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The Besicovitch and Weyl pseudometrics on the space A ZZ of biin nite sequences measure the density of di erences in either the central or arbitrary segments of given sequences. The Besicovitch and Weyl spaces are obtained from A ZZ by factoring through the equivalence of zero distance.

We consider cellular automata as dynamical systems on the Besicovitch and Weyl spaces and compare their topological and dynamical properties with those in the Cantor space.

Introduction

A cellular automaton consists of a biin nite array of cells containing letters from a nite alphabet, which are updated according to a local interaction rule. Cellular automata have been of considerable interest both as models of physical and biological phenomena and in symbolic dynamics as homomorphisms of the shift (Hedlund 8]). They display a large spectrum of dynamical behaviors ranging from stable to chaotic dynamics and they could also support universal computation. For survey, s e e W olfram 13], Culik II, Hurd and Yu 5 ] or Blanchard, Maass and K urka 2 ] .

When a cellular automaton is conceived as a dynamical system, the space of biin nite sequences is equipped with product topology, which m a k es it homeomorphic to the Cantor space. In the Cantor space, the shift map has many c haoticity properties like sensitivity to initial conditions and topological transitivity. However, the shift may be regarded as a shift of the observation point, in which the con guration does not change at all. To distinguish the shift from chaotic cellular automata, which r e a l l y c hange the structure of con gurations, Cattaneo et al. 4], consider a shift invariant Besicovitch pseudometric, which has been also used in the study of almost periodic functions (see e.g. Besicovitch 1]). Besicovitch pseudometrics measures the density of di erences in the central part of two g i v en sequences. The Besicovitch space is obtained factoring the space of biin nite sequences by the equivalence of zero distance. A variant of this approach is the Weyl pseudometric, which measures the density of di erences in arbitrary segments of two g i v en sequences. Downarowicz and Iwanik 6] show that the Weyl space is pathwise connected and incomplete. The Besicovitch space is also pathwise connected but complete. Both spaces are in nite-dimensional and neither separable nor locally compact.

Cellular automata are continuous with respect to both Besicovitch and Weyl pseudometrics, so they yield dynamical systems in both Besicovitch and Weyl spaces. In the present paper we compare topological and dynamical properties of cellular automata in these spaces with those in the Cantor space. When passing from either Besicovitch o r W eyl spaces to Cantor space, cellular automata preserve c haoticity properties like topological transitivity and sensitivity. Vice versa, when passing from the Cantor space to either Weyl or Besicovitch space, cellular automata preserve c hain transitivity an stability properties like equicontinuity, existence of equicontinuity points and stability of periodic points. Finally, in neither the Weyl nor Besicovitch space holds the Hedlund theorem saying that cellular automata are exactly continuous maps commuting with the shift. We t h us obtain in these spaces a class of shift commuting maps, which are not given by a n y local rule.

2 Dynamical systems A dynamical system is a continuous map f : X ! X of a nonempty m e t r i c space X to itself. The n-th iteration f n : X ! X of f is de ned by f 0 (x) = x, f n+1 (x) = f(f n (x)). A point x 2 X is xed, if f(x) = x. I t i s periodic, if f n (x) = x for some n > 0. The least positive n with this property is called the period of x. The orbit of x is the set o

(x) = ff n (x) : n 0g. A s e t Y X is positively invariant, if f(Y ) Y . A p o i n t x 2 X is equicontinuous (x 2 E (f)) if the family of maps f n is equicontinuous at X, i.e. x 2 E (f) i (8" > 0)(9 > 0)(8y 2 B (x))(8n > 0)(d(f n (y) f n (x)) < " ):
The map f is equicontinuous i

(8" > 0)(9 > 0)(8x 2 X)(8y 2 B (x))(8n > 0)(d(f n (y) f n (x)) < " ): For an equicontinuous system E(f) = X. C o n versely if E(f) = X and X is compact, then f is equicontinuous. A system (X f) is sensitive (to initial conditions), i (9" > 0)(8x 2 X)(8 > 0)(9y 2 B (x))(9n > 0)(d(f n (y) f n (x)) "):
A sensitive system has no equicontinuous point, there exist, however, systems with no equicontinuity points which are not sensitive. A system (X f) is (positively) expansive i (9" > 0)(8x 6 = y 2 X)(9n 0)(d(f n (x) f n (y)) ") A positively expansive system on a perfect space is sensitive.

A system (X f) is (topologically) transitive, if for any nonempty o p e n sets U V X there exists n 0 s u c h that f ;n (U) \ V 6 = . If X is perfect and if the system has a dense orbit, then it is transitive. Conversely, if (X f) is topologically transitive and if X is compact, then (X f) has a dense trajectory. Indeed, the set fx 2 X : o(x) = Xg is residual in this case. An "-chain (from x 0 to x n ) is a sequence of points x 0 : : : x n 2 X such that d(f(x i ) x i+1 ) < " for 0 i < n . A system (X f) i s c hain transitive, if for any " > 0 a n d a n y x y 2 X there exists a "-chain form x to y.

A xed point x 2 X is stable if it is equicontinuous and there exists its neighbourhood U 3 x, such t h a t f o r e v ery y 2 U, lim n!1 f n (y) = x. A periodic point x with period n is stable if it is stable for f n .

Cantor, Weyl and Besicovitch spaces

Let A be a nite alphabet with at least two letters. The binary alphabet is denoted by 2 = f0 1g. F or n 2 IN, d e n o t e b y A n the set of words over A of length n, A = n 0 A n the set of nite words over A. W e consider also words u 2 A j k] indexed by a n i n terval of integers j k]. Denote by A ZZ the set of biin nite sequences of letters from A. The i-th letter of a point x 2 A ZZ is denoted by x i , and x j k] = x j : : : x k 2 A j k] is the segment o f x between indices j and k. F or u 2 A j k] , u 1 is the in nite repetition of u, i . e . (u 1 ) m+n(k;j+1) = u m for n 2 ZZ and m 2 j k]. The cylinder of u 2 A j k] is the set u] = fx 2 A ZZ : x j k] = ug :

The Cantor metric on A ZZ is de ned by d C (x y) = 2 ;k where k = m i n fjij : x i 6 = y i g so d C (x y) < 2 ;k i x ;k k] = y ;k k] . The cylinders are clopen sets for d C . I t i s w ell known that all Cantor spaces (with di erent alphabets) are homeomorphic. The Cantor space is compact, totally disconnected and perfect.

The Weyl pseudometric on A ZZ is given by d W (x y) = lim sup l!1 max k2ZZ #fj 2 k + 1 k + l] : x j 6 = y j g l :

Here # means the number of elements of a set, so d W (x y) < " i

(9l 0 2 IN)(8l l 0 )(8k 2 ZZ)(#fj 2 k + 1 k + l] : x j 6 = y j g < l " )
For x 2 A ZZ denote by e x = fy 2 A ZZ : d W (y x) = 0 g and X W = fe x : x 2 A ZZ g the Weyl space over alphabet A. Clearly every two W eyl spaces (with di erent alphabets) are homeomorphic. The Weyl pseudometric could be considered also on the set A IN of unilateral sequences. For x y 2 A IN 

put d W (x y) = lim sup l!1 max k2IN #fi 2 k + 1 k + l] : x i 6 = y i g l :
The map ' : A ZZ ! A IN de ned by '(x) = x 0 x ;1 x 1 x ;2 x 2 : : :yields a homeomorphism between unilateral and bilateral Weyl spaces. In fact ' is uniformly continuous, so it preserves completeness.

The Besicovitch pseudometric on A ZZ is given by

d B (x y) = l i m s u p l!1
#fj 2 ;l l] :x j 6 = y j g 2l + 1 so d B (x y) < " i (9l 0 )(8l l 0 )(#fj 2 ;l l] :x j 6 = y j g < (2l + 1 ) ") : For x 2 A ZZ put again e x = fy 2 A ZZ : d W (y x) = 0 g and X B = fe x : x 2 A ZZ g the Besicovitch space over alphabet A. Clearly every two Besicovitch spaces (with di erent alphabets) are homeomorphic and they are also homeomorphic to the unilateral Besicovitch space obtained by the following pseudometric d B (x y) = lim sup l!1 #fi 2 0 l ; 1] : x i 6 = y i g l x y 2 A IN : Since d B (x y) d W (x y), the identity yields a continuous map I : X W ! X B .

Both Weyl and Besicovitch spaces are homogeneous. For any u 2 2 ZZ , f : 2 ZZ ! 2 ZZ de ned by f(x) i = x i + u i mod 2 is a homeomorphism, which sends 0 1 to u. Using Toeplitz sequences, Downarowicz and Iwanik 6] show that the Weyl space is pathwise connected. Using the same technique we prove the same result for the Besicovitch space and we show that both spaces are in nite dimensional.

A sequence x 2 A IN is Toeplitz, if every its subword occurs periodically, i.e, if

(8n 2 IN)(9p > 0)(8j 2 IN)(x n+jp = x n )
Toeplitz sequences are constructed by lling in successively periodic parts.

For an alphabet A denote by e A = A f g . F or x y 2 e A IN , T(x y) 2 e A ZZ is the point obtained by replacing the stars in x by y. L e t t i be the increasing sequence of all integers for which x t i = . Then put T(x y) t i = ( x i if x i 6 = y i otherwise.

Consider a map f : f0 1g ! e A ZZ de ned by induction f( ) = 1 , f(x 0 : : : x n+1 ) = T(f(x 0 : : : x n ) (0 ) 1 ) if x n = 0 f(x 0 : : : x n+1 ) = T(f(x 0 : : : x n ) ( 1) 1 ) if x n = 1 Thus f(0) = 0 0 0 0 0 0 : : : f(1) = 1 1 1 1 1 1 : : : f(00) = 000 000 000 : : : f(01) = 0 010 010 01 : : : f(10) = 01 101 101 1 : : : f(11) = 111 111 111 : : : For a real number x 2 0 1] with binary expansion x = 1 X i=1 x i 2 ;i put f(x) = lim n!1 f(x 1 : : : x n ). If 2 n x is not integer for any n, then x has a unique expansion and f(x) 2 f 0 1g ZZ . On the other hand if 2 n x is an integer for some n, then x has two binary expansions, but f(x) is the same for both expansions. It contains exactly one hole, which could be lled in so that f(x) is periodic. If jx;yj < 2 ;m , then x 1 m] = y 1 m] , s o d W (x y) < 2 ;m+1 , so f : 0 1] ! X W is continuous.

Proposition 1 The Weyl and Besicovitch spaces are p athwise connected and in nite dimensional.

Proof: Consider the continuous map f : 0 1] ! X W constructed above. For a given u 2 2 ZZ we construct a continuous map g : 0 1] ! 2 ZZ by g(x) i = u i f(x) i , s o X W and therefore also X B is pathwise connected. To show that X W is in nite dimensional, construct for any n an embedding g : 0 1] n ! X W of an n-dimensional cube by g(x 1 : : : x n ) = f(x 1 ) 0 : : : f (x n ) 0 f(x 1 ) 1 : : : f (x n ) 1 : : :}

The following proof is adapted from Marcinkiewicz 12].

Proposition 2 The Besicovitch space i s c omplete.

Proof: We use the unilateral Besicovitch space. Let x (n) 2 A IN be a Cauchy sequence. There exists a subsequence x (n j ) such that d B (x (n j+1 ) x (n j ) ) < 2 ;j;1 . Choose a sequence l j of positive i n tegers such that l j+1 2l j and for every l > l j #fi 2 0 l ) : x (n j+1 ) i 6 = x (n j ) i g < l 2 ;j;1 :

It follows that for k > j and l l k #fi 2 0 l ) :x (n k ) i 6 = x (n j ) i g < l 2 ;j : De ne x 2 A IN by x t = x (n j ) t if l j t < l j+1 and arbitrarily if t < l 0 . I f k > j and l k l < l k+1 , then #fi 2 0 l ) :x i 6 = x (n j ) l j + l j+2 #fi 2 0 l j+2 ) : x (n j+1 ) i 6 = x (n j ) i g + + l k #fi 2 0 l k ) : x (n k;1 ) i 6 = x (n j ) i g + l#fi 2 0 l ) :x (n k ) i 6 = x (n j ) i g l j + ( l j+2 + + l k + l)2 ;j l j + 3 l 2 ;j It follows d B (x x (n j ) ) 3 2 ;j , s o x (n j ) converges to x and since x (n) is a Cauchy sequence, it converges to x as well. }

To show further properties of the Weyl and Besicovitch spaces, we use Sturmian sequences (see e.g. de Luca 11] or Blanchard and K urka 3]). For an irrational x 2 (0 1) de ne S(x) 2 2 IN by S(x) n = ( 0 if 0 < n x ; k < 1 ; x for some k 2 IN 1 otherwise. S(x) is called Sturmian sequence with density x.

Lemma 1 If x y 2 (0 1) and x=y are a l l i r r ational, then D W (S(x) S (y)) = D B (S(x) S (y)) = x(1 ; y) + ( 1 ; x)y :

Proof: Consider dynamical system (rotation of the torus)

T(a b) = ( a + x mod 1 b + y mod 1) de ned on the torus IR 2 =ZZ 2 . Then T is uniquely ergodic with Lebesgue measure as the invariant measure. We h a ve S(x) n 6 = S(y) n i T n (0 0) 2 0 1 ; x] 1 ; y 1] 1 ; x 1] 0 1 ; y] : This set has Lebesgue measure x(1 ; y) + y(1 ; x). } Proposition 3 The Weyl and Besicovitch spaces are neither separable nor locally compact.

Proof: For any 0 < a < b < 1 there exists an uncountable set E ab (a b) such that for all x y 2 E ab , x, y and x=y are all irrationals. From Lemma 1 we h a ve that for every x y 2 E a b it holds a(1 ; b) < d W (S(x) S (y)) = d B (S(x) S (y)) < b (1 ; a):

It follows that neither X W nor X B is separable (i.e. they do not have a countable base). Since b(1 ;a) can be arbitrarily small, and since both X W and X B are homogeneous, neither X W nor X B is locally compact. } Let f : A ZZ ! A ZZ be a map which i s W-continuous (or B-continuous).

Then f(e x) g f(x), so e f : X W ! X W de ned by e

f(e x) = g f(x) is continuous and (X W e f) (or (X B e f)) is a dynamical system. We refer to these systems when speaking about dynamical W-properties (or B-properties) of a map f. In virtue of the relation d B (x y) d W (x y) w e h a ve Proposition 4 Let f : A ZZ ! A ZZ be a map which is both W-continuous and B-continuous. Then 1. If f is W-equicontinuous, then it is B-equicontinuous. 2. If f has a W-equicontinuity point, then it has a B-equicontinuity point.

3. If f is W-transitive, then it is B-transitive. 4. If f is W-chain transitive, then it is B-chain transitive. 5. If f is B-expansive, then it is W-expansive. 6. If f is B-sensitive, then it is W-sensitive.
In both Weyl and Besicovitch spaces we h a ve Proposition 5 Let (X f) be a dynamical system on a non-separable space X. I f (X f) is transitive, then it is sensitive.

Proof: There exists " > 0 and an uncountable set E X such t h a t f o r every x y 2 E, x 6 = y we h a ve d(x y) > 4". W e show that " is a sensitivity constant f o r ( X f). Let x 2 X. F or every n 0 there is at most one z 2 E whose distance from f n (x) is less than 2". Since E is uncountable, there exists z 2 E such that d(f n (x) z ) > 2" for all n 0. By transitivity, i n every neighborhood U of x there exists y 2 U such that d(f n (y) z ) < " for some n. I t f o l l o ws d(f n (x) f n (y)) d(f n (x) z ) ; d(z f n (y)) 2" ; " = " } 4 Cellular automata A cellular automaton is a C-continuous map f : A ZZ ! A ZZ which c o m m utes with the shift : A ZZ ! A ZZ de ned by (x) i = x i+1 . Every cellular automaton is de ned by some local rule F : A 2r+1 ! A with radius r 0 by f(x) i = F(x i;r : : : x i+r ) It follows that any cellular automaton is continuous for both Weyl and Besicovitch pseudometrics. We compare now topological and dynamical properties of cellular automata in the Cantor, Weyl and Besicovitch spaces. We refer to these properties using subscripts C, W or B. Proposition 6 A c ellular automaton f : A ZZ ! A ZZ is surjective i it is W-surjective i it is B-surjective (i.e. i e f : X W ! X W or e f : X B ! X B is surjective).

Proof: Clearly, i f f is surjective, then so is e f. Suppose that e f : X W ! X W is surjective. By a theorem of Hedlund 8], f is surjective i e v ery block u 2 A has a preimage. Consider the periodic point x = u 1 . By the assumption there exists y 2 A ZZ such that d W (f(y) x ) = 0. It follows that in y one can nd blocks which are mapped to u. } Proposition 7 If a cellular automaton f is C-equicontinuous, then it is We quicontinuous and therefore a l s o B-equicontinuous. Proof: By the assumption for " = 1 there exists = 2 ;m such t h a t f o r every x y 2 A ZZ if x ;m m] = y ;m m] , then f n (x) 0 = f n (y) 0 for every n 0.

Therefore, if x j;m k+m] = y j;m k+m] , then f n (x) j k] = f n (y) j k] for every n 0. For a given " > 0 put = " 2m+2 and suppose that d W (x y) < , s o there exists l 0 such that for all l l 0 and all k 2 ZZ #fi 2 k + 1 k + l] :x i 6 = y i g < l Thus in the interval k + 1 k + l], f n (x) m a y di er from f n (y) only in one

of the end intervals k + 1 k + m], k + l ; m + 1 k + l] o r i n a n i n terval i ; m i + m] for some i with x i 6 = y i . I t f o l l o ws that cardfi 2 k + 1 k + l] :f n (x) i 6 = f n (y) i g < l (2m + 1 ) + 2 m If l > 2m, then #fi 2 k + 1 k + l] :f n (x) i 6 = f n (y) i g l < (2m + 2 ) = " so d W (f n (x) f n (y)) < " . T h us f is W-equicontinuous. }
Proposition 8 If a cellular automaton f has a C-equicontinuity point, then it has a W-equicontinuity point and therefore also a B-equicontinuity point.

Proof: Let r be the radius of f and z 2 A ZZ be a Cequicontinuity p o i n t of f. For " = 2 ;r there exists = 2 ;m such that whenever y ;m m] = z ;m m] = u 2 A 2m+1 , then f n (y) ;r r] = f n (z) ;r r] for all n 0. We show that x = u 1 is a W-equicontinuity p o i n t. For given " > 0 put = " 4m;2r+1 .

If d W (x y) < , then there exists l 0 such that for all l l 0 and all k 2 ZZ #fi 2 k + 1 k + l] :x i 6 = y i g < l :

Every change in one of the blocks x k+1 k+2m+1] = u with k = j(2m + 1 ) may c hange only this block o r m ; r positions in any o f i t s t wo n e i g h boring blocks, i.e. at most 4m ; 2r + 1 positions. Thus #fi 2 k + 1 k + l] :f n (x) i 6 = f n (y) i g l < (4m ; 2r + 1 ) = " and d W (f n (x) f n (y)) < " . }

The following result is implicit in Hurley 9] Lemma 2 If x 2 A ZZ is a C-stable periodic point of a cellular automaton f, t h e n (x) = x.

Proof: We can assume that x is a xed point, since f n is a cellular automaton too. If x is a stable xed point with an attracting neighborhood x 2 u] U, t h e n (x) is a stable xed point with attracting neighborhood ( u]).

For k large enough u] \ k u] and u] \ k+1 u] are both nonempty. For y 2 u] \ k u] and z 2 u] \ k+1 u] w e g e t

k (x) = l i m n!1 f n (y) = x = l i m n!1 f n (z) = k+1 (x) so (x) = x. } Proposition 9 If x 2 A ZZ is a C-stable periodic point of a cellular automa- ton f, then e
x is both W-stable and Bstable.

Proof: By Lemma 2, x = a 1 for some a 2 A. By the proof of Proposition 8, e x is both W-equicontinuous and B-equicontinuous. Since x is Cstable, there exists m > 0 s u c h that for a 2m+1 2 A ;m m] , lim n!1 f n (y) = x for every y 2 a 2m+1 ]. It follows that there exists s such that f s a 2m+1 ] a 2m+3 ] with a 2m+3 2 A ;m;1 m+1] , s o a's spread in s steps at least one eld in both directions. For the Weyl pseudometric consider a neighborhood U = fy 2 A ZZ : d W (y x) < 1 2m+1 g For y 2 U there exists l such t h a t f o r e v ery k #fi 2 k + 1 k + l(2m + 1)] : y i 6 = ag < l so every subword of y of length l(2m + 1 ) c o n tains 1 2m+1 as a subword. It follows that for t > s (l ; 1)(2m + 1 ) , f t (y) = x, s o x is W-stable. Proof: Let f be B-transitive a n d u v 2 A ;m m] . We show t h a t u] \ f ;n v] 6 = for some n > 0. Consider spatially periodic points u 1 , v 1 .

By the assumption for " = 1 3(2m+1) there exists x 2 A ZZ and n > 0 with d B (x u 1 ) < " and d B (y v 1 ) < " , w h e r e y = f n (x). It follows that there exists l > 0 s u c h that in the the interval ;m ; (2m + 1 ) l m+ ( 2 m + 1 ) l] there is at most (2m + 1)(2l + 1 ) " = 2l+1 3 di erences, i.e.

#fi 2 ;m ; (2m + 1 ) l m+ ( 2 m + 1 ) l] :x i 6 = ( u 1 ) i g < 2l+1 3 and #fi 2 ;m ; (2m + 1 ) l m+ ( 2 m + 1 ) l] :y i 6 = ( v 1 ) i g < 2l+1 3 Thus there exists at least one unperturbed block, i.e. there exists jl 1 j l such that for j = ( 2 m + 1 ) l 1 we h a ve x j;m j+m] = u f n (x) j;m j+m] = v and j (x) 2 u] \ f ;n ( v]). }

Proposition 12 I f a c ellular automaton f is C-chain transitive, then it is W-chain transitive and B-chain transitive.

Proof: Let F : A ;r r] ! A be the local rule for f. A sequence x (i) 2 A ZZ is a 2 ;m -chain for d C if x (n+1) j = F(x (n) j;r : : : x (n) j+r ) f o r jjj m. Since only the sites jjj m + r are involved, we identify 2 ;m chains with sequences x (i) ;m;r m+r] 2 A ;m;r m+r] . There exists a letter a 2 A such t h a t a 1 is periodic. Denote by p its period. For a given " > 0 l e t m 2 IN be such that 2r 2r+2m+1 < " . By the assumption for every u 2 A ;m;r m+r] there exists a 2 ;m chain u (1) : : : u (n) 2 A ;m;r m+r] such that u (1) = a 2m+2r+1 and u (n) = u. W e can assume that n > p . L e t w 2 A ;b b] be a word which contains as subwords all the words u (n;p+1) : : : u (n) . By the assumption there exists a 2 ;b+r -chain from a 2b+1 to w. D e n o t e b y q the length of this chain. If we restrict this chain to positions where u (j) is located, we obtain a 2 ;m -chain of length l from a 2r+2m+1 to u (j) . I t f o l l o ws that there exists a 2 ;m -chain from a 2m+2r+1 to u of all lengths q q+ 1 : : : q+ p ; 1 and since a 1 has period p there exists chains from a 2m+2r+1 to u of all lengths greater than l. I f w e consider also chains from v to a 1 , w e get that there exists q such that for every pair u v 2 A ;m;r m+r] there exists a 2 ;m -chain from u to v, whose length is exactly q. G i v en x y 2 A ZZ we construct now "-chain x (1) : : : x (q) leading from x to y for the Weyl pseudometric. In every interval b j c j ] = ;m ; r + j(2m + 2 r + 1 ) m + r + j(2m + 2 r + 1 ) ] where j 2 ZZ, w e construct a 2 ;m chain x (n) b j c j ] from x b j c j ] to y b j c j ] , s o x (1) = x and x (q) = y. Moreover f(x (n) ) k = x (n+1) k for every k 2 b j + m c j ; m], so x (n) is a "-chain for d W . } is B-sensitive (see Cattaneo et al 4]). We d o n o t k n o w whether it is Btransitive.

Example 4 The multiplication cellular automaton f(x) i = x i;1 x i x i+1

The system has a C-stable xed point 0 1 , and W-stable and B-stable xed point g 0 1 . I n X A e f has many other xed points like 0 1 1 1 , 1 1 0 1 and for fast enough increasing sequence k n points x = : : : 1 k 3 0 k 2 1 k 1 0 k 0 1 k 1 0 k 2 1 k 3 : : :

Example 5 Gilmann cellular automaton f(x) i = x i+1 x i+2

Here the xed point 0 1 is W-stable but not C-stable. Thus Proposition 9 cannot be converted.

In the Cantor topology it is well known that any c o n tinuous shift-commuting map on A ZZ is a cellular automaton. This is no longer true for the Weyl pseudometric Example 6 Let the application f : A ZZ ! A ZZ , w h e r e A = f0 1 s g, b e de ned as follows f(x) i = a + b + c if x i;j;1 i+k+1] = as j bs k c f(x) i = a + b if x i;j;1 1) = as j bs 1 f(x) i = b + c if x (;1 i+k+1] = s 1 bs k c f(x) i = b if x (;1 1) = s 1 bs 1 x i = b f(x) i = s if x i = s where a b c 2 2.

This map can be considered as the embedding of the addition of the two nearest neighbors on f0 1g into A ZZ , where the letter s plays a neutral role: it stays unmodi ed by f but lets the information pass on between occurrences of 0 and 1. By de nition f commutes with the shift a coordinate of f(x) does not depend on any bounded set of neighbors, so f is not a CA. We claim it is both W-continuous and B-continuous. First let x 2 A ZZ and suppose x 0 i = x i except for i = 0 t h e n f(x 0 ) i 6 = f(x) i for at most three values of i: 0, the rst occurrence of a 0 or 1 to the left and the rst one to the right. Now consider y 2 A ZZ and an integer n > 0 for each i n terval of coordinates k k + n ; 1], k 2 ZZ one has #fj 2 k + 1 k + l] : f(x) j 6 = f(y) j g 3 #fj 2 k + 1 k + l] : x j 6 = y j g+ 2

The rst term of the right-hand sum is a very rough majoration of the di erences between f(x) a n d f(y) arising in this interval from di erences between x and y in the same interval the term 2 majorates the number of di erences arising in the interval because of di erences between x and y outside this interval. Dividing by n and taking the lim sup one obtains d W (f(x) f (y)) 3d W (x y) a n d d B (f(x) f (y)) 3d B (x y), so f is both Wcontinuous and B-continuous. This example has an interesting dynamical property: there is a unique W-equicontinuous point f o r f. One easily shows that the xed point f s 1 has this property all other points in the Weyl space have not, because they inherit the sensitivity property of their coordinates on A = f0 1g.

  For the Besicovitch pseudometric use neighbourhood U = fy 2 A ZZ : d B (y x) < 1 2m+1 g. } Proposition 10 If a cellular automaton f is W-sensitive or (B-sensitive), then it is C-sensitive. Proof: If f is W sensitive, it has no W-equicontinuity point, so by Proposition 8 it has no C-equicontinuity p o i n t and by Theorem 3 in K urka 1 0 ] i t is C-sensitive. } Proposition 11 If a cellular automaton f is W-transitive or B-transitive, then it is C-transitive.

 Proposition 13No cellular automaton is B-positively expansive.

Proof: Let f : 2 ZZ ! 2 ZZ be a B-positively expansive cellular automaton with expansivity constant ". Choose an integer q with 1 q+1 < " and consider points x y 2 2 ZZ , which are symmetric (i.e. x ;i = x i and y ;i = y i ) and their nonnegative parts are

x 0 1) = 0 q 1 1 q 0 0 q 3 1 q 2 0 q 5 : : : y 0 1) = 1 q 1 0 q 0 1 q 3 0 q 2 1 q 5 : : :

We h a ve four cases:

1. F(0 : : : 0) = 0 and F(1 : : : 1) = 0 in this case f(x) = 0 1 and hence for any t 2 IN, d B (f t (0 1 ) f t (x)) = 0 < .

2. F(0 : : : 0) = 0 and F(1 : : : 1) = 1 in this case f(x) = x and hence for any t 2 IN, d B (f t (0 1 ) f t (x)) = 1 1+q < . 3. F(0 : : : 0) = 1 and F(1 : : : 1) = 1 in this case f(y) = 1 1 and hence for any t 2 IN, d B (f t (1 1 ) f t (y)) = 0 < . 4. F(0 : : : 0) = 1 and F(1 : : : 1) = 0 in this case f(0

}

We give some examples showing that the preceding propositions cannot be converted.

Example 1 The identity map f(x) = x. The identity i s W-chain transitive (since the Weyl space is connected), but not C-chain transitive (since the Cantor space is totally disconnected). Thus the converse of Proposition 12 is false.

Example 2 The shift map (x

The shift map is a W-isometry, s o i t i s W-equicontinuous and it is neither W-transitive n o r W-sensitive. On the other hand it is C-transitive a n d Csensitive. Thus the Propositions 7, 8 and 10 cannot be converted. Observe that e : X W ! X W has an in nite number of xed points. Any sequence k n of positive i n tegers which g r o ws fast enough, yields a xed point x = : : : 1 k 3 0 k 2 1 k 1 0 k 0 1 k 1 0 k 2 1 k 3 : : : Example 3 The permutive cellular automaton f(x) i = x i;1 + x i + x i+1