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The problems of assigning frequencies to transmitters can be naturally modelled by generalizations of graph coloring problems. We start with a randomized graph coloring algorithm of Petford and Welsh and propose a randomized algorithm for minimizing the number of constraints violated when a set of frequencies available is xed. Experiments on instances of various types relevant to mobile communication networks are reported.

Introduction

The frequency assignment (or frequency allocation) problem is one of the key applications in mobile networks engineering. The di culty of practical problems comes from the fact that an acceptable solution must satisfy many constraints and the set of frequencies available is limited.

Part of this work was done while the author was visiting Ecole Normale Sup erieure de Lyon, supported by the French ministry of Education and Research. Partially supproted by the Ministry of Science and Technology of Slovenia, grant no. J2-7516-0101-97.

Many v ersions of the problem are intractable and therefore heuristics for nding near optimal solutions are sought. Various heuristics were recently used for frequency assignment including simulated annealing 6], genetic algorithms 13], mathematical programming 9], tabu search 4], etc. Many o f these are compared in 11]. Most of the results published in the literature concern the span optimization, probably because strong lower bounds were developed which enable decisions to be made on the optimality of the results (see 2] for an overview of lower bounding techniques). The problem where a xed spectrum is given and the objective i s t o m i n i m i ze the number of violations is less studied. There are only few papers on this problem where the instances are either fully explained or available on the internet. A 7-cell cluster instance was used for testing performance of simulated annealing in 6]. Simulated annealing, tabu search and a genetic algorithm are compared in 12], where a set of benchmark problem instances is proposed. Here we compare performance of our algorithm to the results of these two papers.

In this paper we d e v elop an algorithm for minimizing the number of constraints violated in a frequency assignment from a xed set of available frequencies. The algorithm is based on the graph coloring algorithm of Petford and Welsh 15]. It is not unlike to more well known general optimization techniques such a s s i m ulated annealing and generalized Boltzmann machines. The main di erence is that here the 'temperature' is xed, which results in a simpler tuning of the parameter(s). On the other hand, this may b e o n e of the reasons for good performannce because it is known that the probability of nding an optimal solution with simulated annealing algorithm is asymptoticaly worse that the same probability for local search 7].

The paper is organized as follows: Section 2 introduces the frequency assignment problem while Section 3 presents the algorithm Section 4 reports on experiments and Section 5 gives conclusions.

The frequency assignment problem

In this section we give precise meaning to our frequency assignment problem for which our algorithm was designed. It is a combinatorial optimization problem in which can be naturally de ned using weighted graphs. We use the usual graph theory terminology, see for example 24].

Throughout the paper we assume that frequencies are taken from a xed subset of natural numbers, F N . T h i s c o vers a usual practical situation where frequency bands are given but there are also some reserved frequencies which m a y not be used. These so called forbidden frequencies may exist due to technological or environmental constraints (government regulation, other radio systems: : : ). Speci c constraints may b e d e n e d o n n e i g h boring pairs of transmitters. In general, a constraint associated with an edge can be any s e t o f forbidden di erences. Usually, frequency separation constraints exist between geographically close transmitters in the service area. In this case we s p e a k of far-site interference and the sets of forbidden di erences are of the form f0 1 : : : w ; 1g.

Another important t ype of constraints is based on co-site interference. Namely, if there are more frequencies needed at the same location, they must be separated at least by co-site di erence, which is usually larger than other.

In general, it is possible to de ne more complicated constraints modelling di erent t ypes of interference which i s d u e t o v arious interference mechanisms such as harmonic constraints, adjacent c hannel constraints, co-site frequency constraints, intermodulation products and spurious emisions and responses. In this paper we will consider only co-site and far-site interference, because these two represent the most important i n terference problems to avoid.

We therefore have a set of locations (transmitters) with given demands and given constraints between pairs of transmitters. This can be modeled as a problem of multicoloring a graph with constraints.

If we regard a location with demand d as d vertices of a graph G, t h e problem reduces to nding one frequency for each v ertex. Edges of G connect pairs of vertices, for which there exists a constraint.

For arbitrary two nodes i and j we call w ij the weight of the edge ij .

A frequency planning function c : F ! V (G) assigns a frequency to every vertex of G. If c is the frequency planning function, every constraint can be written as jc(i) ; c(j )j w ij (1) A frequency planning function c is proper, if it violates no constraint. E (c), the cost of c is the number of constraints c violates.

Clearly E (c) 0 a n d E (c) = 0 if and only if c is proper. The frequency assignment problem studied here is Problem: (MINIMAL COST) FREQUENCY ASSIGNMENT Input: weighted undirected g r aph G and a set F Question: nd an assignment which minimizes the cost E A closely related problem is the problem of minimizing the span, i.e. minimizing the di erence between the largest and the smalest frequency used.

Problem: MINIMAL SPAN Input: weighted undirected g r aph G and a set F Question: nd a proper assignment which minimizes the span Note that these problems are clearly at least as hard as the graph coloring problems. (Just take all weights equal to 1 and F = f1 2 : : : k or F = N.) [START_REF] Allen | Lower Bounding Techniques for Frequency Assignment, sub-mitted to Discrete Mathematics[END_REF] The Algorithm Petford and Welsh proposed a randomized algorithm for 3-coloring which mimics the behavior of a physical process based on multi-particle system of statistical mechanics called the antivoter model 15]. The algorithm starts with a random initial 3-coloring of the input graph and then applies an iterative process. In each iteration a vertex creating a con ict is randomly taken uniformly and recolored according to some probability distribution. This distribution favors colors which are less represented in the neighborhood of the chosen vertex. There is a straightforward generalization of this algorithm to k-coloring, which b e h a ves reasonably good on various types of graphs [START_REF] Youngs | Frequency Assignment for Cellular Radio Networks[END_REF][START_REF] Shawe-Taylor | Boltzmann Machines with Finite Alphabet[END_REF][START_REF] Shawe-Taylor | Adapting temperature for some randomized l o cal search algorithms[END_REF]5].

We use the same main idea, with some natural generalizations. A s e t of colors is replaced by a nite subset of natural numbers corresponding to available frequencies. Simple constraints requesting di erent colors or frequencies at adjacent v ertices are generalized to constraints depending on the edge weights and applying to frequencies assigned to adjacent v ertices.

The frequency assignment algorithm is Algorithm PW(T, T i m e limit) assign available frequencies to nodes of the graph uniformly random while not stopping condition do select a bad vertex v (randomly) assign a new frequency to v end while Bad vertex is selected uniformly random among vertices which are endpoints of some edge which violates a constraint. A new frequency is assigned at random from the set F .

Sampling is done according to the probability distribution de ned as follows:

The probability of frequency i 2 F to be chosen as a new frequency of the vertex v is proportional to exp(;S i =T ) = ;S i where S i is the number of edges with one endpoint a t v and violating the constraint p r o vided frequency of v is set i. T is parameter of the algorithm, called temperature for reasons explained later.

The second parameter of the algorithm is the time limit, given as the maximal number of iterations of the while loop. This is at the same time the number of calls to the function which computes a new frequency and also the number of feasible solutions of the problem generated (some of them may b e counted more than once).

The stopping condition we c hoose is: either a proper assignment w as found or a time limit was reached. In the later case, the best solution found (with fewest constraints violated) is reported as an approximate solution.

In the rest of the section we g i v e some remarks on the parameters of the algorithm.

In the coloring problem, S i is simply the number of neighbors of vertex v colored by i. The original algorithm of Petford and Welsh (for coloring) uses probabilities proportional to 4 ;S i , which corresponds to T = 0 :72 : : : . Larger values of T result in higher probability of accepting a move which increases the number of bad edges. With low v alues of T , the algorithm behaves very much l i k e iterative improvement.

T is a parameter of the algorithm, which m a y be called temperature because of the analogy to the temperature of the simulated annealing algorithm and to the temperature of the Boltzmann machine neural network. This analogies follow from the following simple observation. Let us denote the old color of the current v ertex by i and the new color by j . T h e n umber of bad edges E 0 after the move i s E 0 = E ; S j + S i where E is the number of bad edges before the change. We de ne E = E ; E 0 = S j ; S i . At e a c h step j is xed and hence S j and E are xed.

Consequently, it is equivalent to de ne the probability o f c hoosing color i to be proportional to either exp(;S i =T ), exp( E = T) o r e x p ( E 0 =T ).

Finally, recall that the number of bad edges is a usual de nition of energy function in simulated annealing and Boltzmann machine. Therefore, the algorithm PW is in close relationship to constant temperature operation of the generalized Boltzmann machine (for details, see 17] and the references there). The major di erence is in the ' ring' rule. While in Boltzman machine all neurons are red with equal probability, in PW algorithm only bad vertices are activated. The algorithm PW di ers from constant temperature simulated 'annealing' in the acceptance criteria for the moves improving the cost function. These are always accepted by s i m ulated annealing and only according to some (high) probability in the present algorithm.

Choosing the temperature and the time limit is in general an open problem. However, very simple tuning which is explained in the section on experiments was enough to obtain good results on instances tested.

Problem instances and results

We g i v e results of experiments with various datasets. Where available, we compare our results with the results reported in the literature. This includes two implemantations of simulated annealing, a tabu serach and a genetic algorithm. For some datasets, in lack of other information, we compare results to a similar type algorithm for minimizing the span 22]. The algorithm of 22] uses similar probability distribution for choosing the new frequency, but it starts with a greedy assignment and tries to reduce the span. In the examples, where the optimal span is known, it is possible to compare the results of the algoritm PW with results of 22]. Comparison in terms of the number of steps is fair, because the basic steps of both algorithms are of the same time complexity ( a c hange of a frequency of one vertex, both according to some probability distribution).

Random generated benchmark problems

First dataset is the instances tested in 12], which are available on the internet.

We rst did a simple tuning of the parameter T . With relatively small time limit (set to 1000n iterations, where n is the number of vertices of the graph) we run the algorithm on a medium size instance (410 vertices) at temperatures T = 0 :1 0:2 0:3 0:4. Since the results were promising around T = 0 :2, we c hecked also T = 0 :15 and T = 0 :25. We h a ve no formal argument w h y to start with these temperatures. We know from experiments that T = 0 :72, the original temperature of Petford and Welsh was often too high and that some lower temperatures do better in the case of graph coloring [START_REF] Shawe-Taylor | Boltzmann Machines with Finite Alphabet[END_REF][START_REF] Shawe-Taylor | Analysis of the Mean Field Annealing Algorithm for Graph Colouring[END_REF]. There is at least one seemingly more advanced approach for tuning the temperature. One could check s o m e v alues of T by short runs measuring the ratio between 'up' and 'down' moves. If the temperature is relatively low, the algorithm will behave l i k e iterative improvement and this ratio will be close to 0. On the other hand, if the temperature is too high, the ratio is close to 1. It is therefore possible to get at least some reasonable starting value for T by bisection.

T min max average

Since the temperatures T = 0 :2 a n d T = 0 :25 seemed to be good, we tested the algorithm with these two v alues on the whole available dataset of 12]. Because the results above w ere good we did not increase the time limit. We compare the results to those given in 12] in the following table .   PW,T = 0 :2 PW,T = 0 :25 SA The quality of results of the algorithm PW is comparable or a little lower that that of the simulated annealing algorithm (SA). It is de nitely better that quality of the results obtained by tabu search (TS) and by genetic algorithm (GA).

To make a comparison fair, we h a ve t a k e i n to account the number of assignments tested as reported in 12], which corresponds to the number of iterations in our algorithm. GA explored 2 10 5 assignments for all instances. The numbers of assignments for the other two problems were between 2:7 10 6 and 2:4 10 8 for SA and between 1:3 10 8 and 2:1 10 8 for TS.

For this reason we increased the time limit by 10 (to 10000n) t o l e t t h e algorithm PWA generate about the same number of assignments as SA and TS. It should be recalled that the number of assignments allowed for GA in 12] was lower, but the quality of the results of GA was also much l o wer.

Next table Two remarks are in order here. The number of con gurations visited for some larger instances was in our experiment m uch l o wer than reported in 12]. Second, we wish to say that we u s e d v ery simple tuning of temperature T (and on one graph only). Probably, e v en better performance can be achieved if T is tuned with some more e ort.

7-cluster hexagonal torus

The second example is a uniform 7-cell cluster of 14 14 cells arranged in a doubly periodic array -or torus -where interference extends to the second ring of neighboring cells. The channel assignment task is to equip each cell with two out of fourteen channels. The 7-cluster is a standard test case for regular cell assemblies 6].

10 runs of the algorithm at T = 0 :2 0:3 and 0.4 and time limit set to 392000 iterations gave the following results:

no success at T = 0 :2, 8 out of 10 successes at T = 0 :3 w i t h a verage number of iterations 307738 and no success at T = 0 :4. 10 longer runs gave a verage 241350.90 of 10 successful runs (min= 70285, max= 673334, time limit 3920000 iterations).

For comparison, we recall the results with the algorithm of 22] on the same instance: with temperature T = 0 :3 w e also obtained 10 successes with 156 636 average number of steps (only 2 successes at T = 0 :2 and no success at T = 0 :4).

There is no information on the number of assignments tested by t h e simulated annealing implementation of 6]. It is reported that time used was several hours on T800. In our experiment, the average run (approx. 250.000 iterations) corresponds to approximately 5 minutes of wall clock t i m e o n SPARC 5 w orkstation.

Triangular lattice graphs with random demand

Typical examples which are studied in the context of frequency assignment are triangular lattices with blowups. The demand for the number of calls to be served at the same time is usually not uniform. All constraints are of the form: jc(i) ; c(j )j 1 i f ij 2 E (G). This corresponds to a problem of assigning a set of frequencies to each transmitter, which i s a m ulticoloring problem of the corresponding graph.

The same problem is usually presented in terms of coloring of graphs as follows. Each v ertex, corresponding to a transmitter with demand > 0 i s expanded to a clique, i.e. a complete graph and each v ertex of such a clique is connected to all neighbors of the original vertex. Vertices of demand 0 are deleted. The problem of coloring of the resulting graph is equivalent t o t h e multicoloring problem of the original graph.

In our experiment w e generated the instances as follows:

1. generate a b triangular lattice 2. assign a random number q(v) b e t ween q 1 and q 2 to every vertex. 3. replace each v ertex with v by a q(v) clique.

For graphs generated by the above procedure, it is easy to compute their clique number, i.e. the size of maximal clique. This is because every clique in the resulting graph is emerged from a clique (a triangle or an edge) of the original graph and its size is exactly the sum of q(:)'s of its original vertices.

In the following table we g i v e results on instances used in 22]. Since T = 0 :2 w as good choice there, we took the same value of T here. We compare the number of iterations needed with those needed by the algorithm for minimizing the span of 22] in the following table. (The numbers in parenthesis are the numbers of successful runs. ) It may b e i n teresting to note that for all graphs the number of colors needed was equal to the clique number and hence all the solutions are optimal.

However, it is not easy to nd examples of triangular latice graphs with blowups for which t h e c hromatic number is greater than the clique number. In fact, it can be shown that ! 8d ! 6 e for any triangular lattice graph with blowups, even with arbitrary co-site di erence (see 23] and the references there).

Clique of size 12 with constraints

The last example involves a complete graph of 12 vertices each with demand 3 both frequency separation and forbidden frequencies are added to the graph. The co-site diference is 3 and the di erences on edges are given by the matrix 16]: This problem is far from a coloring problem, since the graph we g e t after expanding the locations is a complete graph on 36 vertices so there are clearly 36 frequencies needed. The di culty l i e s i n o b e y i n g t h e w eights (i.e. the minimal di erences) and forbidden frequencies.

The problem itself seems to be hard in spite of its small size. Hundred runs (with time limit 12000 for each r u n ) a t T = 0 :2 g a ve solutions with one up to 5 violated constraint ( a verage 3.220).

A batch of 10000 runs with the same parameters did not nd any proper assignment. This is worse than the results with the span minimization algorithm, with which 4 optimal assignments were found in 1000 runs (with the same parameters as above) 22].

Concluding remarks

We tested Petford Welsh type randomized algorithm on frequency assignment problem with xed set of available frequencies. The preliminary results are promising.

In this section we rst discuss the problem of tuning the parameters of the algorithms and continue with remarks on of possible (more or less straightforward) generalizations of the present algorithm.

The main di culty in practical application of any randomized heuristics is to tune the algorithm parameters for the data we process. In our case, tuning means choosing the right temperature and the maximum number of iterations of each trial. When applying the Petford Welsh type algorithms to graph coloring problems, it was observed that for di erent t ypes of graphs the performance of the algorithm considerably depends on T 18, 20]. Choosing a good temperature is therefore an interesting open research problem which is not unlike t o t h e w ell known problem of nding a good cooling schedule for the simulated annealing algorithm 14]. Not surprisingly, temperature is also important parameter of the present algorithm. The fact that it is a single real number gives hope that it can in praxis be tuned by not too complicated and time consuming process. Furthermore, our rst experience shows that it can be tuned relatively fast, at least for the types of problem instances had. Therefore, our algorithm seems to be easier to adapt than some other randomized algorithms such as genetic algorithms or simulated annealing.

There are a lot of optimization problems referred to as frequency assignment problems. First, they di er in the level at which they model the interference. Here the simplest example is graph coloring, where all constraints only impose di erent frequencies at adjacent sites. On the other hand, it is in principle possible to design very complicated constraints modelling di erent t ypes of interference which are due to various interference mechanisms such as harmonic constraints, adjacent c hannel constraints, co-site frequency constraints, intermodulation products and spurious emisions and responses. The cost function to optimize can also be de ned in many w ays, the sum of violated constraints used here being only a simple example. In practical problems some constraints are probably more costly if violated than others 25]. In principle, we do not see any problem to adopt the present algorithm to such more general situations.

Furthermore, there is a whole family of problems, where the frequencies have to be assigned to edges of a graph. This is the case when it is known in advance which pairs of users will need a communication link, although such problems may be presented also in a form of a vertex coloring problem 1]. However, we believe that this problems are probably more naturally solved by generalizations of edge coloring methods. This may b e r e w arding since it is well known that edge coloring problems in graph theory are usually easier than the corresponding vertex coloring problems.

  instance n (G) = !(G) PW,T = 0 :2 T = 0 :2 22] (10x10 lattice, demand 1-3) 199 9 1875.77(100) 2015.71(100) (5x5 lattice, demand 20-40) 741 29 13522.26(100) 15558.60(100) (10x10 lattice, demand 5-10) 764 113 26955.08(100) 21372.83(100)

  gives the results of this experiment. (The best solutions known are in boldface.) In the last column we put the best solutions found by t h e FASoft software package 3]. It is claimed that the wall clock time for the experiment reported in 3] was the same as in 12].

	PW,T = 0 :2 min max average min max average PW,T = 0 :25 19 21 19.700 20 21 20.500 282 110 116 113.100 112 119 115.500 n 252 410 343 366 354.300 347 357 315.600 450 147 154 151.100 140 154 145.400 490 607 644 625.800 601 640 616.800 726 1465 1568 1515.000 1463 1527 1497.600	FASoft 12] min 9 114 361 130 580 1466

  Since the underlying graph of this problem is small it is possible to obtain a solution to this problem by a hand drawing and some reasoning. Such a structured solution for example is:

	Vertex index Frequencies 43,62,91 47,66,95 51,70,99 44,63,92 48,67,96 40,59,71 1 2 3 4 5 6 Vertex index 7 8 9 10 11 12 Frequencies 45,64,93 49,68,97 41,60,72 46,65,94 50,69,98 42,61,73	
	0	4	8	1	5	3	2	6	2	3	7	1
	4	0	4	3	1	5	2	2	6	1	3	5
	8	4	0	7	3	1	6	2	2	5	1	3
	1	3	7	0	4	4	1	5	3	2	6	2
	5	1	3	4	0	4	3	1	5	2	2	6
	3	5	1	4	4	0	5	3	1	6	2	2
	2	2	6	1	3	5	0	4	4	1	5	3
	6	2	2	5	1	3	4	0	4	3	1	5
	2	6	2	3	5	1	4	4	0	5	3	1
	3	1	5	2	2	6	1	3	5	0	4	4
	7	3	1	6	2	2	5	1	3	4	0	4
	1	5	3	2	6	2	3	5	1	4	4	0
	The frequency range is: 40 to 99 (40 and 99 inclusive) but the following frequencies are not allowed (for all transmitters):
	52 53 54 55 56 57 58 74 75 76 77 78 79 80 81 82 83 84 85 86 87
	88 89 90