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Abstract

Cole presented a parallel merge sort for the PRAM model that performs
in O�log n� parallel steps using n processors	 He gave an algorithm for the
CREW PRAM model for which the constant in the running time is small	
He also gave a more complex version of the algorithm for the EREWPRAM

the constant factor in the running time is still moderate but not as small	
In this paper we give an approach to implement Cole�s parallel merge sort
on a distributed memory architecture	 Both� the CREW and the EREW
algorithms have been considered	 A data placement algorithm is presented
as well as the associated data movements	 Our proposition sorts n items
using exactly n processors in O�log n� parallel time	 The constant in the
running time is only one greater than the one obtained for the PRAM
model	
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R�esum�e

Cole a pr�esent�e un algorithme de tri de fusion parall
ele pour le mod
ele
de calcul PRAM� qui s�ex�ecute en O�log n� �etapes parall
eles en utilisant
n processeurs	 Dans son article il donne un algorithme pour le mod
ele
CREW PRAM� dans lequel la constante du temps d�ex�ecution est mod�
�er�ee� ainsi qu�une version plus complexe pour le mod
ele EREW PRAM 
 la
constante du temps d�ex�ecution est toujours mod�er�ee mais moins que dans
la version CREW PRAM	 Dans ce rapport nous donnons une approche
pour l�impl�ementation du tri de Cole sur une architecture 
a m�emoire dis�
tribu�ee	 Les deux version� CREW et EREW� de l�algorithme de Cole ont
�et�e consid�er�ees	 Un algorithme de placement de donn�ees est pr�esent�e ainsi
que les mouvements de donn�ees associ�es	 Notre approche permet le tri
de n �el�ements en utilisant n processeurs en temps O�log n�	 La constante
multiplicative du temps d�ex�ecution n�est que l�eg
erement sup�erieure 
a celle
obtenue sur le mod
ele PRAM	

Mots�cl�es� tri de fusion� architecture parall
ele� m�emoire distribu�ee� algorithme par�
all
ele� PRAM� pipe�line	
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� Introduction

Cole presented in ��� a parallel merge sort for the PRAM model that performs in
O�log n� parallel steps using n processors	 In his paper he gave an algorithm for the
CREW PRAMmodel for which the constant in the running time is small	 He also gave
a more complex version of the algorithm for the EREW PRAM
 the constant factor
in the running time is still moderate but not as small	 In this paper we present an
approach to implement both algorithms on a distributed memory architecture without
incrementing signi�cantly the constant factors in the running time	 The data placement
and the communications involved among processors are considered	 This paper is
organized as follows� Sections � and � brie�y describe respectively the CREW and
the EREW algorithms	 Sections � and � give respectively their implementations on a
distributed memory architecture	

� Cole�s Parallel Merge Sort� the CREW algorithm

Cole�s algorithm is described in detail in ���	 It is a tree�based merge sort where the
merges at di�erent levels of the tree are pipelined	 The tree is a complete binary tree
where the elements to sort are initially stored at the leaves of the tree� one element
per leave	 For simplicity� we assume that the number of elements is a power of �	 The
algorithm considers three kinds of nodes� active� inactive and complete nodes	 An
active node can be external or internal	 At the beginning of the algorithm� all leave
nodes are external with the ith leave containing the ith element of the sequence to be
sorted	 All other nodes are inactive	 The goal of every node in the tree is to compute
an ordered list U comprising all elements in the subtree rooted at that node
 in such
a case� the node is said to be external �as for the leave nodes at the beginning of the
algorithm�	 The algorithm of an external node is the following� if a node becomes
external at stage i� then at stage i � �� it will send to its father an ordered subset
of Ui comprising every �th element	 At stage i � � it will send to its father every
�th element of Ui and at stage i � � every element of Ui	 At this moment� the node
becomes a complete node and its father an external node	 An inactive node becomes
active �internal� when it receives for the �rst time a non�empty ordered list from each
of its children	 The algorithm of an internal node is the following� at stage i� the merge
of the lists just received is performed to form the list Ui	 At stage i � � it will send
to its father an ordered subset of Ui comprising every �th element	 An ordered subset
of U is called a cover list of U �see ��� for a formal de�nition of a cover list�	 A node
remains internal until the computed U list contains a sorted sequence of all elements
of the tree rooted at that node	 When a node becomes external at stage i� at stage
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i�� it becomes a complete node and its father an external node	 Therefore� all nodes
of a level l become external nodes at stage i � �l	 As the height of the tree is log n�
the total number of stages performed by the algorithm is � log n	 After � log n stages
the root of the tree will contain an ordered list U comprising all elements of the tree	

Let us call X l
i and Y l

i the two cover lists that are received by a node of level l at stage
number i	 We call U l

i the list resulting from the merge operation of the two ordered
lists X l

i and Y l
i 	 Therefore U

l
i � X l

i � Y l
i � where � is the merge operation	 X l��

i�� and
Y l��
i�� are cover lists of U l

i which are sent from a node at level l up to its father at level
l�� at stage i��	 Fig	 � shows an example of the algorithm for N � �� where N is the
height of the tree	 jZij at level l stands for the size of a X �or a Y � list received from
its left �or right� child	 A node at level l receives two lists �X and Y � and performs
a merge of the two to obtain the list U � where jU j �the number of elements in U� is
obviously the sum of the size of the lists being merged	

From Fig	 �� it is straightforward to show that a node at level l becomes active
�internal� at stage number i � �l � �	 This comes from the fact that a node at level l
sends to its father for the �rst time a cover list of U from the moment that jU j � �	
This happens after two stages the node became active �internal�	 As an example�
consider level � from Fig	 �	 A node at level � becomes active �internal� at stage i � �
when it receives jX�j � � and jY�j � �	 The merge of these two cover lists gives as
a result jU�j � �	 The algorithm for an internal active node is applied so an empty
list is sent up since there is no �th element in U�	 At stage i � ��� a node at level �
receives jX��j � � and jY��j � � to compute jU��j � �	 Next� at stage �� a cover list
of U�� �jZ��j � �� is sent up to level �	 Putting all pieces together� all nodes at level �
become internal active nodes at stage i � �� those of level � at stage i � ��� those of
level � at stage i � ��� etc	� hence the value of i � �l � �	

Even if the stage number �l � � is still valid for the two �rst levels� things are a little
bit di�erent	 We consider the leaves of the tree as being at level �	 At the beginning
of the algorithm �stage i � ��� all leave nodes are external nodes and U� contains the
element initially stored at the leaf	 Applying the algorithm of an external node� at
stage i � � every �th element is sent up to level � �empty list�� at stage i � � every
�th �again an empty list� and it is until stage i � � that every element in the leaves
is sent up to level �	 At this stage� all nodes of level � become active and external�
since they contain all elements of the ��leaf subtrees rooted at each node of level �	
Applying again the algorithm of an external node� at stage i � �� every �th element of
U� is sent up to level � �an empty list�� at stage i � � every �th element of U� is sent
up �jZ�j � �� so all nodes at level � compute jU�j � �� at stage i � � every element of
U� is sent up �jZ�j � �� to compute jU�j � � making all nodes of level � external	 Fig	
� illustrates a complete example for an ��leaf binary tree	



�

d U
l
i

d U
l
i

d U
l��

i��
� X

l��

i��
� Y l��

i��

�
�
�
�
�
��

A
A
A
A
A
AK

X
l��

i��
Y
l��

i��

Z
l
i
is either an Xl

i
or a Y l

i
list�

l � � l � � l � � l � � l � � l � �

jZ�j � �

jZ�j � �

jZ�j � � jU�j � �

jZ�j � �

jZ�j � � jU� j � �

jZ�j � � jU� j � �

jZ� j � � jU� j � �

jZ� j � � jU� j � �

jZ	 j � � jU	 j � 	 jZ	 j � � jU	 j � �

jZ�
 j � � jU�
 j � �

jZ�� j � � jU�� j � 	 jZ��j � � jU��j � �

jZ�� j � 	 jU�� j � �� jZ��j � � jU��j � �

jZ��j � � jU��j � 	 jZ�� j � � jU�� j � �

jZ��j � 	 jU��j � �� jZ�� j � � jU�� j � �

jZ��j � �� jU��j � �� jZ�� j � � jU�� j � 	

jZ�� j � 	 jU�� j � ��

jZ�� j � �� jU�� j � ��

jZ�� j � �� jU�� j � ��

Figure �� Cole�s Parallel Merge Sort� CREW version for N � ��

The key of Cole�s algorithm relies on the merge operation of the two ordered lists�
which is done in O��� parallel time	 We know that the merge of two ordered lists X
and Y of size m each� if we do not have any additional information� requires ��logm�
parallel time with m processors	 Next� we will brie�y describe how Cole�s algorithm
performs the merge operation in constant time	 To do so� we need to present some
de�nitions� taken from ���	

Consider three items e� f and g with e � g	 e and g are said to straddle f if e � f � g	
Let f be an element of a list X and e and g two adjacent elements of a list Y that
straddle f 	 Then� the rank of f in Y is de�ned to be the rank of e in Y �in other words�
the rank of an element f in a list L can be thought as being the number of elements in
L that are smaller or equal to f�	 The notation X � Y means that for each element
of X their ranks in Y are known	 Finally� X � Y �the cross�ranks� means that both
X � Y and Y � X are known	

To perform the merge of Xi�� and Yi�� at nodes of level l� we assume that at stage i of
the algorithm� the following ranks exist �see Fig	 ��	 By the moment� the superscript
of a list variable has been left out to simplify the notation�
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Figure �� Cole�s Parallel Merge Sort for N � ��

Xi � Yi �R���

Xi � Xi�� and Yi � Yi�� �R���

Ui � Xi�� and Ui � Yi�� �R��	

The merge proceeds in two steps� during the �rst one� the merge is performed in con�
stant time by computing the cross�ranks Xi�� � Yi�� �R� in dotted lines from Fig	 ��
and during the second� the ranks Ui�� � Xi�� and Ui�� � Yi�� are maintained �R� in
dotted lines from Fig	 �� to allow the merge of the next stage of the algorithm to be
performed	

Step �	 R� computation	 The rank of an element e from Xi�� in Ui�� is the sum of
the rank of e in Xi�� and the rank of e in Yi��	 Therefore� if we know the cross�ranks
Xi�� � Yi�� the merge Ui�� � Xi�� � Yi�� is performed in constant time	 To compute
R�� we proceed in the following way�

Consider two adjacent elements e and f from Ui	 A set of elements from Xi�� which
are straddle by e and f is formed	 The leftmost element of the set is determined by
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Figure �� Constant time merge performed at nodes of level l of the tree� Ranks compu�
tation�

using the rank of e in Xi�� and the rightmost element by using the rank of f in Xi��	
Symmetrically� a second set of elements in Yi�� is formed �see Fig	 ��	 The size of
each of these sets is at most three �see ��� for properties of a ��cover list�� therefore�
the cross�ranks between these two groups can be computed in constant time requiring
at most � comparisons	 The same thing is done in parallel for every pair of adjacent
elements in Ui	

Step �	 R� computation	 Now� we are interested in computing the ranks Ui�� � Xi��

and Ui�� � Yi�� which will be used to perform the merge in constant time during the
next stage of the algorithm	 First� we will show how the ranks R� and R� in dotted
lines from Fig	 � are deduced from previous ones	 Since both old ranks� Ui � Xi��

and Ui � Yi�� are known� the ranks Ui � Ui�� are also known �the new ranks are
simply the sum of the two previous ones�	 Similarly� at nodes of level l�� we know the
ranks Ui � Ui��� therefore we also know the ranks Xi�� � Xi�� �Xi�� is a cover list
of Ui and Xi�� a cover list of Ui���	 In the same way� we know the ranks Yi�� � Yi��	
Since R� is known� for all elements in Ui�� that came from Yi�� we know their ranks
in Yi��	 It remains to compute the rank in Yi�� of those elements in Ui�� that came
from Xi��	 We proceed in the following way �see Fig	 ���

Consider an element e in Xi��� we know the two elements d and f in Yi�� that straddle
e �using R� computed during step ��	 Next� if the ranks of d and f from Ui�� in Yi��
are r and t respectively �using R��� we can deduce that all elements in Yi�� with rank
less than or equal to r are smaller than e� and those with rank greater than t are greater
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than e	 Then� to compute the rank of e in Yi�� it su�ces to compute its relative order
among the set of elements in Yi�� with rank s� where r � s � t	 Since the maximum
number of elements within this rank interval is at most �� the relative order of e can
be computed in constant time using at most � comparisons	 Symmetrically� we can
compute for elements in Ui�� came from Yi�� their ranks in Xi��	

X i+1 Y i+1

. . . . . . . . . . . .

. . . . . .fe Ui

3 elements maximum 3 elements maximum

R1

Figure �� Merge operation� Forming sets during R� computation�

X i+1 Y i+1

Y i+2

i+1 i+1 i+1U        =  X      U  Y

e. . . . . . . . . . . .fd

d e f. . . . . . . . . . . .

. . . . . .

r t

< e > e3 max

left right

Figure �� Merge operation� R� computation�
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� Implementing the CREW Algorithm on a Dis�

tributed Memory Architecture

��� The Active Window

As shown in Section �� all nodes at level l of the tree become internal nodes at stage
i � �l � � and external nodes at stage i � �l	 We will refer to these values of i as
the start level and the end level respectively	 The values of i that lie in the interval
�start level		end level � represent the number of stages the nodes of a level l perform a
merge operation
 we say that level l is an active level during this interval	 It is easy to
verify that a level l remains active during l stages �the size of the interval�
 therefore�
for higher levels of the tree� several levels might be active at the same stage i	

We will call Wi the active window of the tree at stage i and it is de�ned as the set
of levels that are active at the same stage i of the algorithm	 As the algorithm stage
number progresses�Wi will change and will contain the set of levels given by the formula
below	

Wi � fb�i�� b�i� � �� � � � � e�i�g

where

b�i� � d i

�
e and e�i� � minfN� d i

�
e � �g�

The size of Wi determines the number of active levels of the tree at stage i and it is
easily computed by the following formula	 Notice that jWij equals � for i � �� � and �	

jWij � e�i�� b�i� � ��

Let us de�ne Wi�U� as the set of U l
i lists computed at every level inside Wi	

Wi�U� � fU b�i	
i � U

b�i	��
i � � � � � U

e�i	
i g�

The size of Wi�U�� denoted as jWi�U�j� determines the total number of elements in�
volved in the simultaneous merge operations performed at stage i� and it is given by
the following equation�

jWi�U�j � fjU
b�i	
i j � Nn �b�i�� � jU

b�i	��
i j � Nn �b�i� � �� � � � ��

jU e�i	
i j � Nn �e�i�� g ���
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where Nn �l� � �N�l is the number of nodes at level l	 In order to compute jU l
i j we

consider the following facts� at stage number i � start level� jU l
i j � �
 at stage number

i � end level� jU l
i j � �l �see Section ��	 Therefore jU l

i j � �i�start level ��	 Replacing
jU l

i jby�
i��l in ���� we obtain�

jWi�U�j � f�i��b�i	 � �N�b�i	 � �i���b�i	��	 � �N��b�i	��	 � � � �� �i��e�i	 � �N�e�i	g�

Let Si be equal to jWi�U�j� then

Si �
e�i	X

k
b�i	

�i��k � �N�k

�
�n

�
� �i �

�
�

�b�i	
�

�

�e�i	��

�
� ���

��� Data Placement

����� Initial Data Placement and Resource Constraints

The algorithm sorts n elements using n processors� initially one element per proces�
sor	 In general� we assign one processor to each element of every list inside Wi�U�	
Therefore� the number of processors needed at stage i is given by Si	

Lemme ��� The number of processors needed by the algorithm at stage i is greater
than or equal to n for i mod � � � and less than n for other values of i�

Proof� Let us rewrite ��� as�

Si �
n

�
�A�

n

�
�B ���

where

A �
�i��

��b�i	
and B �

�i��

����e�i	��	
�

To compute the value of A� three cases are considered�

�	 i mod � � �	

b�i� � i

�
� therefore A � ��



�

�	 i mod � � �	

b�i� � i��
�
� therefore A � ��

�	 i mod � � �	

b�i� � i��
�
� therefore A � �	

Recall that level N is an active level whenever �N � � � i � �N 
 therefore� for values
of i inside this interval� e�i� � N 	 For other values of i� e�i� � d i

�
e � �	 So to compute

B� we consider two cases�

�	 for �N � � � i � �N

e�i� � N � therefore B � �i

��N �

�	 for i � �N � �� two sub�cases are considered�

�a� i mod � � �	

e�i� � i

� � �� therefore B � ��

�
i
�
�

�b� i mod � � �	

e�i� � i��
� � �� therefore B � �

�
�

�
i
�
�

It is clear that B is always greater than �	 Hence Si � n� n
�
for i mod � � �� Si �

�
�
�n

for i mod � � � and Si �
�
�
� n for i mod � � �	 We still have to prove that Si � n for

i mod � � �	 Replacing A in ��� we obtain�

Si � n�
n

�
�
n

�
�B� ���

In order to determine the lower bound of Si we have to know the values of i �i mod � �
�� for which B is maximum	 From B computation �rst case� B is maximum when
i takes the greatest possible value	 This value is �N 	 From the second case� B is
maximum when i has the smallest possible value	 This is obviously equal to �� since it
is the smallest value of i that satis�es the initial condition i mod � � �	 Thus� we can
conclude that the maximum possible value of B is �	 Replacing B in ��� we obtain
Si � n� therefore� n � Si � n� n

� 	

So far� we have shown that whenever i mod � � � more processors than the available
will be needed to compute Wi�U�	 For other values of i� the number of processors
required will be smaller than the processors at hand	 We will show in the next section
that this resource constraint will imply an extra parallel step to be performed without
incrementing signi�cantly the time complexity of the algorithm	



��

����� Wi	U
 Data Placement

The data placement for Wi�U� is known if the data placement of each of the U l
i lists

inside Wi�U� is known	 So next� we will show how data of any U l
i list is distributed

among the n processors	 The set of processors is originally arranged as a logical linear
array and each processor is numbered sequentially from � to n� �	

U
l

i
Data Placement

The X and Y lists are composed of the following arguments�

X�i� l� p� s� d�o	set�� Y �i� l� p� s� d��o	set�� where

� i stands for the main algorithm stage number�

� l stands for the level in the tree�

� p stands for the size of the list �number of processors��

� s stands for the data placement step�

� d is the �rst processor from which the step s is applied�

� o	set is used when spreading the data	

The exact de�nition and computation of s� d and o	set will be given in due course	
The notation used so far �X l

i � Y
l
i � is in fact a short form of the previous one	 Z l

i will
refer either to a X l

i list or to a Y l
i list	 At stage i of the algorithm� a node at level l

receives X l
i and Y l

i so the computation of U l
i is performed�

X�i� l� p� s� d� o	set� � Y �i� l� p� s� d�� o	set� � U�i� l� �p� s� d� o	set�

for start level � i � end level	

The size of U l
i is the sum of the size of the two lists involved in the merge operation	

Its s� d and o	set arguments are equal to s� d and o	set in X l
i 	 At stage i��� a cover

list� either a X l��
i�� or a Y l��

i�� list� is formed from U l
i and sent to level l� ��

U�i� l� �p� s� d� o	set�
cover list
�� Z�i� �� l � �� �p

r
� s� d� o	set�



��

for start level � � � i � end level � ��

The size of Z is given by its third argument� which recalls that Z is a cover list
comprising every rth element of U � r equals � for start level � � � i � end level � �
�Z is empty for i � start level � ��
 r equals � for i � end level � � and r equals � for
i � end level � �	 The arguments s� d and o	set are computed from the new values
of i and l	 The computation of the arguments i� l and p have already been presented	
By the moment� we will show how to compute s and d	 The use of o	set and its
computation will be explained later	

To compute s and d� we recall the fact that at each of the �N�l nodes of an active
level l� there is a U l

i list	 We have seen that the number of elements �therefore the
number of processors needed� at level l is given by the product jU l

i j � �N�l	 Since the
data is distributed uniformly among the n processors� dividing n by the last product
we obtain the data placement step�

s �
Total number of processors

Size of U l
i� Number of U l

i lists

s �
n

�i��l � �N�l
� ��l�i�

Now� using the data placement step and the size of a U l
i list� it is easy to determine the

value of the d argument� that is� the processor number which holds the �rst element of
the list� at level l� the �rst U l

i list will start at processor d � �� the second U l
i list at

processor d � s� �p� the third one at processor d � s � �p � s� �p� etc	 In a similar
way� we can see that the �rst X l

i list will start at processor d � �� the �rst Y l
i list will

start at processor d� � s�p� the second X l
i list will start at processor d � s�p� s�p�

the second Y l
i list will start at processor d� � s � p � s � p � s� p� etc	 �see Fig	 ��	

Hence� the arguments d and d� are computed using the formulas below	

d � s� p� �k for � � k � �N�l

d� � s� p� ��k � �� for � � k � �N�l�

What we are looking for is to perform the computation of Wi�U� in one parallel step
using n processors	 It is clear that the data placement used so far for each of the U l

i

lists insideWi�U� results in sharing some processors	 To avoid these processor con�icts
and to achieve maximum parallelism� the lists have to be spread among the available
processors	 Next� we will present the data placement algorithm which satis�es the last
conditions	 The algorithm relies on the o	set argument computation	
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Figure �� d Computation�

Data Placement Algorithm

The data placement algorithm to spread the lists inside Wi�U� among the available
processors is very simple� the U l

i lists of the same level are shifted to the right a
number of processors given by the value of its o	set argument	 This shift is obtained
by incrementing d �d � d � o	set�	 Below� we show the values of the argument o	set
for each of the lists inside Wi�U�	 Two cases are considered�

�	 �i mod �� �� � then

U
b�i	
i o	set � ��

U
b�i	��
i o	set � ��

U
b�i	��
i o	set � ��

U
b�i	��
i o	set � �� etc�

�	 �i mod �� � �

U
b�i	
i o	set � ��



��

Since U b�i	
i is computed using exactly n processors� the next U b�i	��

i � U
b�i	��
i � � � � � U

e�i	
i

computations are performed in an extra parallel step using less than n

�
processors

�see Lemma �	��	 Hence the algorithm resumes in the following way�

U
b�i	��
i o	set � ��

U
b�i	��
i o	set � ��

U
b�i	��
i o	set � ��

U
b�i	��
i o	set � �� etc�

The o	set argument of U l
i is computed by the following function �see Table I��

o�set �U l
i�

�� pos is the rank of U l
i in Wi�U� ��

pos � l � b�i�
if �i mod �� �� �� then

if pos � � then
o�set � �

else
o�set � �� pos� �	

endif
else

if pos � � or pos � � then
o�set � �

else
o�set � �� pos� �	

endif
endif

end

Next we will prove that shifting the lists in this way will not create any con�ict� like
having more than one element assigned to the same processor at the same time� for
a given problem size	 Let W �

i �U� be Wi�U� for i mod � � �� similarly W �
i �U� for

i mod � � � and W �
i �U� for i mod � � �	 The computation of W �

i �U� is performed in

two parallel steps� the �rst one using n processors to compute U b�i	
i and the second

one to compute U b�i	��
i � U

b�i	��
i � � � � � U

e�i	
i using less than �

� � n processors	 W �
i �U� is

computed in one parallel step using less than �
��n processors andW �

i �U� in one parallel



��

U
b�i	
i U

b�i	��
i U

b�i	��
i U

b�i	��
i U

b�i	��
i � � � U

e�i	
i

pos� � � � � � � � � e�i�� b�i�

�i mod �� �� �

o	set� � � � � � � � � � � pos � �

�i mod �� � �

o	set� � � � � � � � � � � pos � �

Table I� Computation of the o	set argument of a U l
i list�

step using less than �
�
� n processors	 Shifting the lists is only done during the second

step of W �
i �U� computation� and during W �

i �U� and W �
i �U� computation	 The set of

processors assigned by the algorithm to compute the second step of W �
i �U� and the

one to compute W �
i �U� are each a subset of the set of processors assigned to compute

W �
i �U�	 Therefore� in order to prove that the data placement algorithm creates no

con�ict� the analysis of W �
i �U� computation su�ces	

Fig	 � depicts the data placement algorithm	 It is easy to verify that� from W �
i �U��

the data placement step s for U b�i	
i � U

b�i	��
i � U

b�i	��
i � etc	 is ��� ��� ��� etc	 respectively	

Their o	set values are �� �� �� etc	 respectively	 Hence� U b�i	
i will be placed every ��

processors starting at processor d � o	set� f�� ����� �������� etc	g making all even

processors taken	 U b�i	��
i will be placed every �� processors starting at processor d �

o	set� f�� ����� �������� etc	g allocating only odd processors	 U b�i	��
i will be placed

every �� processors starting at processor d � o	set� f�� � � ��� � � �� � ��� etc	g al�

locating also odd processors	 P k stands for the set of processor numbers holding U b�i	�k

i 	

Lemme ��� The data placement algorithm generates a set of processor sequences with
no con�ict �i�e� no processors in common between any two sequences
 for a problem
size of log n � ���

Proof� The processor sequences generated by the algorithm forW �
i �U� can be expressed

by the equations below	

P � � � � ���



��

Processor Number

W �
i �U� step s P k � � � � � � � � � � �� �� �� �� �� �� �� �� ��

U
b�i	
i �� P � x x x x x x x x x x

U
b�i	��
i �� P � x x

U
b�i	��
i �� P � x

U
b�i	��
i ��� P � x

U
b�i	��
i ��� P � x

U
b�i	��
i ��� P � x

U
b�i	��
i ��� P � x

U
b�i	��
i ��� P � x

U
b�i	�

i ��� P 
 x

U
b�i	��
i ��
 P � x

Figure �� Data placement algorithm�

P � � � � ���

P � � � � ���

P � � � � ����

P � � � � ����

			

P 
 � �� � ����

for � 	 IN	

As remarked previously� P � allocates all even processors� and P k� for k � ���� allocates
only odd processors	 Hence P � and P k are disjoint	 Next� we still have to prove that



��

P k and P k� are disjoint for any k and k� having k �� k�	 P k can be expressed by the
following equation�

P k � ��k � �� � ��k��� for � 	 IN and k � ����	

For any k and k� so that k �� k�� we will prove that there is no con�ict between P k and
P k� 	 To do so� we only need to prove that the next equation�

��k � �� � ��k��� � ��k� � �� � ��k
����� ���

leads to a contradiction	

Eq	 ��� can be written as follows�

�� �
k � k�

�k�
� ��k�k�

If k � k�

k � k� � � and �k
�
� �� implies that k�k�


k�
�	 IN� therefore �� �	 IN	 Then

Eq	 ��� leads to a contradiction	

If k � k�

�� �
�

�k��k
�
k� � k

�k�

where k� � k � �� � � � � � and k� � �� � � � � �	 If �� 	 IN� there exist two
numbers �� q 	 IN such that�

� � �k
��kq �

k� � k

�k�

that is to say� such that�

�k
�

��� �k
��kq� � k� � k

therefore �� �k
��kq should be fractional� which is not possible	
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Finally� as remarked in Fig	 �� applying P � would generate the �rst processor con�ict�
the �rst processor allocated by P � will con�ict with the second processor assigned by
P �	

P � � �� � ��� � � � ��

P � � � � �� � � � ���

P � is applied when e�i� � b�i� � �	 The value of i that satis�es the previous rela�

tion is i � ��	 Replacing i � �� in U
e�i	
i we obtain a level l � ��� representing a

problem size of at least n � ��� elements ������������ processors�� which is quite im�
practical by the moment	

Let us de�ne argument �List
 as a function returning the argument argument of the

list List	 As already mentioned� U b�i	�k
i will be assigned a set of processors given by

P k	 The following � properties can easily be veri�ed�

�	 A subset of P k is obtained by shifting P k� o	set �U b�i	�k�

i �� o	set �U b�i	�k

i � pro�
cessors to the left� where k � k�	

�	 A superset of P k� is obtained by shifting P k o	set �U
b�i	�k�

i � � o	set �U
b�i	�k

i �
processors to the right� where k � k�	

As it has surely been noticed� shifting the lists implies a data arrangement to be
performed	 The data movements required are explained in the following section	

��� Data Movements

The function Merge with help �U l
i �X

l
i � Y

l
i � U

l
i��� presented in Section �	�� merges the

lists X l
i � Y

l
i with help of U l

i�� in order to compute U l
i �see Section ��	 So in order for

a merge to take place� the following lists have to reside on the same set of processors�
U l��
i�� � from which the cover list Z l

i is formed� and U l
i��	

Two kinds of data movements are needed to guarantee the correct placement of the
lists
 these movements are presented below	
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Positive shift

The �rst data movement required comes from the need of having all elements of U l
i

reside on the same set of processors as the one holding Z l��
i�� 	 As already mentioned�

Z l��
i�� is a cover list of U l

i 	 Then� in order to have U l
i reside on the right place� all

elements of U l
i have to be shifted o	set �Z l��

i����o	set �U l
i � processors to the right	 We

will call this data movement a positive shift	 It is straightforward to verify that there
is a positive shift equal to � when U l

i belongs toW
�
i �U� and whenever i � �l �U b�i	

i from
W �

i �U��
 in such cases� there is not data movement	 For all other cases� the positive
shift has a value greater than �� in which case the data movement is performed only
if the size of U l

i is greater than or equal to �	 The following communication function
performs such a positive shift�


Shift �U l
i �

if �l
 � � N� then
Comm o�set � o�set �Zl��

i��� � o�set �U
l
i�

if �Comm o�set � �� and �p �U l
i � � �� then

Send �

 U l
i 
 Comm o�set�

endif
endif

end

The function Send� sends every element of U l
i to processor P�Comm o	set� where P

is a processor holding an element of U l
i 	 The �rst argument indicates that the send

operation corresponds to a positive shift	

Negative shift

The second data movement operation comes from the need of having U l
i reside on the

same set of processors holding X l
i�� and Y

l
i��� so the mergeMerge with help �U l

i��� X
l
i���

Y l
i��� U

l
i � can take place	 In order to have U l

i reside on the right place� all elements of
U l
i have to be shifted o	set �U l

i �� o	set �Z l
i�i� processors to the left	 We will call this

data movement a negative shift	 It is easy to verify that there is a negative shift to
be performed whenever U l

i belongs to W
�
i �U�� except for i � �l�� �U b�i	

i fromW �
i �U��	

The value of the negative shift in such a case and in all other cases is equal to �� so no
data movement is performed	 The following communication function performs such a
negative shift�



��

�Shift �U l
i �

Comm o�set � o�set �U l
i � � o�set �Z

l
i���	

if �Comm o�set � �� then
Send ��
 U l

i 
 Comm o�set�
endif

end

The �rst argument of the Send function indicates that the send operation corresponds
to a negative shift� so every element of U l

i is sent to processor P�Comm o	set� where
P is a processor holding an element of U l

i 	 As a �nal remark� it is important to
notice that whenever a positive shift takes place� no negative shift may occur� and vice
versa	 Fig	 � at page �� shows the data placement algorithm and the data movements
associated with it	

��� The CREW Algorithm

Below we present the pseudo code for the implementation of the CREW version of
Cole�s parallel merge sort on a distributed memory architecture	 The macroMERGE UP��
is de�ned at the end	 The algorithm performs in � � log n parallel steps	 The data
movements of the algorithm can easily be followed step by step using Fig	 �	

Parallel Merge ��
U�
� � Initial Data	

for �i � �� i � �� logn� i � i
 ��
For every U l

i�� � Wi���U� do in parallel

For l � b�i
 ��
Form the cover list Zl

i�� from U l��
i �every �th element�

MERGE UP �U l
i���


Shift �U l
i���

For l � b�i
 ��
Receive �

 U l��

i �
Form the cover list Zl

i�� from U l��
i �every �th element�

MERGE UP �U l
i���


Shift �U l
i���



��

endparallel

For every U l
i�� � Wi���U� do in parallel

For l � b�i
 ��
Form the cover list Zl

i�� from U l��
i �every �th element�

MERGE UP �U l
i���

For l � b�i
 ��
Receive �

 U l��

i�� �
Form the cover list Zl

i�� from U l��
i�� �every �th element�

MERGE UP �U l
i���

�Shift �U l
i���

endparallel

For every U l
i�� � Wi���U� do in parallel

�� Performed in two parallel steps ��

�� First step� n processors are used ��
For l � b�i
 ��

Form the cover list Zl
i�� from U l��

i �every element�
MERGE UP �U l

i���

�� Second step ��
For l � b�i
 ��

Form the cover list Zl
i�� from U l��

i�� �every �th element�
if jZl

i��j � � then
Receive ��
 U l

i���
endif
MERGE UP �U l

i���

Shift �U l

i���
endparallel

endfor
end

macro MERGE UP �U l
i�

�� Compute ranks U l
i�� � X l

i and U l
i�� � Y l

i ��
Compute R��X l

i 
 Y
l
i 
 U

l
i���

�� Compute U l
i � X l

i � Y
l
i ��

if jZl
ij � � then
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Sort �U l
i 
 X

l
i 
 Y

l
i �

else
Merge with help �U l

i 
 X
l
i 
 Y

l
i 
 U

l
i���

endif

end

The function Sort �U l
i � X

l
i � Y

l
i � performs a two�element sort involving two processors

and leaves the result in U l
i 	 The function Merge with help �U l

i � X
l
i � Y

l
i � U

l
i��� de�ned

below relies on Cole�s algorithm to perform the merge in constant time
 the algorithm
was brie�y described in Section �	 X l

i and Y l
i are two ordered lists and U l

i�� is the
list resulting from the merge performed during the previous stage of the algorithm
�U l

i�� � X l
i�� � Y l

i���	 To perform the merge in constant time� the function assumes
that the ranks U l

i�� � X l
i and U l

i�� � Y l
i have already been computed	 At this point�

some notation has to be de�ned �L below stands for an X� Y or U list��

e� L stands for the rank of an element e in the list L�


�e� L� stands for the value of an element in L whose rank is given by e� L�

e�left stands for the rank of an element d where d � e and d and e belong to

the same list�

e�right stands for the rank of an element f where f � e and f and e belong to

the same list	

The merge reduces to compute the cross�ranksX l
i � Y l

i 	 Recall that there is a processor
Pk assigned to the kth element of a list L	 During the merge operation U l

i � X l
i � Y l

i �
the set of processors holding U l

i is the juxtaposition of the set of processors holding X l
i

and the set of processors holding Y l
i 	 Finally� let Pj be the processor holding the �rst

element of a list L andPl be the processor holding the last element of L	

Merge with help �Ll
i�M

m
i � N

l
i � SL

l
h�

�� Compute Mm
i �N l

i with help of SLl
h	 The result is left in Ll

i	 ��

For every processor Pk holding an element of SLl
h do in parallel
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�� R� COMPUTATION ��

�� Pk forms the interval �e� f� ��
f � element of SLl

h held by Pk

e � element of SLl
h held by Pk��

�� The last statement implies transferring the element held by Pk to Pk��

� if Pk�� exists	
��

�� Remarks �
� Pj will handle the interval ���� f�	
� Pl will handle the intervals �e� f� and �f��� in two consecutive steps	
��

�� Forming sets in Mm
i ��

�� Compute the rank of the leftmost element ��
x left rank � e�Mm

i

if e � 	�e�Mm
i � then

x left rank � x left rank 
 �
endif
�� Compute the rank of the rightmost element ��
x right rank � f �Mm

i

if f � 	�f �Mm
i � then

x right rank � x right rank � �
endif

�� Forming sets in N l
i ��

�� Compute the rank of the leftmost element ��
y left rank � e� N l

i

if e � 	�e� N l
i� then

y left rank � y left rank 
 �
endif
�� Compute the rank of the rightmost element ��
y right rank � f � N l

i

if f � 	�f � N l
i� then

y right rank � y right rank � �
endif

if x left rank � x right rank or y left rank � y right rank then


 g �Mm
i j x left rank � g �Mm

i � x right rank
g � N l

i � e� N l
i



��


 g � N l
i j y left rank � g � N l

i � y right rank
g �Mm

i � e�Mm
i

else
�� Compute the cross�ranks between the set of elements in Mm

i

� and the set of elements in N l
i

��

Compute cross ranks �x left rank� x right rank� y left rank� y right rank�

�� The low�level function Compute cross ranks �xlr� xrr� ylr� yrr�
 whose
� implementation is not shown
 will relate the set of processors holding
� the elements of Mm

i with rank s
 where xlr � s � xrr
 with the set of
� processors holding the elements of N l

i with rank t
 where ylr � t � yrr

� in order to compute the desired cross�ranks	 This can be done in at most
� � comparisons	
��

endif

For every processor Pk holding an element g of Mm
i or N l

i do in parallel

�� COMPUTE THE FINAL RANK ��

g � Ll
i � g� Mm

i 
 g � N l
i

�� STORE DATA NEEDED TO COMPUTE R� ��

Remember whether g is an element from Mm
i or from N l

i 
 next�
if g �Mm

i

g�left � 	�g � N l
i�� Ll

i

g�right � 	�g� N l
i 
 ��� Ll

i

endif

if g � N l
i

g�left � 	�g �Mm
i �� Ll

i

g�right � 	�g�Mm
i 
 ��� Ll

i

endif

�� PERFORM THE MERGE ��

�� This next statement implies transferring the element g to the processor
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� holding the element of Ll
i with rank g � Ll

i	
��

	�g� Ll
i� � g

end

Compute R� �X l
i� Y

l
i � U

l
h�

�� Compute the ranks U l
h � X l

i and U l
h � X l

i 	
� It is assumed that the cross�ranks R� and R� have
� already been deduced as explained in Section �	
��

For every processor Pk holding an element e from U l
h do in parallel

�� Compute for elements in U l
h came from X l

i�� their ranks in Y l
i ��

Compute rank �e� �	e�left�� Y l
i � �	e�right�� Y l

i �

�� Compute for elements in U l
h came from Y l

i�� their ranks in X l
i ��

Compute rank �e� �	e�left�� X l
i � �	e�right�� X l

i�

�� Save the value 	�e� X l
i� �or 	�e� Y l

i ��
� which will be used when computing R�	
��

�� The low�level function Compute rank �e� lr� rr�
 whose
� implementation is not shown
 will relate the processor Pk holding e with
� the set of processors holding the elements from X l

i �or Y
l
i � with

� rank s
 where lr � s � rr
 in order to compute the rank
� e� X l

i �or e� Y l
i �	 This can be done in at most � comparisons	

��
end

The read con�ict appears clearly when computing the rank e � Y l
i �or e � X l

i� in
the last function� the number of elements inside the rank interval �e�left� e�right� is not
bounded	 Let S be the set of elements within this rank interval	 A possible solution
would be to perform a parallel pre�x operation among the processors holding S� where
the elements to be broadcast are those in Y l

i �or X l
i� within the rank interval �r� t� �at

most � elements� see Fig	 � at page ��	 This may increase the parallel time complexity
by a log n factor	 In the next section� a more complex version of the algorithm which
avoids read con�icts is considered	
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Figure �� The data placement algorithm and data movements� The number between
parenthesis corresponds to the o	set assigned by the algorithm�

� Cole�s Parallel Merge Sort� the EREW algorithm

The EREW version of the parallel merge sort algorithm relies on the CREW version
presented in Sections � and �	 Therefore� the analysis given so far is still valid	 A brief
description of the algorithm is presented in this section
 for a complete description the
reader is referred to ���	 In the EREW version� two additional lists are introduced in
order to allow the merge to be performed in constant time and without read con�icts	
First� let us give the following notation� L �node� refers to the list L residing at �or
coming from� node node in the binary tree	 The new lists are Dl

i and SDl
i	 D

l
i�v� is

the list resulting from the merge of Z l��
i �w� and SDl

i�u�� where the former is a cover
list of U l

i���w� and the latter a cover list of Dl��
i���u� �every �th element�	 Node u is the

parent of nodes w and v	 Hence�

Dl
i�v� � X l��

i �w� � SDl
i�u� and

Dl
i�w� � Y l��

i �v� � SDl
i�u��

Dl
i is computed at the same algorithm stage as U l

i 	 It is important to note that the



��

cover list coming from Dl
i is denoted as SDl��

i�� since it is a list to be used at a lower
level of the tree during the next algorithm stage	

A stage of the EREW algorithm is performed in � steps described below	 Each step
will work with a set of lists shown in Fig	 �� where SM and SN are cover lists of M
and N respectively	 The following ranks are assumed to be known from the previous
algorithm stage�

i� SM �M�SN � N�

ii� SM � SN�

iii� SM � N�SN �M�

SL is the list issued from the merge of SM and SN whereas L is the list resulting
from the merge of M and N 	 The function Merge with help �L�M�N� SL� presented
in Section �	� is used to compute the cross�ranks M � N 	 The ranks SL � L are
immediately computed	

M N

SL  =  SM  U  SN

L   =   M   U   N

M N

SM SN

Ranks already known during stage i−1
Ranks computed during stage i

Figure �� EREW algorithm� Ranks computation during a step�

At stage i of the algorithm and at any node v of level l� the following ranks are assumed
to be known from stage i� �	 Node u is the father of nodes v and w and node v is the
father of nodes x and y �see Fig	 �� at page ���	
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a� Z l
i���x�� Z l

i���y��

b� Z l��
i���v�� Z l��

i �v��

c� Z l��
i���v�� SDl

i���u��

d� SDl��
i���v�� SDl��

i �v��

e� Z l��
i �v�� SDl��

i �v��

f� U l
i���v�� SDl��

i �v��

g� Z l��
i �v�� Dl

i���v��

Since Dl
i���v� � Z l��

i���w� � SDl
i���u� and from g� Z l��

i �v� � Dl
i���v� is known� then

the following ranks are deduced�

h� Z l��
i���w�� Z l��

i �v��

i� SDl
i���u�� Z l��

i �v��

Similarly� since U l
i���v� � Z l

i���x��Z
l
i���y� and from f� we know U l

i���v�� SDl��
i �v��

then the ranks below are known�

j� Z l
i���x�� SDl��

i �v�� Z l
i���y�� SDl��

i �v��

Step �	 To perform the merge U l
i �v� � Z l

i�x��Z
l
i�y�� compute the cross�ranks Z l

i�x��
Z l
i�y�	 The ranks shown in Fig	 �� are available	 Note that the ranks h and b in the

�gure are known respectively from h� and b� at any node of level l � �	 This same
step is also performed in the CREW algorithm presented in Section �	 Here� the ranks
labeled with h �R� in the CREW version� have already been computed without read
con�icts during the previous algorithm stage	 sk in the �gures stands for the ranks
computed during step k	 The following ranks are also computed	

U l
i���v�� U l

i �v� and Z l��
i �v�� Z l��

i���v�

Step �	 To perform the merge Dl
i�v� � Z l��

i �w� � SDl
i�u�� compute the cross�ranks

Z l��
i �w� � SDl

i�u�	 Fig	 �� pictures the ranks used to perform the merge	 Note that
the ranks j and d in the �gure are known respectively from j� and d� at any node of
level l � �	 The cross�ranks are computed by means of the function Merge with help
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Figure ��� a
 EREW algorithm� Ranks known at stage i���

�Dl
i�v�� Z

l��
i �w�� SDl

i�u��D
l
i���v��	 The ranks below are also computed	

Dl
i���v�� Dl

i�v� and SDl��
i �v�� SDl��

i���v��

Step �	 Compute the cross�ranks Z l��
i���v�� SDl��

i���v�	 The ranks that are needed are
shown in Fig	 ��	 The rank s��i� in the �gure is deduced in the following way� since
the cross�ranks Z l��

i �v� � Z l��
i �w� have been computed during step � at any node of

level l � � and the cross�ranks Z l��
i �v� � SDl

i�u� have been computed during step ��
then the cross�ranks Z l��

i �v�� Dl
i�v�� can easily be obtained �the rank of an element

e from Z l��
i �v� in Dl

i�v� is simply the sum of e� Z l��
i �w� and e� SDl

i�u��	 Next� as
SDl��

i���v� is a cover list of D
l
i�v�� then the cross�ranks Z l��

i �v�� SDl��
i���v� are known	

Likewise� s��ii� in Fig	 �� can be easily obtained� the cross�ranks SDl��
i �v� � Z l

i�x�
and SDl��

i �v� � Z l
i�y� are known from step � at any node of level l � �	 As above�

SDl��
i �v�� U l

i �v� is easily determined	 Since Z l��
i���v� is a cover list of U

l
i �v�� then the

cross�ranks SDl��
i �v�� Z l��

i���v� are known	

Step �	 Compute the cross�ranks U l
i �v� � SDl��

i���v�	 The ranks needed are shown in
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Figure ��� EREW algorithm� Step ��
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l
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s2

s2
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c l−1

s2

Figure ��� EREW algorithm� Step ��

Fig	 ��a�	

Step 
	 Compute the cross�ranks Z l��
i���v�� Dl

i�v�	 The ranks involved in the compu�
tation are shown in Fig	 ��b�	

� Implementing the EREW Algorithm on a Dis�

tributed Memory Architecture

��� Dl

i
and SDl

i
Data Placement

By making Dl
i reside on the same set of processors holding U l

i � the structure of the
CREW algorithm remains unchanged	 Moreover� the data movements applied to U l

i

are also applied to Dl
i	 SD

l
i is a cover list of D

l��
i�� residing on the same set of processors

holding Dl��
i�� �or U l��

i�� �	 Fig	 �� shows the active window for di�erent values of i and
from level � to level � of an example of the EREW version �N � ��	 There� we can
mainly appreciate the data placement and the size of the new lists	 They contain the
same set of arguments as a U l

i list
 their values are given below	
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Figure ��� EREW algorithm� a
 Ranks used to compute steps �� � and 
� b
 Step ��

First� we start by the size of Dl
i� which is given by the sum of the sizes of the two lists

involved in the merge operation	

jDl
ij � jZ l��

i j� jSDl
ij�

where jSDl
ij �

jDl��
i��j

� � which implies a recurrence to the size of D at the upper level
during the previous algorithm stage	 jDl

ij � � for l � N 	 To replace the recurrence�
the size of Dl

i can be obtained by the formula given below	

jDl
ij �

kX
j
�

�h��j

where h � i� �l � � and k � min�bh
� c� N � �� l�� then

jDl
ij �

�
�� �

n
�h�� � �h��k

o
�

Hence� the following upper bound on the size of Dl
i is obtained�

jDl
ij �

��
�� � jZ l��

i j � �
�� ���

As the value of i progresses� the size of Dl
i increments	 Next� we will prove that for the

maximum possible size of Dl
i� jD

l
ij � jU l

i j	 Recall that we make Dl
i reside on the same

set of processors holding U l
i 	
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 Step �� b
 Step 
�

The size of Dl
i attains its maximumvalue when i is equal to �l��	 This comes from the

fact that the EREW algorithm does not computeDl
i for a value of i equal to �l�� �see

Fig	 ���	 For jU l
i j the maximum value of i is end level
 therefore� in order to guarantee

the correct data placement for Dl
i we need to prove the following relation�

jDl
�l��j � jU l

�lj�

Using Eq	 ��� to determine the maximum value of jDl
�l��j we obtain�

��
�� � �l�� � �

�� � �l

�l����� � �
��
� �l�

The rest of the arguments are known straightforwardly�

s�Dl
i� � s�U l

i ��

s�SDl
i� � s�U l��

i�� ��

d�Dl
i� � d�U l

i ��

d�SDl
i� � d�U l��

i�� ��

o	set�Dl
i� � o	set�U l

i ��

o	set�SDl
i� � o	set�U l��

i�� �	
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l � � l � 	 l � �

jZ��j � � jU��j � �

jZ��j � � jU��j � �

jZ��j � � jU��j � 	 jD�� j � � jZ��j � � jU��j � �

jZ��j � 	 jU��j � �� jD�� j � � jZ��j � � jU��j � �

jZ�	j � �� jU�	j � �� jD�	 j � � jZ�	j � � jU�	j � 	 jD�	 j � � jZ�	 j � � jU�	 j � �

jZ�
j � �� jU�
j � �� jD�
 j � 	 jZ�
j � 	 jU�
j � �� jD�
 j � � jZ�
 j � � jU�
 j � �

jZ��j � �� jU��j � ��	 jD�� j � �� jZ��j � �� jU��j � �� jD�� j � � jZ�� j � � jU�� j � 	

jD�� j � �� � � jSD��j � � jZ��j � �� jU��j � �� jD�� j � 	 jZ�� j � 	 jU�� j � ��

jD�� j � �� � � jSD��j � � jZ��j � �� jU��j � ��	 jD�� j � �� jZ�� j � �� jU�� j � ��

jSD��j � � jZ��j � ��	 jU��j � ��� jD�� j � �� � � jSD�� j � � jZ�� j � �� jU�� j � ��

jSD��j � 	 jD�� j � �� � � jSD�� j � � jZ�� j � �� jU�� j � ��	

jSD��j � �� jD�� j � ��	 � � jSD�� j � � jZ�� j � ��	 jU�� j � ���

jSD��j � �� jSD�� j � 	 jZ�� j � ��� jU�� j � ���
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jSD�	 j � ��

jSD�
 j � ��

Figure ��� Cole�s Parallel Merge Sort� EREW version for N � ��

��� The EREW Algorithm

Below we present the pseudo code for the distributed memory implementation of
the EREW version of Cole�s parallel merge sort	 The macros MERGE UP�� and
MERGE DOWN�� are de�ned at the end	 The function Merge with help�� has been
de�ned in Section �	� �the code related to R� computation should be omitted�	 The
algorithm performs in �� log n parallel steps using exactly n processors	

Parallel Merge ��
U�
� � Initial Data	

for �i � �� i � �� logn� i � i
 ��
for �j � �� j � �� j � j 
 ��

For every U l
i�j � Wi�j�U� do in parallel

For l � b�i
 j�
Form the cover list Zl

i�j from U l��
i �every b�

j
cth element�

Step �� Step �� Step �
Step �
MERGE UP �U l

i�j�
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if �j �� �� then
Step 	
MERGE DOWN �Dl��

i�j�
if �j � �� then


Shift �U l
i�j�


Shift �Dl
i�j�

endif
endif

For l � b�i
 j�
if �j �� �� then

Receive �

 U l��
i�j���

Receive �

 Dl��
i�j���

Form the cover list Zl
i�j from U l��

i�j�� �every �th element�
else

Form the cover list Zl
i�j from U l��

i�j�� �every �th element�
if jZl

i�jj � � then
Receive ��
 U l

i�j���
endif
if jZl

i�jj � �� then
Receive ��
 Dl

i�j���
endif

endif
Step �� Step �� Step �
Step �
MERGE UP �U l

i�j�
Step 	
MERGE DOWN �Dl��

i�j�
if �j �� �� then


Shift �U l
i�j�


Shift �Dl
i�j�

else
�Shift �U l

i�j�
if �jU l

i�jj � ��� then
�Shift �Dl

i�j�
endif

endif
endparallel

endfor
endfor

end
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macro MERGE UP �U l
i�

�� Compute U l
i � X l

i � Y
l
i ��

if jZl
ij � � then
Sort �U l

i 
 X
l
i 
 Y

l
i �

else
Merge with help �U l

i 
 X
l
i 
 Y

l
i 
 U

l
i���

endif
end

macro MERGE DOWN �Dl
i�

�� Compute Dl
i � Zl��

i � SDl
i ��

if jZl��
i j � �� then
Merge with help �Dl

i
 Z
l��
i 
 SDl

i
 D
l
i���

�� Remark� The result of the merge operation is transferred
� to the set of processors holding Dl

i	 At the same time

� Dl��

i is received from the upper level	
��

else
Dl

i � Zl��
i

endif

end

� Conclusions

We gave a proposition to implement Cole�s parallel merge sort on a distributed memory
architecture	 Both� the CREW and the EREW algorithms have been considered	 A
data placement algorithm has been presented as well as the associated data movements	
Our proposition sorts n items using exactly n processors in O�log n� parallel time	 The
constant in the running time is only one greater than the one obtained for the PRAM
model	

We envisage to consider the case where n � p� n being the number of elements to sort
and p the number of processors employed	 A �rst approach would be to consider that
each of the p processors contains n�p virtual processors� and then to apply the actual
algorithm taking into account that some data exchange will correspond to internal



��

read�write operations	 A second approach consists in optimizing the previous one by
sorting the elements locally at each processor using the best known sequential sort�
next considering the n�p elements in a processor as a �data unit� and �nally applying
the actual algorithm using p processors and p �data units�	
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