Dan Dougherty

Silvia Ghilezan

Pierre Lescanne

Characterizing strong normalization in a language with control operators

Keywords: classical logic, sequent calculus, semantic, lambda calculus, continuations, strong normalization Résumé logique classique, calcul des séquentssémantique, lambda calcul, continuation, normlisation forte

We investigate some fundamental properties of the reduction relation in the untyped term calculus derived from Curien and Herbelin's λµ µ. The original λµ µ has a system of simple types, based on sequent calculus, embodying a Curry-Howard correspondence with classical logic; the significance of the untyped calculus of raw terms is that it is a Turing-complete language for computation with explicit representation of control as well as code. We define a type assignment system for the raw terms satisfying: a term is typable if and only if it is strongly normalizing. The intrinsic symmetry in the λµ µ calculus leads to an essential use of both intersection and union types; in contrast to other union-types systems in the literature, our system enjoys the Subject Reduction property.

Introduction

The Curry-Howard correspondence has long been a linchpin of the connection between logic and computer science. It was originally articulated in the context of intuitionistic logic, but Griffin extended the Curry-Howard correspondence to classical logic in his seminal 1990 POPL paper [START_REF] Griffin | A formulae-as-types notion of control[END_REF], by observing that classical tautologies suggest typings for certain control operators. This initiated an active line of research; in particular the λµ calculus of Parigot [START_REF] Parigot | An algorithmic interpretation of classical natural deduction[END_REF] has been the foundation of a number of investigations [START_REF] Parigot | Proofs of strong normalisation for second order classical natural deduction[END_REF][START_REF] Ph | On the relation between the λµ-calculus and the syntactic theory of sequential control[END_REF][START_REF] Ong | A Curry-Howard foundation for functional computation with control[END_REF][START_REF] Bierman | A computational interpretation of the λµ-calculus[END_REF][START_REF] Ariola | Minimal classical logic and control operators[END_REF] into the relationship between classical logic and theories of control in programming languages.

Meanwhile Curien and Herbelin [START_REF] Curien | The duality of computation[END_REF], building on earlier work in [START_REF] Herbelin | Séquents qu'on calcule : de l'interprétation du calcul des séquents comme calcul de λ-termes et comme calcul de stratégies gagnantes[END_REF], defined the system λµ µ. In contrast to Parigot's λµ-calculus, which bases its type system on a natural deduction system for classical logic, terms in λµ µ represent derivations in a sequent calculus proof system and reduction reflects the process of cut-elimination. As described in [START_REF] Curien | The duality of computation[END_REF], the sequent calculus basis for λµ µ supports an interpretation of the reduction rules of the system as operations of an abstract machine. In particular, the right-and left-hand sides of a sequent directly represent the code and environment components of the machine. This perspective is elaborated more fully in [START_REF] Curien | Abstract machines, control, and sequents[END_REF].

From logic to computation: two roles of typing

In this paper we relax the connection with logic, and explore the computational properties of pure (untyped) λµ µ.

A useful perspective emerges if we compare the present project to the study of types in the standard λ-calculus. Type systems have been used in order to interpret λ-terms as defining set-theoretic functions (simple types) and later to enforce data abstraction (dependent and polymorphic types). Roughly, this use of types enables the λ-calculus to be used as an applied calculus. But in another direction, type systems were developed to study the reduction behavior of λ-terms and the structure of models. Intersection types play a central role in this analysis. Key results here are the characterizations of terms that are solvable, normalizing, and strongly normalizing in terms of their possible typings [START_REF] Coppo | Principal type schemes and λ-calculus semantics[END_REF][START_REF] Pottinger | A type assignment for the strongly normalizable λ-terms[END_REF], and the completeness results for set-theoretic semantics [START_REF] Barendregt | A filter lambda model and the completeness of type assignment[END_REF]. In a precise sense the paradigms of types-as-propositions and types for operational and denotational semantics are skew to each other: as pointed out by Hindley [START_REF] Hindley | Coppo-Dezani types do not correspond to propositional logic[END_REF], there does not seem to be any standard logical notion that corresponds to intersection.

The current work is a first step in a programme that is firmly in the second tradition: we want to explore the basic combinatorial properties of the reduction-relation in the λµ µ calculus. In this paper we present an analysis of strong normalization.

It has often been observed that an advantage the sequent calculus has over natural deduction is the the fact that it better exhibits the symmetries inherent in logic. This is most apparent in classical logic, and indeed this symmetry is at the heart of the duality between call-by-name and call-by-value that motivated the definition of λµ µ originally; Wadler has recently clarified and strengthened this duality in [START_REF] Wadler | Call-by-value is dual to call-by-name[END_REF]. In this paper we are not interested in a logical interpretation of λµ µ. Still, the importance of symmetries in the analysis of λµ µ is manifested in the fact that union types are an essential feature of our type system. See [START_REF] Curien | Symmetry and interactivity in programming[END_REF] for a discussion of the importance of symmetries in computation. A discussion of the intuitions behind the type system of λµ µ is at the beginning of Section 3.

Summary of results

The main contribution of this paper is the characterization of the strongly normalizing terms of pure λµ µ under both the call-by-name and call-by-value disciplines. In particular, the set of terms that are strongly normalizing in λµ µ under the call-by-name and the call-by-value disciplines coincide. In fact our proof applies to a rather general class of reduction systems, namely any reduction discipline expressing a notion of priority (see Definition 6.1) in which individual terms each consistently act as call-by-name or as call-by-value (different terms may adopt different "modes").

The characterization is in terms of a type system incorporating both intersection and union types: the strongly normalizing terms are precisely the typable ones. Such a characterization has been done for traditional λ-calculus using intersection types only but thus far no attempt has been made for extending it to the classical-logic inspired languages with control operators.

Type systems with union types have been studied before, but the systems we are aware of suffer from a severe handicap: the Subject Reduction property fails for these systems, at least without some constraints on the reductions. In contrast, the calculus here enjoys Subject Reduction for unrestricted reduction.

The type-system we define is itself presented in sequent style; in particular we use only rules for intersection-and union-introduction.

Related work

Curien and Herbelin [START_REF] Curien | The duality of computation[END_REF] encode simply-typed call-by-name and call-by-value λµ µ into the simply-typed λ-calculus via CPS translations: this implies strong normalization for these reductions. In [START_REF] Lengrand | Call-by-value, call-by-name, and strong normalization for the classical sequent calculus[END_REF] Lengrand shows how simply-typed λµ µ and the calculus of Urban and Bierman [START_REF] Urban | Strong normalisation of cut-elimination in classical logic[END_REF] are mutually interpretable, so that the strong normalization proof of the latter calculus yields another proof of strong normalization for simplytyped λµ µ. Our proof of strong normalization is direct, using a natural adaptation of the reducibility method for the λ-calculus.

The unrestricted reduction relation in λµ µ has a critical pair, and indeed this system is not confluent. This critical pair is a reflection of the inherent symmetry in the system, but it complicates reasoning about reduction. Polonovski [START_REF] Polonovski | Strong normalization of λµμ-calculus with explicit substitutions[END_REF] presents a proof of SN for the unrestricted calculus with a method based on the "symmetric candidates" idea of Barbanera and Berardi [START_REF] Barbanera | A symmetric lambda calculus for classical program extraction[END_REF] (actually Polonovski treats a version of λµ µ with explicit substitutions). The interaction between intersection types and symmetric candidates is problematic, and strong normalization for intersection-typable terms under reduction that reflects no notion of priority is at present still a conjecture.

Remarkably, Laurent [START_REF] Laurent | On the denotational semantics of the pure lambda-mu calculus[END_REF] has recently and independently set out to analyze the denotational semantics of the λµ calculus by defining a type system quite similar to ours: in particular his system involves both intersection and union types. Since he is interested in semantics his system naturally has the property that typings are closed under subject conversion (for example there is a universal type). It will be interesting to investigate the relationship between these systems.

The larger context of related research includes a wealth of work in logic and programming languages. Several term-assignment systems for sequent calculus have been proposed as a tool for studying the process of cut-elimination [START_REF] Pottinger | Normalization as homomorphic image of cut-elimination[END_REF][START_REF] Barendregt | Lambda terms for natural deduction, sequent calculus and cut-elimination[END_REF][START_REF] Urban | Strong normalisation of cut-elimination in classical logic[END_REF]. In these systems -with the exception of the one in [START_REF] Urban | Strong normalisation of cut-elimination in classical logic[END_REF] -terms do not unambiguously encode sequent derivations.

We described above the fundamental importance of intersection types for λ-calculus.

In the 1980's and early 1990's Reynolds explored the role that intersection types can play in a practical programming language (see for example the report [START_REF] Reynolds | Design of the programming language Forsythe[END_REF] on the language Forsythe). Pierce [START_REF] Pierce | Programming with intersection types, union types, and polymorphism[END_REF] explored the use of union types in programming, for example as a generalization of variant records. Buneman and Pierce [START_REF] Buneman | Union types for semistructured data[END_REF], have shown how union types can play a key role in the design of query languages for semistructured data union types. The motivation for the work in Barbanera et al. [START_REF] Barbanera | Intersection and union types: syntax and semantics[END_REF] was foundational, motivated by the observation that union types arise naturally in denotational semantics and that they can generate more informative types for some terms. This latter work highlighted the failure of Subject Reduction in the presence of union types and showed how to recover this property by suitably restricting the notion of reduction. Union and intersection types have recently been used by Palsberg and Pavlopoulou [START_REF] Palsberg | From polyvariant flow information to intersection and union types[END_REF] and subsequently by Wells, Dimock, Muller, and Turbak [START_REF] Wells | A calculus with polymorphic and polyvariant flow types[END_REF] in a type system involving flow types for encoding control and data flow information in typed program representations.

The system in [START_REF] Wells | A calculus with polymorphic and polyvariant flow types[END_REF] obeys the Subject Reduction for a certain call-by-value version of the β-rule (in which variables are not considered values).

Syntax

In this section we present the untyped version of Curien and Herbelin's λµ µ calculus introduced in [START_REF] Curien | The duality of computation[END_REF]. We identify three syntactic categories: the set of callers, the set of callees, and the set of capsules (in [START_REF] Curien | The duality of computation[END_REF] these are referred to respectively as terms, contexts and commands). We changed the terminology because the word terms seems inappropriate to qualify only some of the expressions of the language, because commands are in no way "commands". And last a terminology that emphasizes the inherent symmetry of the language is more than welcome.

There are two kinds of variables in this system: (i) the set Var r of caller variables denoted by Latin variables x, y,..., which can be bound by λ-abstractions or µabstractions, and (ii) the set Var e of callee variables denoted by Greek variables α, β,... which can be bound by µ-abstractions. Letting r, e, and c range over callers, callees and capsules respectively, we have

r :: x ¡ λx¢ r ¡ µα¢ c e :: α ¡ r £ e ¡ µx¢ c c :: ¥¤ r ¦ e §
The reduction rules of the calculus are

¨λ© ¤ λx¢ r ¦ r £ e § / / ¤ r ¦ µx¢ ¤ r ¦ e § § ¨µ© ¤ µα¢ c ¦ e § / / c α e ¨ µ© ¤ r ¦ µx¢ c § / / c x r
Of course the substitutions above are defined so as to avoid variable capture. The formal definitions of free and bound variables are as expected. In this paper, we use the usual convention on variables that in a statement or an expression, there is no subexpression in which a variable is both free and bound.

As a rewriting calculus λµ µ has an essential critical pair between the µ and the µ redexes. That is to say, on a term of the form ¤ µα¢ c ¦ µx¢ c § rules ¨µ© and ¨ µ© can be applied ambiguously. If one gives priority to ¨µ© over ¨ µ© this corresponds to a callby-value discipline, otherwise it is call-by-name. Indeed the calculus is inherently not confluent. As a simple example observe that the capsule

¤ µα¢ ¤ z 1 ¦ β 1 § ¦ µx¢ ¤ z 2 ¦ β 2 § § reduces to each of ¤ z 1 ¦ β 1 § and ¤ z 2 ¦ β 2 § .
This is more than simply a reflection of the well-known fact that the equational theories of call-by-name and call-by-value differ. It is a reflection of the great expressive power of the language: a single term containing several capsules can encompass several complete computational processes, and the µ and µ reductions allow free transfer of control between them.

So the combinatorics of pure reduction is very complex. In this light it is perhaps slightly surprising that the strongly normalizing computations can so readily be characterized, via the type system we present later.

When reduction in λµ µ is constrained to commit to the call-by-name discipline or to the call-by-value, the system is confluent.

It is not hard to see that pure λµ µ is Turing-complete as a programming language, since the untyped λ-calculus can be coded easily into it. Space does not permit a formal development here, but it is instructive to note the following general example.

¨λx¢ r© ¡ s ¢ µα¢ ¤ λx¢ r ¦ s £ α § / / / / µα¢ ¤ r x s ¦ α §
using a λ-step followed immediately by a µ-step.

From the reduction rules, one deduces easily that the normal forms are generated by the following abstract syntax. r n f ::

x ¡ λx¢ r n f ¡ µα¢ c n f e n f :: α ¡ r n f £ e n f ¡ µx¢ c n f c n f :: ¤ x ¦ α § ¡ ¤ x ¦ r n f £ e n f § ¡ ¤ λx¢ r n f ¦ α §

Type assignment with intersection and union

The form of classical sequent calculus provides the framework for the definition of a type-assignment system for λµ µ using simple types. This is precisely the type system of Curien and Herbelin [START_REF] Curien | The duality of computation[END_REF], which will be the foundation upon which we build our intersection types. Indeed, the system of Curien and Herbelin comprises precisely the rules in Figure 1 that do not mention intersections or unions. When the sequent-based type system is viewed a means of assigning terms to sequents, we are led to the notion of the active proposition in a sequent, that is, the proposition (type) that "carries" the term. This is the proposition in the stoup in Girard's sense [START_REF] Girard | A new constrcutive logic: classical logic[END_REF]. In each rule of Figure 1 , the active proposition is boxed. When applying a rule, one has to take into account where the active proposition is.

It is well-known that the distinction between intuitionistic and classical logic is reflected in sequent calculus by the admission, in the classical case, of multiple formulas on the right side of a sequent. But the use of sequents as typings for λµ µ termsµ-terms in particular -yields another insight. For the purposes of this discussion let us agree to introduce the propositional constant £ to denote the space of "answers" or "responses". The informal interpretation of a caller typing judgment r : A is that r denotes a value in type A; correspondingly the informal interpretation of a callee typing judgment e : A is that e denotes a continuation that expects a value of type A and returns an answer. Under this reading a judgment such as µα¢ c : A says that µα¢ c ¨e

-ax© Γ¡ ¢ £ ¤ ¥ α : A i ¦ α : A 1 § © § A n ¡ ∆ ¨r -ax© Γ¡ x : A 1 © A n ¦ ¢ £ ¤ ¥ x : A i ¡ ∆ Γ ¦ r : A ¡ ∆ Γ¡ e : B ¦ ∆ ¨ L© Γ¡ r £ e : A B ¦ ∆ Γ¡ x : A ¦ r : B ¡ ∆ ¨ R© Γ ¦ ¢ £ ¤ ¥ λx¢ r : A B ¡ ∆ c : ¨Γ¡ x : A ¦ ∆© ¨ µ© Γ¡ ¢ £ ¤ ¥ µx¢ c : A ¦ ∆ c : ¨Γ ¦ α : A¡ ∆© ¨µ© Γ ¦ ¢ £ ¤ ¥ µα¢ c : A ¡ ∆ Γ ¦ r : A ¡ ∆ Γ¡ e : A ¦ ∆ ¨cut© ¤ r ¦ e § : ¨Γ ¦ ∆© Γ¡ e : A ¦ ∆ ¨ L © Γ¡ e : A B ¦ ∆ Γ ¦ r : A ¡ ∆ Γ ¦ r : B ¡ ∆ ¨ R © Γ ¦ r : A B ¡ ∆ Γ¡ e : A ¦ ∆ Γ¡ e : B ¦ ∆ ¨ § L © Γ¡ e : A § B ¦ ∆ Γ ¦ r : A ¡ ∆ ¨ § R © Γ ¦ r : A § B ¡ ∆ Figure 1: The type system M ! #"
takes as parameter an A-continuation and returns a value. If we were to informally denote the space of A-continuations as the set ¨A $ £ © then this µα¢ c inhabits the set ¨A $ £ © %$ £ © , and the fact that such terms are assigned the type A is exactly the embodiment of the equivalence of a proposition with its double-negation.

The need for unions General consideration of symmetry should lead us to consider union types together with intersection types in our system. If a caller r can have type A B, meaning that it denotes values that inhabit both A and B then it can interact with any callee that can receive an A-value or a B-value: such a callee will naturally be expected to have the type A § B. Thus far we have only argued that having intersection types for values suggests having union types for callees, which is in itself not a real extension of the intersection-types paradigm. But any type that can be the type of a caller-variable can be the type of a callee term (via the µ-construction) and any type that can be the type of a callee-variable can be the type of a caller term (via the µconstruction). So we are committed to having intersections and unions for callers and callees.

A specific technical consideration gives another argument for having unions. If our goal is to characterize strongly normalizing terms then certainly we need to type all normal forms. As usual in traditional intersection types, when a term t has more than one occurrence of a caller-variable x, this variable will, in general, have a type of the form A 1 &' A n , the different A i reflecting various constraints on the type of x arising from its interaction with different subterms t. Similarly, if t has more than one occurrence of a callee-variable α, it will, in general, receive a type A 1 § (' § A n , the type of continuations that can produce an answer given a value of any of the types

A 1 ¡ ¢ ¢ ¢ ¡ A n Definition 3.1
-The set of types is generated from a set of type variables by closing under and § . We will always consider types to be defined modulo commu- tativity and associativity for and § .

-A caller basis is a set of statements of the form x : A, a callee basis is a set of statements of the form α : A; in each case we stipulate that all variables are distinct.

-There are three types of typing judgments:

Γ ¦ r : A ¡ ∆ Γ¡ e : A ¦ ∆ c : ¨Γ ¦ ∆©
where Γ is a caller basis and where ∆ is a callee basis.

Discussion

In order to motivate the technical condition on bases in Definition 3.2 below we show why it is that a naive attempt to define a type system with unions types leads to difficulties in Subject Reduction. More specifically, it seems difficult to prove a substitution lemma of the sort that is crucial to Subject Reduction.

A first attempt Consider a standard intersection type system for λ-calculus. At the level of the natural deduction, the rules for are just the rules for ¡ (that is, if one erases the terms and looks just at the formulas). As we know, the difference between the formula A ¡ B and the type A B is that in the latter we require the same term to witness A, B, and A B.

We can imagine a type system for λµ µ derived using the same principle, applied to sequent calculus deduction. So the rules would be based on the shape of the logic rules for ¡ :

Γ¡ A ¦ ∆ Γ¡ A ¡ B ¦ ∆ Γ ¦ ∆¡ A Γ ¦ ∆¡ B Γ ¦ ∆¡ A ¡ B
A key point is that, since introducing an intersection on the left or the right is not a logical inference, these type inferences are completely orthogonal to the notion of the stoup, i.e. of the active formula. This means that to write down the typing judgments corresponding to these rules in the context of λµ µ, we should write down several different λµ µ sequents whose "erasure" looks like a given logic inference.

Of course the same principle holds for union types, whose rules are suggested by analogy with disjunction.

For example, consider

Γ¡ A ¦ ∆ Γ¡ B ¦ ∆ Γ¡ A ¢ B ¦ ∆
The formula A ¢ B can be the type of an active formula (i.e. the type of a callee), or it can be the type of a caller-variable, and in the latter case the judgment can be typing a caller or a callee. Thus, in terms of λµ µ, this one logic inference would yield three different typing rules, as follows.

Γ¡ e : A ¦ ∆ Γ¡ e : B ¦ ∆ ¨ § L © Γ¡ e : A § B ¦ ∆ Γ¡ x : A ¦ r : T ¡ ∆ Γ¡ x : B ¦ r : T ¡ ∆ ¨ § L Var © Γ¡ x : A § B ¦ r : T ¡ ∆ Γ¡ x : A¡ e : T ¦ ∆ Γ¡ x : B ¦ e : T ∆ ¨ § L Var © Γ¡ x : A § B¡ e : T ¦ ∆
It turns out that the latter two rules above prove to be an obstacle to proving a substitution lemma of the kind that is necessary to support Subject Reduction. We require the following property: A second attempt A first idea for fixing this problem might be to forbid union types for callers and forbid intersection types for callees. But as we observed earlier, in the presence of µ and µ, any type that can be the type of a callee variable can arise as the type of a caller term, and any type that can be the type of a caller variable can arise as the type of a callee term. So we cannot hope to make any distinction between "caller types" "callee types."

If Γ¡ x : A ¦ r : T ¡ ∆ and Γ ¦ s : A ¡ ∆ then Γ ¦ ¢ £ ¤ ¥ r x s : T ¡ ∆ But knowing Γ ¦ ¢ £ ¤ ¥ s : A 1 § A 2 ¡ ∆ doesn't
A third and successful attempt However it turns out, as we will see, that we get a successful system if we simply forbid typing judgments whose bases contain variabletypings of the form x : A § B and α : A B. In particular we reject the latter two rules above.

Definition 3.2

-A type A is -definite if it is a type variable, an arrow-type or it is A 1 A 2 , with each A i a -definite type. A type A is § -definite if it is a type variable, an arrow-type or it is

A 1 § A 2 , with each A i a § -definite type. -A basis Γ is -definite, if in each binding x : A in Γ, A is a -definite type. A basis ∆ is § -definite if in each binding α : A in ∆, A is a § -definite type.
-A typing judgment is definite if its typing bases Γ and ∆ are -and § -definite, respectively.

Note that in a definite typing judgment we do not insist that the type of the active formula be definite. We will restrict attention to definite typing judgments in the type system we define.

A further simplification of the system we define will be for convenience only. The analogy with the logical rules described above suggest the following rules for variables:

Γ¡ x : A ¦ ∆ Γ¡ x : A B ¦ ∆ Γ ¦ ∆¡ α : A Γ ¦ ∆¡ α : A § B
These rules are perfectly sound, but it turns out that their presence complicates reasoning about this system. On the other hand it is not hard to see that application of these rules can always be pushed towards the leaves of a typing tree. In fact an equivalent formulation of the system removes these rules completely and replaces them with more flexible axiom schemas.

The system in Definition 3.3 is the system obtained from the rules naively generated by analogy with the logical inference rules by £ restricting to definite type judgments and £ replacing the variable rules above by the more flexible axioms e -ax and r -ax.

This system fits well with the sequent calculus based on active formulas, since all the rules concern the terms associated with the active formula, as opposed to the earlier two systems, whose var-rules changed the type basis for an active term while keeping the type of the term the same.

Note that although we have forbidden caller variables to have union types, we do have caller terms with union types, due to their typing rule µ.

3.2

The types system M ¢¡ Definition 3.3 (The type system M ! #") The typing judgements of M ! #" are those deriv- able by the rules in Figure 1. In each rule we assume that the bases are definite.

The first property we will need is that the intersection and union rules with two premises can be "inverted" in the sense that if the judgment in the conclusion of the rule is derivable then each of the judgments in the hypotheses are derivable.

It is precisely here that we reap the benefit of our restriction to definite bases. The following lemma is false without this restriction. Indeed

x : A A ¨B C© ¦ ¢ £ ¤ ¥ µα¢ ¤ x ¦ x £ α § : B C ¡ since ¤ x ¦ x £ α § : ¨x:A A ¥¨B C© ¦ α : B C©
where α : B C is not § -definite. An easy check shows that one has

neither x : A A ¨B C© ¦ ¢ £ ¤ ¥ µα¢ ¤ x ¦ x £ α § : B ¡ nor x : A A ¨B C© ¦ ¢ £ ¤ ¥ µα¢ ¤ x ¦ x £ α § : C ¡ ¢ Lemma 3.4 (Elimination) i. If Γ ¦ ¢ £ ¤ ¥ r : A 1 A 2 ¡ ∆ then for i 1¡ 2, Γ ¦ ¢ £ ¤ ¥ r : A i ¡ ∆. ii. If Γ¡ ¢ £ ¤ ¥ e : A 1 § A 2 ¦ ∆ then for i 1¡ 2, Γ¡ ¢ £ ¤ ¥ e : A i ¦ ∆.
Proof. For part 1, we just observe that the only rules that could be used to derive

Γ ¦ ¢ £ ¤ ¥ r : A 1 A 2 ¡ ∆ are
r -ax and R . In the latter case the result is immediate; and in the former case the result is a consequence of the fact that we are considering types modulo associativity and commutativity of .

The fact that the last inference cannot be a µ is a direct consequence of our assumption that bases are definite. That is, since bases cannot have assumptions of the form α : A 1 A 2 a derivation such as the one below is not possible:

Γ ¦ r : T ¡ ∆¡ α : A 1 A 2 Γ¡ e : T ¦ ∆¡ α : A 1 A 2 ¨cut© ¤ r ¦ e § : ¨Γ ¦ ∆¡ α : A 1 A 2 © Γ ¦ ¢ £ ¤ ¥ µα¢ ¤ r ¦ e § : A 1 A 2 ¡ ∆
the assumed derivation must look like

Γ ¦ ¢ £ ¤ ¥ µα¢ ¤ r ¦ e § : A 1 ¡ ∆ Γ ¦ ¢ £ ¤ ¥ µα¢ ¤ r ¦ e § : A 2 ¡ ∆ Γ ¦ ¢ £ ¤ ¥ µα¢ ¤ r ¦ e § : A 1 A 2 ¡ ∆
that is, an instance of R . This completes the proof of part 1 of the lemma. The proof of part 2 is similar. [START_REF] Bierman | A computational interpretation of the λµ-calculus[END_REF] Let Γ and Γ be -definite; let ∆ and ∆ be § -definite.

Definition 3.5 If Γ 1 and Γ 2 are caller bases, define Γ 1 Γ 2 to be Γ 1 Γ 2 ¢¡ x : A ¡ ¨x:A© ¤£ Γ 1 and x ¥ £ Γ 2 ¦ § ¡ x : A ¡ ¨x:A© §£ Γ 2 and x ¥ £ Γ 2 ¦ § ¡ x : A B ¡ ¨x:A© §£ Γ 1 and ¨x:B© ¤£ Γ 2 ¦ If ∆ 1 and ∆ 2 are callee bases, define ∆ 1 ¨∆2 to be ∆ 1 ¨∆2 ¢¡ x : A ¡ ¨x:A© ¤£ ∆ 1 and x ¥ £ ∆ 2 ¦ § ¡ x : A ¡ ¨x:A© §£ ∆ 2 and x ¥ £ ∆ 1 ¦ § ¡ x : A § B ¡ ¨x:A© §£ ∆ 1 and ¨x:B© ©£ ∆ 2 ¦ Lemma 3.
Then Γ 1 Γ 2 is -definite and

∆ 1 ¨∆2 is § -definite. Furthermore: i. If Γ ¦ r : A ¡ ∆ then Γ Γ ¦ r : A ¡ ∆ ¨∆ . ii. If Γ¡ e : A ¦ ∆ then Γ Γ ¦ e : A ¡ ∆ ¨∆ . Lemma 3.7 (Context expansion lemma) Let Γ Γ and ∆ ∆ . i. If Γ ¦ r : A ¡ ∆, then Γ ¦ r : A ¡ ∆ . ii. If Γ¡ e : A ¦ ∆, then Γ ¡ e : A ¦ ∆ . iii. If c : ¨Γ ¦ ∆© , then c : ¨Γ ¦ ∆ © . Lemma 3.8 (Generation lemma) i. If Γ ¦ ¢ £ ¤ ¥ λx¢ r : i I A i B i ¡ ∆, then Γ¡ x : A i ¦ ¢ £ ¤ ¥ r : B i ¡ ∆. ii. If Γ¡ ¢ £ ¤ ¥ r £ e : i I A i B i ¦ ∆, then Γ ¦ ¢ £ ¤ ¥ r : A i ¡ ∆ and Γ¡ ¢ £ ¤ ¥ e : B i ¦ ∆. iii. If Γ ¦ ¢ £ ¤ ¥ µα¢ c : i I A i ¡ ∆, then c : ¨Γ ¦ α : A i ¡ ∆© . iv. If Γ¡ ¢ £ ¤ ¥ µx¢ c : i I A i ¦ ∆, then c : ¨Γ¡ x : A i ¦ ∆© .

Subject Reduction

In this section we show that our type system enjoys the Subject Reduction property, for the the calculus with unrestricted reduction, that is, even in the presence of the ¨µ¡ µ© critical pair. As mentioned in the introduction and shown in [START_REF] Barbanera | Intersection and union types: syntax and semantics[END_REF] subject reduction is difficult to achieve in a system with union types.

As usual the key property to verify to ensure Subject Reduction is that substitution behaves well. So the next lemma is the heart of the argument.

Lemma 4.1 (Substitution)

Let us suppose that all judgments are definite.

1. If Γ¡ x : S ¦ t : T ¡ ∆ and Γ ¦ s : S ¡ ∆ then Γ ¦ ¢ £ ¤ ¥ t x s : T ¡ ∆. 2. If Γ ¦ t : T ¡ ∆¡ α : S and Γ¡ ¢ £ ¤ ¥ f : S ¦ ∆ then Γ ¦ ¢ £ ¤ ¥ t α f : T ¡ ∆. 3. If Γ¡ x : S¡ ¢ £ ¤ ¥ g : T ¦ ∆ and Γ ¦ s : S ¡ ∆ then Γ¡ ¢ £ ¤ ¥ g x s : T ¦ ∆. 4. If Γ¡ ¢ £ ¤ ¥ g : T ¦ ∆¡ α : S and Γ¡ ¢ £ ¤ ¥ f : S ¦ ∆ then Γ¡ ¢ £ ¤ ¥ g α f : T ¦ ∆.
Proof. We prove the parts simultaneously by induction on the length of the derivation of the first indicated judgment in each part. We can remark that Lemma 3.4 -and so in turn the assumption that all bases are definite -is crucial to the argument. We organize the proof by considering the case of each typing rule in turn. Case: r -ax. We must (only) address parts 1 and 2. Part 2 is trivial. For part 1, we are given ¨r -ax©

Γ¡ x : A 1 & A n ¦ ¢ £ ¤ ¥ x : A i ¡ ∆ and Γ ¦ ¢ £ ¤ ¥ s : A 1 © A n ¡ ∆; we want to show that Γ ¦ ¢ £ ¤ ¥ s : A i ¡ ∆. This is immediate from Lemma 3.4.1.
Case: e -ax. We must address parts 3 and 4. Part 3 is trivial. For part 4, the argument is similar to the previous case, using Lemma 3.4.2.

Case:

L We consider parts 3 and 4. For part 3 we are given

Γ¡ x : S ¦ r : A ¡ ∆ Γ¡ x : S¡ e : B ¦ ∆ ¨ L© Γ¡ x : S¡ r £ e : A B ¦ ∆ and Γ ¦ s : S ¡ ∆
and we note that ¨r£ e© x s ¨r x s © £ ¨e x s © so the result follows by induction hypothesis, parts 1 and 3.

Case:

R. We address parts 1 and 2. For part 1 we are given

Γ¡ x : S¡ y : A ¦ r : B ¡ ∆ ¨ R© Γ¡ x : S ¦ ¢ £ ¤ ¥ λy¢ r : A B ¡ ∆ and Γ ¦ s : S ¡ ∆
and we note that ¨λy¢ r© x s λy¢ ¨r x s © so the result follows by induction hypothesis, part 1, and an application of rule R. For part 2 we are given

Γ¡ y : A ¦ r : B ¡ ∆¡ α : S ¨ R© Γ ¦ ¢ £ ¤ ¥ λy¢ r : A B ¡ ∆¡ α : S and Γ¡ ¢ £ ¤ ¥ f : S ¦ ∆¢
and we note that ¨λy¢ r© α f λy¢ ¨r α f © so the result follows by induction hypothesis, part 2, and an application of rule R. Case: µ. We address parts 3 and 4. For part 3 we are given

Γ¡ y : T ¡ x : S ¦ r : B ¡ ∆ Γ¡ y : T ¡ x : S¡ e : B ¦ ∆ ¤ r ¦ e § : ¨Γ¡ y : T ¡ x : S ¦ ∆© ¨ µ© Γ¡ x : S¡ ¢ £ ¤ ¥ µy¢ ¤ r ¦ e § : T ¦ ∆ and Γ ¦ s : S ¡ ∆
and we seek to show that

Γ¡ ¢ £ ¤ ¥ ¨ µy¢ ¤ r ¦ e § © x s : T ¦ ∆ Since ¨ µy¢ ¤ r ¦ e § ©
x s µy¢ ¤ r x s ¦ e x s § , the result follows from the induc- tion hypothesis, parts 1 and 3, applied to the leaves of the derivation shown, followed by (cut) and (µ).

Part 4 is similar, using the induction hypothesis, parts 2 and 4. Case: µ. We address parts 1 and 2. For part 1 we are given

Γ¡ x : S ¦ r : B ¡ α : T ¡ ∆ Γ¡ x : S¡ e : B ¦ α : T ¡ ∆ ¤ r ¦ e § : ¨Γ¡ x : S ¦ α : T ¡ ∆© ¨µ© Γ¡ x : S ¦ ¢ £ ¤ ¥ µα¢ ¤ r ¦ e § : T ¡ ∆ and Γ ¦ s : S ¡ ∆
and we seek to show that

Γ¡ x : S ¦ ¢ £ ¤ ¥ ¨µα¢ ¤ r ¦ e § © x s : T ¡ ∆
Since ¨µα¢ ¤ r ¦ e § © x s µα¢ ¤ r x s ¦ e x s § , the result follows from the induc- tion hypothesis, parts 1 and 3, applied to the leaves of the derivation shown, followed by (cut) and (µ). Part 2 is similar, using the induction hypothesis, parts 2 and 4.

Case: L . We address parts 3 and 4. For part 3 we are given Case: R . We address parts 1 and 2. For part 1 we are given

Γ¡ x : S ¦ r : A ¡ ∆ Γ¡ x : S ¦ r : B ¡ ∆ ¨ R © Γ¡ x : S ¦ r : A B ¡ ∆
and we wish to show that

Γ ¦ ¢ £ ¤ ¥ r x s : A B ¡ ∆
This is an easy application of the induction hypothesis, part 1. Part 2 is similar.

Case: § L . Similar to case R .

Case: § R . Similar to case L .

Γ ¦ ¢ £ ¤ ¥ r α f : T ¡ ∆ and Γ¡ ¢ £ ¤ ¥ e α f : T ¦ ∆
and so the result follows.

Case: µ. Similar to case µ.

Case: λ. We have ¤ λx¢ r ¦ s £ e § : ¨Γ ¦ ∆© and we wish to show ¤ s ¦ µx¢ ¤ r ¦ e § § : ¨Γ ¦ ∆© .

By hypothesis, for some type T ,

Γ ¦ ¢ £ ¤ ¥ λx¢ r : T ¡ ∆ and Γ¡ s £ e : T ¦ ∆¢
We perform a sub-induction on the size of the type T . The type T is of one of the

forms: A B, T 1 T 2 , or T 1 § T 2 . case: T is A B.
Then λx¢ r must have been typed by an application of rule R,

Γ¡ x : A ¦ r : B ¡ ∆ ¨ R© Γ ¦ ¢ £ ¤ ¥ λx¢ r : A B ¡ ∆
and s £ e must have been typed by an application of rule L:

Γ ¦ s : A ¡ ∆ Γ¡ e : B ¦ ∆ ¨ L© Γ¡ s £ e : A B ¦ ∆
We can rearrange these typing judgments to obtain the desired typing.

Γ ¦ s : A ¡ ∆ Γ¡ x : A ¦ r : B ¡ ∆ Γ¡ e : B ¦ ∆ ¤ r ¦ e § : ¨Γ¡ x : A ¦ ∆© Γ¡ ¢ £ ¤ ¥ µx¢ ¤ r ¦ e § : A ¦ ∆ ¤ s ¦ µx¢ ¤ r ¦ e § § : ¨Γ ¦ ∆© case: T is T 1 T 2 .
Then s £ e must have been typed by an application of rule L , so that Γ¡

¢ £ ¤ ¥ s £ e : T i ¦ ∆ ¨ L © Γ¡ ¢ £ ¤ ¥ s £ e : T 1 T 2 ¦ ∆ for either i 1 or i 2 in L .
But by Lemma 3.4, we have Γ ¦ ¢ £ ¤ ¥ λx¢ r : T i ¡ ∆ and so the result follows by application of the induction hypothesis at type T i . case: T is T 1 § T 2 . Then λx¢ r must have been typed by an application of rule § R Γ ¦ ¢ £ ¤ ¥ λx¢ r :

T i ¡ ∆ ¨ § R © Γ ¦ ¢ £ ¤ ¥ λx¢ r : T 1 § T 2 ¡ ∆ for either i 1 or i 2 in § R . But by Lemma 3.4, we have Γ¡ ¢ £ ¤ ¥
s £ e : T i ¦ ∆ and so the result follows by application of the induction hypothesis at type T i .

Strongly normalizing terms are typable

In this section we show that our type system assigns a type to any normal form and that a Subject Expansion result holds, so that any term that is strongly normalizing (under any of the reduction disciplines considered) is typable.

Typing normal forms

Theorem 5.1 Every normal form is typable.

Proof. It is here that the unions first play a crucial role, in assigning types to callee variables that occur more than once in a normal form. We prove by induction on terms that i. If r is a caller normal form then there are Γ, ∆, and T such that Γ ¦ r : T ¡ ∆ ii. If e is a callee normal form then there are Γ, ∆ and T such that Γ¡ e : T ¦ ∆

iii. If c is a capsule normal form then there are Γ and ∆ such that c : ¨Γ ¦ ∆© Of course in each case we assert that Γ comprises only -definite bindings and that ∆ comprises only § -definite bindings. Now suppose r is a caller normal form. Of course if r is a variable we may type r with a type variable. If r is λx¢ s then by induction we have

Γ ¦ s : T ¡ ∆
where, without loss of generality we have assumed a binding x : X in the typing for s. Then we have

Γ x : X ¦ ¢ £ ¤ ¥ λx¢ s : X T ¡ ∆ If r is µα¢ ¤ r ¦ e § then by induction we have ¤ r ¦ e § : ¨Γ ¦ α : X ¡ ∆©
where, without loss of generality we have assumed a binding for α. Then

Γ ¦ ¢ £ ¤ ¥ µα¢ ¤ r ¦ e § : X ¡ ∆
This completes the argument for typing caller normal forms.

A callee normal form is either a variable, or is of the form µx¢ c or r £ e. The variable case is easy, and the µ case is similar to that for µ. When the term is r £ e we have by induction

Γ 1 ¦ r : A ¡ ∆ 1 and Γ 2 ¡ e : B ¦ ∆ 2 Then Γ 1 Γ 2 ¡ r £ e : A B ¦ ∆ 1 ¨∆2
A capsule normal form is of one of the forms

¤ λx¢ r ¦ α § or ¤ x ¦ ¨r1 £ ¢ ¢ ¢ £ r n £ e© §
where n 0 and e is either α or µx¢ c Consider the first case. We have, for some Γ, ∆, and T ,

Γ ¦ ¢ £ ¤ ¥ λx¢ r : T ¡ ∆
If α does not occur free in λx¢ r then we may suppose that α ¥ £ ∆. Then

Γ ¦ ¢ £ ¤ ¥ λx¢ r : T ¡ ∆¡ α : T and Γ¡ α : T ¦ ∆¡ α : T so that ¤ λx¢ r ¦ α § : ¨Γ ¦ ∆¡ α : T ©
If α does occur free in λx¢ r then we will have, for some A,

Γ ¦ ¢ £ ¤ ¥ λx¢ r : T ¡ ∆ ¡ α : A¢ Then Γ ¦ ¢ £ ¤ ¥ λx¢ r : T ¡ ∆ ¡ α : T § A¢ and Γ¡ α : T ¦ ∆ ¡ α : T § A so that ¤ λx¢ r ¦ α § : ¨Γ ¦ ∆ ¡ α : T § A© For the case ¤ x ¦ ¨r£ e© § , we have a typing Γ¡ r £ e : T ¦ ∆ If x is not free in ¨r£ e© then Γ¡ x : T ¦ x : T ¡ ∆ and Γ¡ x : T ¡ r £ e : T ¦ ∆ so that ¤ x ¦ ¨r£ e© § : ¨Γ¡ x : T ¦ ∆© Otherwise, if x gets a type A in Γ Γ ¡ x : T A ¦ x : T ¡ ∆ and Γ ¡ x : T A¡ r £ e : T ¦ ∆ so that ¤ x ¦ ¨r£ e© § : ¨Γ ¡ x : T A ¦ ∆©

Subject expansion

The following is the main lemma supporting the Subject Expansion theorem; it can be viewed as a converse to the Substitution Lemma.

Lemma 5.2 (Subject Expansion)

1. Suppose Γ ¦ ¢ £ ¤ ¥ r x s : B ¡ ∆ and suppose that caller s is typable under Γ¡ ∆.

Then there is a type A such that

Γ ¦ s : A ¡ ∆ and Γ¡ x : A ¦ r : B ¡ ∆¢ 2. Suppose Γ ¦ ¢ £ ¤ ¥ r α f : B ¡ ∆ and suppose that callee f is typable under Γ¡ ∆.
Then there is a type A such that

Γ¡ ¢ £ ¤ ¥ f : A ¦ ∆ and Γ ¦ r : B ¡ ∆¡ α : A¢ 3. Suppose Γ¡ ¢ £ ¤ ¥
e x s : B ¦ ∆ and suppose that caller s is typable under Γ¡ ∆.

Then there is a type A such that

Γ ¦ s : A ¡ ∆ and Γ¡ x : A¡ e : B ¦ ∆¢ 4. Suppose Γ¡ ¢ £ ¤ ¥ e α f : B ¦ ∆ and suppose that callee f is typable under Γ¡ ∆.
Then there is a type A such that Γ¡ ¢ £ ¤ ¥ f : A ¦ ∆ and Γ¡ e : B ¦ ∆¡ α : A¢ 5. Suppose c x s : ¨Γ ¦ ∆© and suppose that caller s is typable under Γ¡ ∆.

Then there is a type B such that Γ ¦ s : B ¡ ∆ and c : ¨Γ¡ x : B ¦ ∆© ¢ 6. Suppose c α f : ¨Γ ¦ ∆© and suppose that callee f is typable under Γ¡ ∆.

Then there is a type B such that

Γ¡ ¢ £ ¤ ¥ f : B ¦ ∆ and c : ¨Γ ¦ ∆¡ α : B© ¢ Proof.
By induction on r, e and c.

1.

-If r ¢ x, then r x s ¡¢ s and

Γ ¦ s : B ¡ ∆
according to the assumption. On the other hand -Let r ¢ λy¢ r . Then ¨λy¢ r © x s ¢ λy¢ r x s , where y ¥ £ ¢¡ ¤£ ¨s© by Barendregt convention. By assumption

Γ¡ x : B ¦ x : B ¡ ∆ by r ¡ ax. If r ¢ y, then r x s ¢ y, Γ ¦ ¢ £ ¤ ¥ y : B ¡ ∆
Γ ¦ ¢ £ ¤ ¥ λy¢ r x s : B ¡ ∆
We perform a sub-induction on the size of type B. The type B is one of the forms:

T 1 T 2 , T 1 T 2 , or T 1 § T 2 .
case B is T 1 T 2 . By Generation lemma 3.8

Γ¡ y : T 1 ¦ ¢ £ ¤ ¥ r x s : T 2 ¡ ∆
and by the induction hypothesis

Γ¡ y : T 1 ¦ ¢ £ ¤ ¥ s : T 2 ¡ ∆ (which yields Γ ¦ s : B ¡ ∆ since y ¥ £ ¢¡ £ ¨s©) and Γ¡ y : T 1 ¡ x : B ¦ ¢ £ ¤ ¥ r : T 2 ¡ ∆ (which yields Γ¡ x : B ¦ ¢ £ ¤ ¥ λy¢ r : T 1 T 2 ¡ ∆). case B is T 1 T 2 . Then by Elimination lemma 3.4 Γ ¦ ¢ £ ¤ ¥ λy¢ r x s : T i ¡ ∆
and by the induction hypothesis there is a type A i such the

Γ ¦ ¢ £ ¤ ¥ s : A i ¡ ∆ and Γ¡ x : A i ¦ ¢ £ ¤ ¥ λy¢ r : T i ¡ ∆ for i 1¡ 2.
The result follows by Lemma 3.6 and R . case B is T 1 § T 2 . The last rule applied must have been § R hence Γ ¦ ¢ £ ¤ ¥ λy¢ r x s : T i ¡ ∆ for either i 1 or i 2. Take i 1, then by the induction hypothesis

Γ ¦ ¢ £ ¤ ¥ s : A 1 ¡ ∆ and Γ¡ x : A 1 ¦ ¢ £ ¤ ¥ λy¢ r : T 1 ¡ ∆
The result follows by § R .

-Let r ¢ µα¢ c. Then ¨µα¢ c© x s ¡¢ µα¢ c x s , where α ¥ £ ¤¡ ¡ ¨s© . Let

Γ ¦ ¢ £ ¤ ¥ µα¢ ¨c x s © : B ¡ ∆
According to Generation lemma 3.8 c x s : ¨Γ ¦ α : B¡ ∆© hence by the induction hypothesis

Γ ¦ s : A ¡ ∆ and c : ¨Γ¡ x : A ¦ α : B¡ ∆© Thus Γ¡ x : A ¦ ¢ £ ¤ ¥ µα¢ c : B ¡ ∆ 2.
3. and 4. Similar.

5. In the case of a capsule ¤ r ¦ e § x s ¢ ¤ r x s ¦ e x s § , hence the last typing rule applied is (cut), therefore

Γ ¦ ¢ £ ¤ ¥ r x s : B ¡ ∆ and Γ¡ ¢ £ ¤ ¥ e x s : B ¦ ∆
By the induction hypothesis there exists A 1 such that

Γ ¦ ¢ £ ¤ ¥ s : A 1 ¡ ∆ and Γ¡ x : A 1 ¦ r : B ¡ ∆
and there exists A 2 such that

Γ ¦ ¢ £ ¤ ¥ s : A 2 ¡ ∆ and Γ¡ x : A 2 ¡ e : B ¦ ∆ By ¨ R© we get Γ ¦ ¢ £ ¤ ¥ s : A 1 A 2 ¡ ∆ By Lemma 3.6 we get Γ¡ x : A 1 A 2 ¦ r : B ¡ ∆ and Γ¡ x : A 1 A 2 ¡ e : B ¦ ∆ Using ¨cut© we get ¤ r ¦ e § : ¨Γ¡ x : A 1 A 2 ¦ ∆© Part 6. is similar.
Theorem 5.3 All strongly normalizing terms are typable.

Proof. Let c be strongly normalizing. We proceed by induction on the length of the longest reduction of c. So suppose c and c are capsules with c / / c . From the assumption that c is typeable we derive a typing for c; there are three cases according to the rule used to reduce c. Here we present only one, the case of the λ rule: ¤ λx¢ r ¦ r £ e § / / ¤ r ¦ µx¢ ¤ r ¦ e § § . By the induction hypothesis ¤ r ¦ µx¢ ¤ r ¦ e § § : ¨Γ ¦ ∆© . In this typing ¨cut© must have been the last rule applied.

Therefore for some type A

Γ ¦ ¢ £ ¤ ¥ r : A ¡ ∆ and Γ¡ ¢ £ ¤ ¥ µx¢ ¤ r ¦ e § : A ¦ ∆¢ The second implies ¤ r ¦ e § : ¨Γ¡ x : A ¦ ∆© . So,

Typable terms are strongly normalizing

Curien and Herbelin [START_REF] Curien | The duality of computation[END_REF], and Lengrand [START_REF] Lengrand | Call-by-value, call-by-name, and strong normalization for the classical sequent calculus[END_REF], have shown how to deduce strong normalization for simply-typed λµ µ in both the call-by-name and call-by-value disciplines; the former by embedding λµ µ into the λ-calculus with continuation-passing style translations and the latter via interpretation into the calculus of Urban and Bierman [START_REF] Urban | Strong normalisation of cut-elimination in classical logic[END_REF]. But it is not clear how to adapt these arguments to obtain strong normalization for an intersection-types system. In this section we present a self-contained SN proof for M ! #" -typable λµ µ terms by a variant of the standard reducibility method for the λ- calculus. In fact we give a uniform proof that applies to both the call-by-name and call-by-value regimes, and indeed generalizes to even more flexible systems. The call-by-name subsystem of λµ µ is the system defined by the constraint that says that µ-redexes have "higher priority" in the critical pair, the call-by-value subsystem gives priority to µ-redexes. Let us generalize these conventions.

Definition 6.1 A priority π is a well-founded partial ordering defined on terms of the form µα¢ c and µx¢ c

For example, the call-by-name priority is defined by µα¢ c µx¢ c for all c and c , with no other relations, and the call-by-value priority is defined by µx¢ c µα¢ c for all c and c , with no other relations. The longest capsule first priority defined by µx¢ c µα¢ c if ¦ c ¦ ¢¡ ¦ c¦ (where is ¦ c¦ is the size of c in term of number of symbols) and µα¢ c µx¢ c otherwise is another priority.

In order to make precise the sense in which a priority defines a notion of reduction, we require a few definitions. Definition 6.2 Let π be a priority.

£ If r is a caller, let us say that a callee e is available to r if either e is not of the form µx¢ c or e precedes r in the priority π. Similarly, for a callee e we say that a caller r is available to e if either r is not of the form µα¢ c or r precedes e in the priority π.

£ A reduction step respects π if either its redex is not an instance of a critical pair, or, letting the redex be ¤ µα¢ c ¦ µx¢ c § , the µ-reduction is done if µα¢ c precedes µx¢ c , but the µ-reduction is done if µx¢ c precedes µα¢ c.

£ A reduction sequence is a π-reduction if each step respects π.

£ A term t is strongly normalizing under π, or is a SN π -term, if every π-reduction sequence out of t terminates.

So in the terminology above, the call-by-name subsystem of λµ µ is the system in which each reduction respects the call-by-name priority, while the call-by-value subsystem respects the call-by-value priority.

But note that there are many priorities other than these two. For example, one can define a priority that ensures that certain capsules obey the call-by-name discipline, while others obey call-by-value. On the other hand, there are reduction sequences that are not π-reductions for any π: this will be the case whenever a redex ¤ µα¢ c ¦ µx¢ c § is contracted in the reduction sometimes as a µ-reduction and sometimes as a µ-reduction.

Our goal is to prove that if t is a M ! " -typable term then any reduction out of t that respects any priority must be finite. Definition 6.3 Fix a priority π. For each type T we define a set ¨Sπ © T of terms; we let ¨Sπ © T r and ¨Sπ © T e denote the corresponding sets of callers and callees at each type T .

To keep the notation manageable, we will simply write S T , S T r and S T e whenever a fixed π is under consideration.

This definition is by induction on types, with a sub-induction over the priority π.

£ α is in S T e for all T , and x is in S T r for all T .

£ r £ e is in £ µx¢ c is in S T e if for all r in S T r which is available to µx¢ c under π, c x r is SN. £ µα¢ c is in S T r if for all e in S T e which is available to µα¢ c under π, c α e is SN.

£ t £ S T 1 ! T 2 r if t £ S T 1 r S T 2 r , and t £ S T 1 ! T 2 e if t £ S T 1 e § S T 2 e £ t £ S T 1 " T 2 r if t £ S T 1 r § S T 2 r , and t £ S T 1 " T 2 e if t £ S T 1 e S T 2 e
This definition is sensible because we have assumed that π is a well-ordering. Note the duality between and § in the last four clauses of the definition.

Two easy consequences of the definitions are: This leads to consideration of the following cases 1. ¤ µα¢ c ¦ e § / / c α e 2. ¤ r ¦ µx¢ c § / / c x r 3. ¤ λx¢ r ¦ a £ e § / / ¤ a ¦ µx¢ ¤ r ¦ e § § For cases 1 and 2 the result is immediate by definition of ¨Sπ © T and the assumption that the reduction respects π.

For case 3, we know that a is in ¨Sπ © A r and e is in ¨Sπ © B e . The latter fact to- e . This implies the theorem since the identity substitution satisfies every Γ and ∆. We prove the statement above by induction on typing derivations.

gether with ¨λx¢ r© £ ¨Sπ © A B r implies that µx¢ ¤ r ¦ e § is in ¨Sπ © A e . So the capsule ¤ a ¦ µx¢ ¤ r ¦ e § § is an instance of case
For the rest of the proof we suppress writing π and write S instead of ¨Sπ © , and SN instead of SN π . Choose a substitution θ that satisfies Γ and ∆, and a typable term r or e; we wish to show that θr £ S A r or θe £ S A e , as appropriate. We consider the possible forms of the given typing.

Case

: ¨e -ax© Γ¡ ¢ £ ¤ ¥ α : A i ¦ α : A 1 § © § A n ¡ ∆
When the term is a variable α typed as above, we need to show that θα £ S A i e , under the assumption that θα £ S A 1 " " A n e . Since S A 1 " " A n e S A 1 e & S A n e this is clear.

Case

: ¨r -ax© Γ¡ x : A 1 & A n ¦ ¢ £ ¤ ¥ x : A i ¡ ∆
When the term is a variable x typed as above, we need to show that θx £ S A i r , under the Case:

assumption that θx £ S A 1 ! ! A n r . Since S A 1 ! ! A n r S A 1 r © S A n
Γ¡ x : A ¦ r : B ¡ ∆ ¨ R© Γ ¦ ¢ £ ¤ ¥ λx¢ r : A B ¡ ∆
We wish to show that θ ¨λx¢ θr© Case:

Γ¡ x : A ¦ r : T ¡ ∆ Γ¡ x : A¡ e : T ¦ ∆ ¨cut© ¤ r ¦ e § : ¨Γ¡ x : A ¦ ∆© ¨µ© Γ¡ ¢ £ ¤ ¥ µx¢ ¤ r ¦ e § : A ¦ ∆ Note that any application of typing rule ¨ µ© must indeed immediately follow a cut. We wish to show that θ ¨ µx¢ ¤ r ¦ e § © ¢ ¨ µx¢ ¤ θr ¦ θe § © £ S A e .
For this we need to consider an r 1 in S A r that is available to ¨ µx¢ ¤ θr ¦ θe § © under π and argue that ¤ θr ¦ θe § x r 1 is SN π .

Letting θ denote the substitution obtained by augmenting θ with the binding x r 1 , what we want to show is that ¤ θ r ¦ θ e § is SN π . The substitution θ satisfies Γ¡ x : A and ∆ by hypothesis and the fact that r 1 £ S A r . So θ r £ S T r and θ e £ S T e by induction hypothesis, and so ¤ θ r ¦ θ e § is SN π .

Case:

Γ ¦ r : T ¡ α : A¡ ∆ Γ¡ e : T ¦ α : A¡ ∆ ¨cut© ¤ r ¦ e § : ¨Γ ¦ α : A¡ ∆© ¨µ© Γ ¦ ¢ £ ¤ ¥ µα¢ ¤ r ¦ e § : A ¡ ∆ Note that any application of typing rule ¨µ© must indeed immediately follow a cut. We wish to show that ¨µα¢ ¤ θr ¦ θe § © ©£ S A r . For this we need to consider an e 1 in S A e that is available to ¨µα¢ ¤ θr ¦ θe § © under π and argue that ¤ θr ¦ θe § α e 1 is SN π .

Letting θ denote the substitution obtained by augmenting θ with the binding α e 1 , what we want to show is that ¤ θ r ¦ θ e § is SN π .

The substitution θ satisfies Γ and ∆¡ α : A by hypothesis and the fact that e 1 £ S A e .

So θ r £ S T r and θ e £ S T e by induction hypothesis, and so ¤ θ r ¦ θ e § is SN π . Theorem 6.6 For every priority π, every typable term is SN π .

Proof. By Theorem 6.5 and the fact that every term in S is SN π .

The above theorem has as immediate corollaries the fact that every typable term is strongly normalizing under both the the call-by-name and the call-by-value variants of λµ µ. Corollary 6. [START_REF] Buneman | Union types for semistructured data[END_REF] The following are equivalent, for a term t: £ t is strongly normalizing under some priority. £ t is strongly normalizing under every priority.

In particular, the set of terms that are strongly normalizing in λµ µ under the call-byname and the call-by-value disciplines coincide.

Proof. If t is strongly normalizing under some priority then by Theorem 5.3 t is typable. So by Theorem 6.6 t is strongly normalizing under every priority.

Conclusion

We conclude by noting some directions for future research.

Intersection types have proven to be an invaluable tool for studying reduction properties in the traditional λ-calculus, and in future work we expect to use suitable variants on the system presented here to characterize weak normalization and head-normalization in λµ µ.

It will be interesting to investigate the relationship between the system presented here and that of Laurent [START_REF] Laurent | On the denotational semantics of the pure lambda-mu calculus[END_REF].

As mentioned in Section 6 there are technical difficulties in lifting the reducibility technique in the presence of intersections and unions to the unrestricted λµ µ calculus with the ¨µ¡ µ© critical pair. This would seem to be an important step in applying intersection-types techniques to the denotational semantics of non-confluent classical calculi. Solving this problem seems to require a deeper understanding of the combinatorial interaction between µ-and µ-reductions.

It is important to better understand the role of union types in a classical calculus, in light of the work in [START_REF] Pierce | Programming with intersection types, union types, and polymorphism[END_REF] and [START_REF] Buneman | Union types for semistructured data[END_REF] showing how union types can play a role in the design of programming languages and query languages for semistructured data types, and especially the results in [START_REF] Palsberg | From polyvariant flow information to intersection and union types[END_REF] and [START_REF] Wells | A calculus with polymorphic and polyvariant flow types[END_REF] relating unions to flow analysis. An obvious question is whether the price we pay for having Subject Reduction in our system is a decrease in expressive power relative to those systems, and if so, we should try to understand the trade-offs.

Notation.

 If m and n are callers, let m n denote the caller term µα¢ ¤ m ¦ n £ α § . (Of course α is not free in m or n here.) Example. (Classical beta-reduction)

 allow us to use the induction hypoth- esis on the given Γ¡ x : A i ¦ r : T ¡ ∆, and the proof cannot be completed.

For part 4

 4 we are given Γ ¦ r : A ¡ ∆¡ α : S Γ¡ e : B ¦ ∆¡ α : S ¨ L© Γ¡ r £ e : A B ¦ ∆¡ α : S and Γ¡ ¢ £ ¤ ¥ f : S ¦ ∆¢ and we note that ¨r£ e© α f ¨r α f © £ ¨e α f © so the result follows by induction hypothesis, parts 2 and 4.

 Γ¡ x : S¡ e : A ¦ ∆ ¨ L © Γ¡ x : S¡ e : A B ¦ ∆ and we wish to show that Γ¡ ¢ £ ¤ ¥ e x s : A B ¦ ∆ This is an easy application of the induction hypothesis, part 3. Part 4 is similar.

Theorem 4 . 2 (

 42 Subject Reduction) If c : ¨Γ ¦ ∆© and c c then c : ¨Γ ¦ ∆© Proof. There are three cases, corresponding to the reductions for µ, µ, and λ. Case: µ. We have ¤ µα¢ ¤ r ¦ e § ¦ f § : ¨Γ ¦ ∆© and we wish to show ¤ r α f ¦ e α f § : ¨Γ ¦ ∆© By hypothesis, for some type T , Γ ¦ r : T ¡ ∆ and Γ¡ e : T ¦ ∆¢ But by the Substitution Lemma 4.1,

 and for some type A, Γ ¦ s : A ¡ ∆ according to the assumption. Then Γ¡ x : A ¦ ¢ £ ¤ ¥ y : B ¡ ∆ by Context expansion lemma 3.7.

££Lemma 6 . 4

 64 For each priority π and each type T , all caller variables are in ¨Sπ © T r and all callee variables are in ¨Sπ © T e . For each priority π and each type T , ¨Sπ © T r SN π and ¨Sπ © T e SN π . For each priority π and each type T , if r £ ¨Sπ © T r and e £ ¨Sπ © T e then ¤ r ¦ e § is in SN π .Proof. We know that r and e are SN π , so we may reason by multiset induction over the π-reduction relation out of r and e. Then it suffices to argue that the result of immediately contracting the top-level redex of ¤ r ¦ e § , if any, is SN π .

r

 this is clear. Case: Γ ¦ r : A ¡ ∆ Γ¡ e : B ¦ ∆ ¨ L© Γ¡ r £ e : A B ¦ ∆ We wish to show that ¨θr £ θe© £ S A B e . It suffices to show that ¨θr £ θe© £ S A B e , which is immediate since by the induction hypothesis θr £ S A r and θe £ S B e .

r

 ¦ ∆ ¨ L © Γ¡ e : A B ¦ ∆ We wish to show that θe £ S A ! B e . Since S A ! B e S A e § S B e this follows from the fact that (by induction hypothesis) θe £ S A e .Case:Γ ¦ r : A ¡ ∆ Γ ¦ r : B ¡ ∆ ¨ R © Γ ¦ r : A B ¡ ∆ We wish to show that θr £ S A ! B r . Since S A ! B r S A r S Br this follows from the fact that (by induction hypothesis) θr £ S A r and θr £ S B r . Case: Γ¡ e : A ¦ ∆ Γ¡ e : B ¦ ∆ ¨ § L © Γ¡ e : A § B ¦ ∆ We wish to show that θe £ S A " B e . Since S A " B e S A e S B e this follows from the fact that (by induction hypothesis) θe £ S A e and θe £ S B e . : A ¡ ∆ ¨ § R © Γ ¦ r : A § B ¡ ∆ We wish to show that θr £ S A " B r . Since S A " B r S A r § S B r this follows from the fact that (by induction hypothesis) θr £ S A r .

 there is a type B such that Γ¡ x : A¡ e : B ¦ ∆ and Γ¡ x : A ¦ r : B ¡ ∆¢ By the variable convention x is not free in e so Γ¡ e : A ¦ ∆. Putting this together we get to ¤ λx¢ r ¦ r £ e § : ¨Γ ¦ ∆© .

 £ S A B r . It suffices to show that for every e in S A e , µx¢ ¤ θr ¦ e § £ S A e .For the latter it suffices to consider an arbitrary a that is available to µx¢ ¤ θr ¦ e § under π and argue that ¤ θr ¦ e § x a is SN π . Since we may assume that x is not free in e we must argue that ¤ ¨θr© x a ¦ e § is SN π . But ¨θr© x a £ S B

r by induction, and we have assumed e £ S B e SN.

Acknowledgments

We are grateful to Pierre-Louis Curien, Norman Danner, Hugo Herbelin, Stéphane Lengrand, and Michel Parigot for several conversations about this work.