It follows that there
exists l � � such that in the the interval ��m � ��m� ��l�m� ��m� ��l�
there is at most ��m� ����l� ��� � �l��

� di�erences� i�e�

�fi � ��m� ��m� ��l�m� ��m� ��l� � xi �� �u��ig � �l��
�

and

�fi � ��m� ��m� ��l�m� ��m� ��l� � yi �� �v��ig � �l��
�

Thus there exists at least one unperturbed block� i�e� there exists jl�j 	 l
such that for j � ��m� ��l� we have

x�j�m�j�m� � u� fn�x��j�m�j�m� � v

and 	j�x� � �u�� f�n��v��� �

Proposition �� If a cellular automaton f is C�chain transitive� then it is
W �chain transitive and B�chain transitive�

Proof� Let F � A��r�r� � A be the local rule for f � A sequence x	i
 � AZZ

is a ��m�chain for dC if x
	n��

j � F �x

	n

j�r � � � � � x

	n

j�r� for jjj 	 m� Since only

the sites jjj 	 m � r are involved� we identify ��m chains with sequences

x
	i

��m�r�m�r� � A��m�r�m�r�� There exists a letter a � A such that a� is

periodic� Denote by p its period� For a given � � � let m � IN be such that
�r

�r��m�� � �� By the assumption for every u � A��m�r�m�r� there exists

a ��m chain u	�
� � � � � u	n
 � A��m�r�m�r� such that u	�
 � a�m��r�� and
u	n
 � u� We can assume that n � p� Let w � A��b�b� be a word which
contains as subwords all the words u	n�p��
� � � �u	n
� By the assumption
there exists a ��b�r�chain from a�b�� to w� Denote by q the length of this
chain� If we restrict this chain to positions where u	j
 is located� we obtain
a ��m�chain of length l from a�r��m�� to u	j
� It follows that there exists
a ��m�chain from a�m��r�� to u of all lengths q� q � �� � � � � q � p � � and
since a� has period p there exists chains from a�m��r�� to u of all lengths
greater than l� If we consider also chains from v to a�� we get that there
exists q such that for every pair u� v � A��m�r�m�r� there exists a ��m�chain
from u to v� whose length is exactly q� Given x� y � AZZ we construct now
��chain x	�
� � � � � x	q
 leading from x to y for the Weyl pseudometric� In every
interval

�bj � cj� � ��m� r � j��m� �r � ��� m� r � j��m� �r� ���

where j � ZZ� we construct a ��m chain x
	n

�bj�cj�

from x�bj�cj� to y�bj�cj�� so

x	�
 � x and x	q
 � y� Moreover f�x	n
�k � x
	n��

k for every k � �bj �

m� cj �m�� so x	n
 is a ��chain for dW � �

��



Proposition �� No cellular automaton is B�positively expansive�

Proof� Let f � �ZZ � �ZZ be a B�positively expansive cellular automaton
with expansivity constant �� Choose an integer q with �

q�� � � and consider

points x� y � �ZZ � which are symmetric �i�e� x�i � xi and y�i � yi� and
their nonnegative parts are

x����
 � �q
�

�q
�

�q
�

�q
�

�q
�

� � �

y����
 � �q
�

�q
�

�q
�

�q
�

�q
�

� � �

Then dB��
�� x� � dB��

�� y� � �
��q � Let F � A�r�� � A be local rule of f �

We have four cases�

�� F �� � � ��� � � and F �� � � ��� � �� in this case f�x� � �� and hence
for any t � IN � dB�f

t����� f t�x�� � � � 
�

�� F �� � � ��� � � and F �� � � ��� � �� in this case f�x� � x and hence for
any t � IN � dB�f t����� f t�x�� �

�
��q � 
�

�� F �� � � ��� � � and F �� � � ��� � �� in this case f�y� � �� and hence for
any t � IN � dB�f t����� f t�y�� � � � 
�

�� F �� � � ��� � � and F �� � � ��� � �� in this case f���� � ��� f���� �
��� f�x� � y� f�y� � x� hence �t � IN � d�f t����� f t�x�� � �

��q � 
�
�

We give some examples showing that the preceding propositions cannot be
converted�

Example � The identity map f�x� � x�

The identity is W �chain transitive �since the Weyl space is connected�� but
not C�chain transitive �since the Cantor space is totally disconnected�� Thus
the converse of Proposition �� is false�

Example � The shift map 	�x�i � xi��

The shift map is a W �isometry� so it is W �equicontinuous and it is neither
W �transitive nor W �sensitive� On the other hand it is C�transitive and C�
sensitive� Thus the Propositions �� � and �� cannot be converted� Observe
that e	 � XW � XW has an in�nite number of �xed points� Any sequence
kn of positive integers which grows fast enough� yields a �xed point

x � � � ��k��k��k��k��k��k��k� � � �

Example � The permutive cellular automaton f�x�i � xi�� � xi � xi��

��



is B�sensitive �see Cattaneo et al ����� We do not know whether it is B�
transitive�

Example � The multiplication cellular automaton f�x�i � xi��xixi��

The system has a C�stable �xed point ��� and W �stable and B�stable �xed
pointg��� In XA

ef has many other �xed points like ����� ���� and for
fast enough increasing sequence kn points

x � � � ��k��k��k��k��k��k��k� � � �

Example � Gilmann cellular automaton f�x�i � xi��xi��

Here the �xed point �� is W �stable but not C�stable� Thus Proposition �
cannot be converted�

In the Cantor topology it is well known that any continuous shift� commuting
map on AZZ is a cellular automaton� This is no longer true for the Weyl
pseudometric

Example � Let the application f � AZZ � AZZ� where A � f�� �� sg� be
de�ned as follows

f�x�i � a� b� c if x�i�j���i�k��� � asjbskc

f�x�i � a� b if x�i�j����
 � asjbs�

f�x�i � b� c if x	���i�k��� � s�bskc

f�x�i � b if x	����
 � s�bs�� xi � b

f�x�i � s if xi � s

where a� b� c � ��

This map can be considered as the embedding of the addition of the two
nearest neighbors on f�� �g into AZZ � where the letter s plays a neutral role� it
stays unmodi�ed by f but lets the information pass on between occurrences
of � and �� By de�nition f commutes with the shift� a coordinate of f�x�
does not depend on any bounded set of neighbors� so f is not a CA� We
claim it is both W�continuous and B�continuous� First let x � AZZ and
suppose x�i � xi except for i � �� then f�x��i �� f�x�i for at most three
values of i� �� the �rst occurrence of a � or � to the left and the �rst one to
the right� Now consider y � AZZ and an integer n � �� for each interval of
coordinates �k� k � n� ��� k � ZZ one has

�fj � �k��� k� l� � f�x�j �� f�y�jg 	 � ��fj � �k� �� k� l� � xj �� yjg� �

The �rst term of the right�hand sum is a very rough majoration of the
di�erences between f�x� and f�y� arising in this interval from di�erences
between x and y in the same interval� the term � majorates the number

��



of di�erences arising in the interval because of di�erences between x and
y outside this interval� Dividing by n and taking the lim sup one obtains
dW �f�x�� f�y��	 �dW �x� y� and dB�f�x�� f�y��	 �dB�x� y�� so f is bothW �
continuous and B�continuous� This example has an interesting dynamical
property� there is a unique W �equicontinuous point for f � One easily shows
that the �xed point fs� has this property� all other points in the Weyl space
have not� because they inherit the sensitivity property of their coordinates
on A � f�� �g�
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