Jean-Marc Adamo
email: adamo@icsi.berkeley.edu

Luis A Trejo
email: trejo@lip.ens-lyon.fr

Parallel Merge Sort for Distributed Memory Architectures

Keywords: parallel merge sort, parallel architecture, distributed memory, parallel algorithm, PRAM, pipe-line tri de fusion, architecture parall ele, m emoire distribu ee, algorithme parall ele, PRAM, pipe-line. i Merge operation. R4 computation. : : d Computation 12 Data placement algorithm 26 a) EREW algorithm. Ranks known at stage i-1 28 EREW algorithm. Step 1

Cole presented a parallel merge sort for the PRAM model that performs in O(log n) parallel steps using n processors. He gave an algorithm for the CREW PRAM model for which the constant in the running time is small. He also gave a more complex version of the algorithm for the EREW PRAM the constant factor in the running time is still moderate but not as small. In this paper we g i v e an approach to implement Cole's parallel merge sort on a distributed memory architecture. Both, the CREW and the EREW algorithms have been considered. A data placement algorithm is presented as well as the associated data movements. Our proposition sorts n items using exactly n processors in O(log n) parallel time. The constant in the running time is only one greater than the one obtained for the PRAM model.

Cole presented in 7] a parallel merge sort for the PRAM model that performs in O(log n) parallel steps using n processors. In his paper he gave an algorithm for the CREW PRAM model for which the constant in the running time is small. He also gave a more complex version of the algorithm for the EREW PRAM the constant factor in the running time is still moderate but not as small. In this paper we present a n approach t o i m p l e m ent both algorithms on a distributed memory architecture without incrementing signi cantly the constant factors in the running time. The data placement and the communications involved among processors are considered. This paper is organized as follows: Sections 2 and 4 brie y describe respectively the CREW and the EREW algorithms. Sections 3 and 5 give respectively their implementations on a distributed memory architecture.

2 Cole's Parallel Merge Sort: the CREW algorithm

Cole's algorithm is described in detail in 7]. It is a tree-based merge sort where the merges at di erent levels of the tree are pipelined. The tree is a complete binary tree where the elements to sort are initially stored at the leaves of the tree, one element per leave. For simplicity, w e assume that the number of elements is a power of 2. The algorithm considers three kinds of nodes: active, inactive and complete nodes. An active node can be external or internal. At the beginning of the algorithm, all leave nodes are external with the ith leave containing the ith element of the sequence to be sorted. All other nodes are inactive. The goal of every node in the tree is to compute an ordered list U comprising all elements in the subtree rooted at that node in such a case, the node is said to be external (as for the leave nodes at the beginning of the algorithm). The algorithm of an external node is the following: if a node becomes external at stage i, then at stage i + 1, it will send to its father an ordered subset of U i comprising every 4th element. At stage i + 2 it will send to its father every 2th element o f U i and at stage i + 3 e v ery element o f U i . A t this moment, the node becomes a complete node and its father an external node. An inactive node becomes active (internal) when it receives for the rst time a non-empty ordered list from each of its children. The algorithm of an internal node is the following: at stage i, the merge of the lists just received is performed to form the list U i . A t s t a g e i + 1 it will send to its father an ordered subset of U i comprising every 4th element. An ordered subset of U is called a cover list of U (see 7] for a formal de nition of a cover list). A node remains internal until the computed U list contains a sorted sequence of all elements of the tree rooted at that node. When a node becomes external at stage i, at stage i + 3 it becomes a complete node and its father an external node. Therefore, all nodes of a level l become external nodes at stage i = 3 l. As the height of the tree is log n, the total number of stages performed by the algorithm is 3 log n. After 3 log n stages the root of the tree will contain an ordered list U comprising all elements of the tree. Let us call X l i and Y l i the two c o ver lists that are received by a node of level l at stage number i. W e c a l l U l i the list resulting from the merge operation of the two ordered lists X l i and Y l i . Therefore U l i = X l i Y l i , where is the merge operation. X l+1 i+1 and Y l+1 i+1 are cover lists of U l i which are sent from a node at level l up to its father at level l+1 at stage i+1. Fig. 1 shows an example of the algorithm for N = 6, where N is the height of the tree. jZ i j at level l stands for the size of a X (or a Y) list received from its left (or right) child. A node at level l receives two lists (X and Y) and performs a merge of the two to obtain the list U, where jUj (the number of elements in U) i s obviously the sum of the size of the lists being merged. From Fig. 1, it is straightforward to show that a node at level l becomes active (internal) at stage number i = 2 l + 1. This comes from the fact that a node at level l sends to its father for the rst time a cover list of U from the moment that jUj 4. This happens after two stages the node became active (i n ternal). As an example, consider level 4 from Fig. 1. A node at level 4 becomes active (i n ternal) at stage i = 9 when it receives jX 9 j = 1 and jY 9 j = 1. The merge of these two c o ver lists gives as a result jU 9 j = 2. The algorithm for an internal active node is applied so an empty list is sent up since there is no 4th element i n U 9 . A t stage i = 1 0 , a n o d e a t l e v el 4 receives jX 10 j = 2 a n d jY 10 j = 2 to compute jU 10 j = 4. Next, at stage 11 a cover list of U 10 (jZ 11 j = 1) i s s e n t u p t o l e v el 5. Putting all pieces together, all nodes at level 4 become internal active nodes at stage i = 9, those of level 5 at stage i = 11, those of level 6 at stage i = 13, etc., hence the value of i = 2 l + 1 . Even if the stage number 2l + 1 is still valid for the two rst levels, things are a little bit di erent. We consider the leaves of the tree as being at level 0. At the beginning of the algorithm (stage i = 0), all leave nodes are external nodes and U 0 contains the element initially stored at the leaf. Applying the algorithm of an external node, at stage i = 1 e v ery 4th element is sent u p t o l e v el 1 (empty list), at stage i = 2 e v ery 2th (again an empty list) and it is until stage i = 3 that every element in the leaves is sent u p t o l e v el 1. At this stage, all nodes of level 1 become active and external, since they contain all elements of the 2-leaf subtrees rooted at each n o d e o f l e v el 1. Applying again the algorithm of an external node, at stage i = 4 , e v ery 4th element o f U 3 is sent up to level 2 (an empty list), at stage i = 5 e v ery 2th element o f U 3 is sent up (jZ 5 j = 1) so all nodes at level 2 compute jU 5 j = 2, at stage i = 6 e v ery element o f U 3 is sent u p (jZ 6 j = 2) to compute jU 6 j = 4 making all nodes of level 2 external. Fig. 2 illustrates a complete example for an 8-leaf binary tree.

d U l i d U l i d U l+1 i+1 = X l+1 i+1 Y l+1 i+1 A A A A A A K X l+1 i+1 Y l+1 i+1 Z l i is either an X l i or a Y l i list. l = 1 l = 2 l = 3 l = 4 l = 5 l = 6
jZ 1 j = 0 jZ 2 j = 0 jZ 3 j = 1 jU 3 j = 2 jZ 4 j = 0 jZ 5 j = 1 jU 5 j = 2 jZ 6 j = 2 jU 6 j = 4 jZ 7 j = 1 jU 7 j = 2 jZ 8 j = 2 jU 8 j = 4 jZ 9 j = 4 jU 9 j = 8 jZ 9 j = 1jU 9 j = 2 jZ 10 j = 2 jU 10 j = 4 jZ 11 j = 4 jU 11 j = 8jZ 11 j = 1jU 11 j = 2 jZ 12 j = 8 jU 12 j = 1 6 jZ 12 j = 2jU 12 j = 4 jZ 13 j = 4jU 13 j = 8jZ 13 j = 1jU 13 j = 2 jZ 14 j = 8jU 14 j = 1 6 jZ 14 j = 2jU 14 j = 4 jZ 15 j = 1 6 jU 15 j = 3 2 jZ 15 j = 4jU 15 j = 8 jZ 16 j = 8jU 16 j = 1 6 jZ 17 j = 1 6 jU 17 j = 3 2 jZ 18 j = 3 2 jU 18 j = 6 4 The key of Cole's algorithm relies on the merge operation of the two ordered lists, which i s d o n e i n O(1) parallel time. We k n o w that the merge of two ordered lists X and Y of size m each, if we d o n o t h a ve a n y additional information, requires (log m) parallel time with m processors. Next, we will brie y describe how Cole's algorithm performs the merge operation in constant time. To do so, we need to present some de nitions, taken from 7]. Consider three items e, f and g with e < g . e and g are said to straddle f if e f < g . Let f be an element of a list X and e and g two adjacent elements of a list Y that straddle f. Then, the rank of f in Y is de ned to be the rank of e in Y (in other words, the rank of an element f in a list L can be thought as being the number of elements in L that are smaller or equal to f). The notation X ! Y means that for each element of X their ranks in Y are known. Finally, X $ Y (the cross-ranks) means that both X ! Y and Y ! X are known.

To perform the merge of X i+1 and Y i+1 at nodes of level l, w e assume that at stage i of the algorithm, the following ranks exist (see Fig. 3). By the moment, the superscript of a list variable has been left out to simplify the notation: X i $ Y i (R1), X i ! X i+1 and Y i ! Y i+1 (R3), U i ! X i+1 and U i ! Y i+1 (R4).

Y = [4, 12] X = [0, 2] Y = [20, 24] 0 0 0 0 0 0 0 U = [8] U = [16] U = [20] U = [24] 0 U = [12] U = [4] 3 X = [16] U = [2] U = [0] 3 Y = [8] 3 X = [20] 3 Y = [24] 3 X = [2] 3 Y = [0] 3 X = [12] 3 Y = [4] U = [8, 16] 3 3 3 U = [20, 24] U = [0, 2] 3 U = [4, 12] X = [16] 5 5 Y = [24] 5 X = [2] 5 Y = [12] X = [8,
The merge proceeds in two steps: during the rst one, the merge is performed in constant time by computing the cross-ranks X i+1 $ Y i+1 (R1 in dotted lines from Fig. 3) and during the second, the ranks U i+1 ! X i+2 and U i+1 ! Y i+2 are maintained (R4 in dotted lines from Fig. 3) to allow the merge of the next stage of the algorithm to be performed.

Step 1. R1 computation. The rank of an element e from X i+1 in U i+1 is the sum of the rank of e in X i+1 and the rank of e in Y i+1 . Therefore, if we know the cross-ranks X i+1 $ Y i+1 the merge U i+1 = X i+1 Y i+1 is performed in constant time. To compute R1, we proceed in the following way: Consider two adjacent e l e m e n ts e and f from U i . A set of elements from X i+1 which are straddle by e and f is formed. The leftmost element of the set is determined by using the rank of e in X i+1 and the rightmost element b y using the rank of f in X i+1 . Symmetrically, a second set of elements in Y i+1 is formed (see Fig. 4). The size of each of these sets is at most three (see 7] for properties of a 3-cover list), therefore, the cross-ranks between these two groups can be computed in constant time requiring at most 5 comparisons. The same thing is done in parallel for every pair of adjacent elements in U i .

i+1 i+1 i+1 X X X Y Y Y i i+1 i+2 i i+1 i+2 U = X U Y i i i R3 R3 R3 R3 R1 R1 R4 R4 R4
Step 2. R4 computation. Now, we are interested in computing the ranks U i+1 ! X i+2 and U i+1 ! Y i+2 which will be used to perform the merge in constant time during the next stage of the algorithm. First, we w i l l s h o w h o w the ranks R2 and R3 in dotted lines from Fig. 3 are deduced from previous ones. Since both old ranks, U i ! X i+1 and U i ! Y i+1 are known, the ranks U i ! U i+1 are also known (the new ranks are simply the sum of the two previous ones). Similarly, at nodes of level l;1 w e k n o w the ranks U i ! U i+1 , therefore we also know the ranks X i+1 ! X i+2 (X i+1 is a cover list of U i and X i+2 a c o ver list of U i+1). In the same way, w e k n o w the ranks Y i+1 ! Y i+2 . Since R3 is known, for all elements in U i+1 that came from Y i+1 we k n o w their ranks in Y i+2 . It remains to compute the rank in Y i+2 of those elements in U i+1 that came from X i+1 . W e proceed in the following way (see Fig. 5): Consider an element e in X i+1 , w e know the two elements d and f in Y i+1 that straddle e (using R1 computed during step 1). Next, if the ranks of d and f from U i+1 in Y i+2 are r and t respectively (using R3), we can deduce that all elements in Y i+2 with rank less than or equal to r are smaller than e, and those with rank greater than t are greater than e. Then, to compute the rank of e in Y i+2 it su ces to compute its relative o r d e r among the set of elements in Y i+2 with rank s, where r < s t. Since the maximum number of elements within this rank interval is at most 3, the relative order of e can be computed in constant time using at most 2 comparisons. Symmetrically, w e can compute for elements in U i+1 came from Y i+1 their ranks in X i+2 . 3 Implementing the CREW Algorithm on a Distributed Memory Architecture

The Active W i n d o w

As shown in Section 2, all nodes at level l of the tree become internal nodes at stage i = 2 l + 1 and external nodes at stage i = 3 l. We will refer to these values of i as the start level and the end level respectively. T h e v alues of i that lie in the interval start level..end level] represent the number of stages the nodes of a level l perform a merge operation we s a y that level l is an active level during this interval. It is easy to verify that a level l remains active d u r i n g l stages (the size of the interval) therefore, for higher levels of the tree, several levels might b e a c t i v e at the same stage i.

We will call W i the active w i n d o w of the tree at stage i and it is de ned as the set of levels that are active at the same stage i of the algorithm. As the algorithm stage number progresses, W i will change and will contain the set of levels given by the formula below.

W i = fb(i) b (i) + 1 : : : e (i)g where b(i) = d i 3 e and e(i) = minfN d i 2 e ; 1g: The size of W i determines the number of active l e v els of the tree at stage i and it is easily computed by the following formula. Notice that jW i j equals 0 for i = 1 , 2 a n d 4 .

jW i j = e(i) ; b(i) + 1 : Let us de ne W i (U) as the set of U l i lists computed at every level inside W i .

W i (U) = fU b(i) i U b(i)+1 i : : : U e(i) i g:
The size of W i (U), denoted as jW i (U)j, determines the total number of elements involved in the simultaneous merge operations performed at stage i, and it is given by the following equation:

jW i (U)j = fjU b(i) i j Nn (b(i)) + jU b(i)+1 i j Nn (b(i) + 1)+ : : : + jU e(i) i j Nn (e(i)) g (1)
where Nn (l) = 2 N ;l is the number of nodes at level l. In order to compute jU l i j we consider the following facts: at stage number i = start level, jU l i j = 2 at stage number i = end level, jU l i j = 2 l (see Section 2). Therefore jU l i j = 2 i;start level +1 . Replacing jU l i jby2 i;2l in (1), we obtain:

jW i (U)j = f2 i;2b(i) 2 N ;b(i) + 2 i;2(b(i)+1) 2 N ;(b(i)+1
) + : : : + 2 i;2e(i) 2 N ;e(i) g: Let S i be equal to jW i (U)j, t h e n

S i = e(i) X k=b(i) 2 i;2k 2 N ;k = 8n 7 2 i 1 8 b(i) ; 1 8 e(i)+1 : (2)
3.2 Data Placement

Initial Data Placement and Resource Constraints

The algorithm sorts n elements using n processors, initially one element per processor. In general, we assign one processor to each element o f e v ery list inside W i (U). Therefore, the number of processors needed at stage i is given by S i .

Lemme 3.1 The number of processors needed by the algorithm at stage i is greater than or equal to n for i mod 3 = 0 and less than n for other values of i.

Proof. Let us rewrite (2) as:

S i = n 7 A ; n 7 B (3) where A = 2 i+3
2 3b(i) and B = 2 i+3 2 3 (e(i)+1) : To compute the value of A, three cases are considered:

1. i mod 3 = 0. b(i) = i 3 , therefore A = 8 , 2. i mod 3 = 1. b(i) = i+2 3 , therefore A = 2 , 3. i mod 3 = 2. b(i) = i+1 3 , therefore A = 4 .
Recall that level N is an active l e v el whenever 2N + 1 i 3N therefore, for values of i inside this interval, e(i) = N. F or other values of i, e(i) = d i 2 e ; 1. So to compute B, w e consider two cases:

1. for 2N + 1 i 3N e(i) = N, therefore B = 2 i 2 3N
2. for i < 2N + 1 , t wo sub-cases are considered:

(a) i m o d 2 = 0 . e(i) = i 2 ; 1, therefore B = 2 3 2 i 2 (b) i m o d 2 = 1 . e(i) = i+1 2 ; 1, therefore B = 2 3 2 2 i
2 : It is clear that B is always greater than 0. Hence S i < n + n 7 for i mod 3 = 0, S i < 2 7 n for i mod 3 = 1 and S i < [START_REF] Blelloch | Scans as Primitive P arallel Operations[END_REF] 7 n for i mod 3 = 2. We still have t o p r o ve t h a t S i n for i m o d 3 = 0 . Replacing A in (3) we obtain: S i = n + n 7 ; n 7 B: (4) In order to determine the lower bound of S i we h a ve to know the values of i (i mod 3 = 0) for which B is maximum. From B computation rst case, B is maximum when i takes the greatest possible value. This value is 3N. From the second case, B is maximum when i has the smallest possible value. This is obviously equal to 3, since it is the smallest value of i that satis es the initial condition i mod 3 = 0. Thus, we can conclude that the maximum possible value of B is 1. Replacing B in (4) we o b t a i n S i = n, therefore, n S i < n + n 7 .

So far, we h a ve s h o wn that whenever i mod 3 = 0 more processors than the available will be needed to compute W i (U). For other values of i, t h e n umber of processors required will be smaller than the processors at hand. We will show in the next section that this resource constraint will imply an extra parallel step to be performed without incrementing signi cantly the time complexity of the algorithm.

W i (U) Data Placement

The data placement f o r W i (U) is known if the data placement o f e a c h o f t h e U l i lists inside W i (U) is known. So next, we w i l l s h o w h o w d a t a o f a n y U l i list is distributed among the n processors. The set of processors is originally arranged as a logical linear array and each processor is numbered sequentially from 0 to n ; 1.

U l i Data Placement

The X and Y lists are composed of the following arguments: X(i l p s d o set), Y (i l p s d 0 o set), where i stands for the main algorithm stage number, l stands for the level in the tree, p stands for the size of the list (number of processors), s stands for the data placement step, d is the rst processor from which the step s is applied, o set is used when spreading the data.

The exact de nition and computation of s, d and o set will be given in due course. The notation used so far (X l i Y l i) is in fact a short form of the previous one. Z l i will refer either to a X l i list or to a Y l i list. At stage i of the algorithm, a node at level l receives X l i and Y l i so the computation of U l i is performed:

X(i l p s d o set) Y (i l p s d 0 o set) = U(i l 2p s d o set)
for start level i end level. The size of U l i is the sum of the size of the two lists involved in the merge operation. Its s, d and o set arguments are equal to s, d and o set in X l i . A t stage i + 1 , a c o ver list, either a X l+1 i+1 or a Y l+1 i+1 list, is formed from U l i and sent t o l e v el l + 1 : U(i l 2p s d o set) cover list ;! Z(i + 1 l+ 1 2p r s d o set) for start level + 1 i end level + 3 : The size of Z is given by its third argument, which recalls that Z is a cover list comprising every rth element o f U: r equals 4 for start level + 1 i end level + 1 (Z is empty f o r i = start level + 1) r equals 2 for i = end level + 2 a n d r equals 1 for i = end level + 3. The arguments s d and o set are computed from the new values of i and l. The computation of the arguments i, l and p have already been presented. By the moment, we will show h o w to compute s and d. The use of o set and its computation will be explained later. To compute s and d, w e recall the fact that at each of the 2 N ;l nodes of an active level l, there is a U l i list. We h a ve seen that the number of elements (therefore the number of processors needed) at level l is given by the product jU l i j 2 N ;l . Since the data is distributed uniformly among the n processors, dividing n by the last product we obtain the data placement step: s = Total number of processors Size of U l i Number of U l i lists s = n 2 i;2l 2 N ;l = 2 3l;i : Now, using the data placement step and the size of a U l i list, it is easy to determine the value of the d argument, that is, the processor number which holds the rst element o f the list: at level l, the rst U l i list will start at processor d = 0, the second U l i list at processor d = s 2p, the third one at processor d = s 2p + s 2p, etc. In a similar way, w e can see that the rst X l i list will start at processor d = 0, the rst Y l i list will start at processor d 0 = s p, the second X l i list will start at processor d = s p+s p, the second Y l i list will start at processor d 0 = s p + s p + s p, etc. (see Fig. 6). Hence, the arguments d and d 0 are computed using the formulas below. d = s p 2k for 0 k < 2 N ;l d 0 = s p (2k + 1) for 0 k < 2 N ;l : What we are looking for is to perform the computation of W i (U) in one parallel step using n processors. It is clear that the data placement used so far for each o f t h e U l i lists inside W i (U) results in sharing some processors. To a void these processor con icts and to achieve maximum parallelism, the lists have to be spread among the available processors. Next, we will present the data placement algorithm which satis es the last conditions. The algorithm relies on the o set argument computation.

U N i l = N Tree root X N i | {z } s p Y N i | {z }
s p P P P P P P P q) U N;1 i;1

U N;1 i;1 l = N ; 1 X N;1 i;1 | {z } s p Y N;1 i;1 | {z } s p ? ? X N;1 i;1 | {z } s p Y N;1 i;1 | {z }
s p @ @ @ R ; ; ; @ @ @ R ; ; ;

Data Placement Algorithm

The data placement algorithm to spread the lists inside W i (U) among the available processors is very simple: the U l i lists of the same level are shifted to the right a number of processors given by t h e v alue of its o set argument. This shift is obtained by incrementing d (d = d + o set). Below, we s h o w the values of the argument o set for each of the lists inside W i (U). Two cases are considered:

1. (i mod 3) 6 = 0 then U b(i) i o set = 0 U b(i)+1 i o set = 1 U b(i)+2 i o set = 3 U b(i)+3 i o set = 5 e t c : 2. (i m o d 3) = 0 U b(i) i o set = 0 Since U b(i) i is computed using exactly n processors, the next U b(i)+1 i U b(i)+2 i : : : U e(i) i
computations are performed in an extra parallel step using less than n 7 processors (see Lemma 3.1). Hence the algorithm resumes in the following way: U Next we will prove that shifting the lists in this way will not create any con ict, like having more than one element assigned to the same processor at the same time, for a given problem size. Let W 0 i (U) b e W i (U) for i mod 3 = 0, similarly W 1 i (U) for i mod 3 = 1 and W 2 i (U) for i mod 3 = 2. The computation of W 0 i (U) is performed in two parallel steps: the rst one using n processors to compute U b(i) i and the second one to compute U b(i)+1 i U b(i)+2 i : : : U e(i) i using less than 1 7 n processors. W 1 i (U) i s computed in one parallel step using less than 2 7 n processors and W 2 i (U) in one parallel Table I: Computation of the o set argument of a U l i list. step using less than [START_REF] Blelloch | Scans as Primitive P arallel Operations[END_REF] 7 n processors. Shifting the lists is only done during the second step of W 0 i (U) computation, and during W 1 i (U) and W 2 i (U) computation. The set of processors assigned by the algorithm to compute the second step of W 0 i (U) and the one to compute W 1 i (U) are each a subset of the set of processors assigned to compute W 2 i (U). Therefore, in order to prove that the data placement algorithm creates no con ict, the analysis of W 2 i (U) computation su ces. Fig. 7 depicts the data placement algorithm. It is easy to verify that, from W 2 i (U), the data placement step s for U b

b(i)+1 i o set = 0 U b(i)+2 i o set = 1 U b(i)+3 i o set = 3 U b(i)+4
U b(i) i U b(i)+1 i U b(i)+2 i U b(i)+3 i U b(i)+4
(i) i U b(i)+1 i U b(i)+2
i , e t c . i s 2 1 2 4 2 7 etc. respectively. Their o set values are 0, 1, 3, etc. respectively. Hence, U b(i) i will be placed every 2 1 processors starting at processor d + o set: f0 0 + 2 1 0 + 2 1 + 2 1 , etc.g making all even processors taken. U b(i)+1 i will be placed every 2 [START_REF] Blelloch | Scans as Primitive P arallel Operations[END_REF] processors starting at processor d + o set: f1 1+2 4 1+2 4 +2 4 , e t c . g allocating only odd processors. U b(i)+2 i will be placed every 2 [START_REF] Blelloch | A Comparison of Sorting Algorithms for the Connection Machine CM-2[END_REF] processors starting at processor d + o set: f3 3 + 2 [START_REF] Blelloch | A Comparison of Sorting Algorithms for the Connection Machine CM-2[END_REF] 3 + 2 7 + 2 [START_REF] Blelloch | A Comparison of Sorting Algorithms for the Connection Machine CM-2[END_REF] , etc.g allocating also odd processors. P k stands for the set of processor numbers holding U b(i)+k i . Lemme 3.2 The data placement algorithm generates a set of processor sequences with no con ict (i:e: no processors in common between any two sequences) for a problem size of log n < 29.

Proof. The processor sequences generated by the algorithm for W 2 i (U) can be expressed by the equations below.

(i) i 2 1 P 0 x x x x x x x x x x U b(i)+1 i 2 4 P 1 x x U b(i)+2 i 2 7 P 2 x U b(i)+3 i P 3 x U b(i)+4 i P 4
x U b(i)+5 i P [START_REF] Blelloch | Pre x Sums and their Applications[END_REF] x U b(i)+6 i P [START_REF] Blelloch | Vector Models for Data-Parallel Computing[END_REF] x U b(i)+7 i P [START_REF] Blelloch | A Comparison of Sorting Algorithms for the Connection Machine CM-2[END_REF] x U b(i)+8 i P [START_REF] Cole | Parallel Merge Sort[END_REF] x U b(i)+9 i P [START_REF] Manzini | Radix Sort on the Hypercube[END_REF] x As remarked previously, P 0 allocates all even processors, and P k , f o r k = 1 ::8 allocates only odd processors. Hence P 0 and P k are disjoint. Next, we still have t o p r o ve that P k and P k 0 are disjoint f o r a n y k and k 0 having k 6 = k 0 . P k can be expressed by the following equation: P k = (2 k ; 1) + 2 3k+1 for 2 IN and k = 1 ::8.

For any k and k 0 so that k 6 = k 0 , w e will prove that there is no con ict between P k and P k 0 . T o d o s o , w e only need to prove that the next equation:

(2k ; 1) + 2 3k+1 = (2 k 0 ; 1) + 2 3k 0 +1 0 (5) leads to a contradiction. Eq. (5) can be written as follows: 0 = k ; k 0 8 k 0 + 8 k;k 0 If k > k 0 k ; k 0 7 and 8 k 0 8, implies that k;k 0 8 k 0 6 2 IN, therefore 0 6 2 IN. T h e n Eq. (5) leads to a contradiction. If k < k 0 0 = 8 k 0 ;k ; k 0 ; k 8 k 0 where k 0 ; k = 1 : : : 7 a n d k 0 = 2 : : : 8. If 0 2 IN, there exist two numbers q 2 IN such that: = 8 k 0 ;k q + k 0 ; k 8 k 0 that is to say, such that: 8 k 0 (; 8 k 0 ;k q) = k 0 ; k therefore ; 8 k 0 ;k q should be fractional, which is not possible.

Finally, as remarked in Fig. 7, applying P 9 would generate the rst processor con ict: the rst processor allocated by P 9 will con ict with the second processor assigned by P 1 . P 9 = 1 7 + 2 25 0 = 1 7 P 1 = 0 + 2 4 1 = 1 7 : P 9 is applied when e(i) ; b(i) 9. The value of i that satis es the previous relation is i 59. Replacing i = 5 9 i n U e(i) i we obtain a level l = 29, representing a problem size of at least n = 2 29 elements (536,870,912 processors), which is quite impractical by the moment.

Let us de ne argument (List) as a function returning the argument argument of the list List. As already mentioned, U b(i)+k i will be assigned a set of processors given by P k . The following 2 properties can easily be veri ed: As it has surely been noticed, shifting the lists implies a data arrangement t o b e performed. The data movements required are explained in the following section.

Data Movements

The function Merge with help (U l i X l i , Y l i , U l i;1) presented in Section 3.4, merges the lists X l i , Y l i with help of U l i;1 in order to compute U l i (see Section 2). So in order for a merge to take place, the following lists have to reside on the same set of processors: U l;1 i;1 , from which t h e c o ver list Z l i is formed, and U l i;1 . Two kinds of data movements are needed to guarantee the correct placement of the lists these movements are presented below.

Positive shift

The rst data movement required comes from the need of having all elements of U l i reside on the same set of processors as the one holding Z l+1 i+1 . As already mentioned, Z l+1 i+1 i s a c o ver list of U l i . Then, in order to have U l i reside on the right place, all elements of U l i have to be shifted o set (Z l+1 i+1); o set (U l i) processors to the right. We will call this data movement a positive shift. It is straightforward to verify that there is a positive shift equal to 0 when U l i belongs to W 2 i (U) and whenever i = 3 l (U b(i) i from W 0 i (U)) in such cases, there is not data movement. For all other cases, the positive shift has a value greater than 0, in which case the data movement is performed only if the size of U l i is greater than or equal to 4. The following communication function performs such a p o s i t i v e shift:

+Shift (U l i) if (l + 1 N) then Comm o set = o set (Z l+1 i+1) -o set (U l i) if (Comm o set > 0) and (p (U l i) 4) then Send (+, U l i , Comm o set) endif endif end
The function Send, sends every element o f U l i to processor P+Comm o set, w h e r e P is a processor holding an element o f U l i . The rst argument indicates that the send operation corresponds to a positive shift.

Negative shift

The second data movement operation comes from the need of having U l i reside on the same set of processors holding X l i+1 and Y l i+1 , so the merge Merge with help (U l i+1 , X l i+1 , Y l i+1 , U l i) can take place. In order to have U l i reside on the right place, all elements of U l i have t o b e s h i f t e d o set (U l i) ; o set (Z l i+i) processors to the left. We will call this data movement a negative shift. I t i s e a s y t o v erify that there is a negative shift to be performed whenever U l i belongs to W 2 i (U), except for i = 3 l;1 (U b(i) i from W 2 i (U)). The value of the negative shift in such a case and in all other cases is equal to 0, so no data movement is performed. The following communication function performs such a negative shift:

;Shift (U l i) Comm o set = o set (U l i) -o set (Z l i+1). if (Comm o set > 0) then Send (-, U l i , Comm o set) endif end
The rst argument o f t h e Send function indicates that the send operation corresponds to a negative shift, so every element o f U l i is sent to processor P;Comm o set, where P is a processor holding an element o f U l i . As a nal remark, it is important t o notice that whenever a positive shift takes place, no negative s h i f t m a y occur, and vice versa. Fig. 8 at page 25 shows the data placement algorithm and the data movements associated with it.

The CREW Algorithm

Below w e present the pseudo code for the implementation of the CREW version of Cole's parallel merge sort on a distributed memory architecture. The macro MERGE UP() is de ned at the end. The algorithm performs in 4 log n parallel steps. The data movements of the algorithm can easily be followed step by step using Fig. 8.

Parallel Merge () U 0 0 = Initial Data. for (i = 0 i < 3 log n i = i + 3)

For every U l i+1 2 W i+1 (U) do in parallel For l = b(i + 1) Form the cover list Z l i+1 from U l;1 i (every 4th element

) MERGE UP (U l i+1) +Shift (U l i+1) For l > b (i + 1) Receive (+, U l;1 i)
Form the cover list Z l i+1 from U l;1 i (every 4th element) MERGE UP (U l i+1) +Shift (U l i+1) endparallel For every U l i+2 2 W i+2 (U) do in parallel For l = b(i + 2) Form the cover list Z l i+2 from U l;1 i (every 2th element) MERGE UP (U l i+2)

For l > b (i + 2) Receive (+, U l;1 i+1)

Form the cover list Z l i+2 from U l;1 i+1 (every 4th element) MERGE UP (U l i+2)

;Shift (U l i+2) endparallel Form the cover list Z l i+3 from U l;1 i+2 (every 4th element)

if jZ l i+3 j > 1 then Receive (-, U l i+2) endif MERGE UP (U l i+3) +Shift (U l i+3) endparallel endfor end macro MERGE UP (U l i) /* Compute ranks U l i;1 ! X l i and U l i;1 ! Y l i */ Compute R4(X l i , Y l i , U l i;1) /* Compute U l i = X l i Y l i */ if jZ l i j = 1 then Sort (U l i , X l i , Y l i) else Merge with help (U l i , X l i , Y l i , U l i;1) endif end
The function Sort (U l i , X l i , Y l i) performs a two-element sort involving two processors and leaves the result in U l i . The function Merge with help (U l i , X l i , Y l i , U l i;1) de ned below relies on Cole's algorithm to perform the merge in constant time the algorithm was brie y described in Section 2. X l i and Y l i are two ordered lists and U l i;1 is the list resulting from the merge performed during the previous stage of the algorithm (U l i;1 = X l i;1 Y l i;1). To perform the merge in constant time, the function assumes that the ranks U l i;1 ! X l i and U l i;1 ! Y l i have already been computed. At this point, some notation has to be de ned (L below stands for an X, Y or U list): e ! L stands for the rank of an element e in the list L (e ! L) stands for the value of an element i n L whose rank is given by e ! L, e:left stands for the rank of an element d where d < e and d and e belong to the same list, e:right stands for the rank of an element f where f > e and f and e belong to the same list.

The merge reduces to compute the cross-ranks X l i $ Y l i . Recall that there is a processor P k assigned to the kth element of a list L. During the merge operation U l i = X l i Y l i , the set of processors holding U l i is the juxtaposition of the set of processors holding X l i and the set of processors holding Y l i . Finally, let P j be the processor holding the rst element of a list L andP l be the processor holding the last element o f L.

Merge with help (L

l i M m i N l i S L l h) /* Compute M m i N l
i with help of SL l h . The result is left in L l i . * / For every processor P k holding an element o f SL l h do in parallel /* R1 COMPUTATION */ /* P k forms the interval e f) * / f = element o f SL l h held by P k e = element o f SL l h held by P k;1 /* The last statement implies transferring the element h e l d b y P k to P k+1 , * i f P k+1 exists. */ /* Remarks : * P j will handle the interval ;1 f). * P l will handle the intervals e f) and f 1) i n t wo consecutive steps.

if g 2 M m i g.left = (g ! N l i) ! L l i g.right = (g ! N l i + 1) ! L l i endif if g 2 N l i g.left = (g ! M m i) ! L l i g.right = (g ! M m i + 1) ! L l i endif /* PERFORM THE MERGE */
/* This next statement implies transferring the element g to the processor * holding the element o f L l i with rank g ! L l i .

*/

(g ! L l i) = g end Compute R4 (X l i Y l i U l h)
/* Compute the ranks U l h ! X l i and U l h ! X l i . * It is assumed that the cross-ranks R2 and R3 have * already been deduced as explained in Section 2. */ For every processor P k holding an element e from U l h do in parallel /* Compute for elements in U l h came from X l i;1 their ranks in Y l i */

Compute rank (e (e.left) ! Y l i (e.right) ! Y l i)

/* Compute for elements in U l h came from Y l i;1 their ranks in X l i */

Compute rank (e (e.left) ! X l i (e.right) ! X l i)

/* Save the value (e ! X l i) (or (e ! Y l i)) * which will be used when computing R1. */ /* The low-level function Compute rank (e, lr, rr), whose * implementation is not shown, will relate the processor P k holding e with * the set of processors holding the elements from X l i (or Y l i) with * r a n k s, where lr s rr, in order to compute the rank * e ! X l i (or e ! Y l i). This can be done in at most 3 comparisons.

*/ end

The read con ict appears clearly when computing the rank e ! Y l i (or e ! X l i) i n the last function: the number of elements inside the rank interval e.left, e.right] is not bounded. Let S be the set of elements within this rank interval. A possible solution would be to perform a parallel pre x operation among the processors holding S, where the elements to be broadcast are those in Y l i (or X l i) within the rank interval (r, t] (at most 3 elements, see Fig. 5 at page 6). This may increase the parallel time complexity by a log n factor. In the next section, a more complex version of the algorithm which avoids read con icts is considered.

? ? ? W 0 i (U) Z l;1 i `Ul;1 i (0) Z l i `Ul i (0) Z l+1 i `Ul+1 i (1) Z l+2 i `Ul+2 i (3) @ @ @ R @ @ @ R @ @ @ R W 1 i+1 (U) Z l i+1 `Ul i+1 (0) Z l+1 i+1 `Ul+1 i+1 (1) Z l+2 i+1 `Ul+2 i+1 (3) @ @ @ R @ @ @ R @ @ @ R W 2 i+2 (U) Z l i+2 `Ul i+2 (0) Z l+1 i+2 `Ul+1 i+2 (1) Z l+2 i+2 `Ul+2 i+2 (3)
? ? The EREW version of the parallel merge sort algorithm relies on the CREW version presented in Sections 2 and 3. Therefore, the analysis given so far is still valid. A brief description of the algorithm is presented in this section for a complete description the reader is referred to 7]. In the EREW version, two additional lists are introduced in order to allow the merge to be performed in constant time and without read con icts. First, let us give the following notation: L (node) refers to the list L residing at (or coming from) node node in the binary tree. The new lists are D l i and SD l i . D l i (v) i s the list resulting from the merge of Z l+1 i (w) and SD l i (u), where the former is a cover list of U l i;1 (w) and the latter a cover list of D l+1 i;1 (u) (every 4th element). Node u is the parent o f n o d e s w and v. Hence,

W 0 i+3 (U) Z l i+3 `Ul i+3 (0) Z l+1 i+3 `Ul+1 i+3 (0) Z l+2 i+3 `Ul+2 i+3 (1) @ @ @ R @ @ @ R & is a +Shift Z `U is a short form # is a -Shift for X Y = U
D l i (v) = X l+1 i (w) SD l i (u) a n d D l i (w) = Y l+1 i (v) SD l i (u): D l
i is computed at the same algorithm stage as U l i . It is important to note that the cover list coming from D l i is denoted as SD l;1 i+1 since it is a list to be used at a lower level of the tree during the next algorithm stage. A stage of the EREW algorithm is performed in 5 steps described below. Each step will work with a set of lists shown in Fig. 9, where SM and SN are cover lists of M and N respectively. The following ranks are assumed to be known from the previous algorithm stage:

i) SM! M SN ! N ii) SM$ SN iii) SM! N SN ! M
SL is the list issued from the merge of SM and SN whereas L is the list resulting from the merge of M and N. The function Merge with help (L M N SL) presented in Section 3.4 is used to compute the cross-ranks M $ N. The ranks SL! L are immediately computed. At stage i of the algorithm and at any n o d e v of level l, the following ranks are assumed to be known from stage i ; 1. Node u is the father of nodes v and w and node v is the father of nodes x and y (see Fig. 10 at page 28).

a) Z l i;1 (x) $ Z l i;1 (y) b) Z l+1 i;1 (v) ! Z l+1 i (v) c) Z l+1 i;1 (v) $ SD l i;1 (u) d) SD l;1 i;1 (v) ! SD l;1 i (v) e) Z l+1 i (v) $ SD l;1 i (v) f)U l i;1 (v) $ SD l;1 i (v) g) Z l+1 i (v) $ D l i;1 (v): Since D l i;1 (v) = Z l+1
i;1 (w) SD l i;1 (u) and from g) Z l+1 i (v) $ D l i;1 (v) i s k n o wn, then the following ranks are deduced:

h) Z l+1 i;1 (w) ! Z l+1 i (v) i) SD l i;1 (u) ! Z l+1 i (v):
Similarly, since U l i;1 (v) = Z l i;1 (x) Z l i;1 (y) and from f) we k n o w U l i;1 (v) $ SD l;1 i (v), then the ranks below are known: j) Z l i;1 (x) ! SD l;1 i (v), Z l i;1 (y) ! SD l;1 i (v):

Step 1. T o perform the merge U l i (v) = Z l i (x) Z l i (y), compute the cross-ranks Z l i (x) $ Z l i (y). The ranks shown in Fig. 11 are available. Note that the ranks h and b in the gure are known respectively from h) and b) at any node of level l ; 1. This same step is also performed in the CREW algorithm presented in Section 2. Here, the ranks labeled with h (R4 in the CREW version) have already been computed without read con icts during the previous algorithm stage. sk in the gures stands for the ranks computed during step k. The following ranks are also computed.

U l i;1 (v) ! U l i (v) and Z l+1 i (v) ! Z l+1 i+1 (v)
Step 2. To perform the merge D l i (v) = Z l+1 i (w) SD l i (u), compute the cross-ranks Z l+1 i (w) $ SD l i (u). (D l i (v) Z l+1 i (w) S D l i (u) D l i;1 (v)). The ranks below are also computed. D l i;1 (v) ! D l i (v) and SD l;1 i (v) ! SD l;1 i+1 (v): Step 3. Compute the cross-ranks Z l+1 i+1 (v) $ SD l;1 i+1 (v). The ranks that are needed are shown in Fig. 13. The rank s3(i) in the gure is deduced in the following way: since the cross-ranks Z l+1 i (v) $ Z l+1 i (w) h a ve been computed during step 1 at any n o d e o f level l + 1 and the cross-ranks Z l+1 i (v) $ SD l i (u) h a ve been computed during step 2, then the cross-ranks Z l+1 i (v) $ D l i (v), can easily be obtained (the rank of an element e from Z l+1 i (v) i n D l i (v) is simply the sum of e ! Z l+1 i (w) a n d e ! SD l i (u)). Next, as SD l;1 i+1 (v) i s a c o ver list of D l i (v), then the cross-ranks Z l+1 i (v) $ SD l;1 i+1 (v) are known. Likewise, s3(ii) in Fig. 13 can be easily obtained: the cross-ranks SD l;1 i (v) $ Z l i (x) and SD l;1 i (v) $ Z l i (y) are known from step 2 at any n o d e o f l e v el l ; 1. As above, SD l;1 i (v) $ U l i (v) is easily determined. Since Z l+1 i+1 (v) i s a c o ver list of U l i (v), then the cross-ranks SD l;1 i (v) $ Z l+1 i+1 (v) are known. Step 4. Compute the cross-ranks U l i (v) $ SD l;1 i+1 (v). The ranks needed are shown in Fig. 14a).

SD (v) l-1 SD (v) i-1 l X (x) i-1 l Y (y) i-1 U (v) l i i-1 Y (v) i i-1 i l+1 i-1 X (w) X (w) a b c d e f g a b c c D (v) i-1 l l+1 i-1 X (w) i-1 l SD (u) = U level l level l + 1 level l -1 b b l i X (x) l i i-1 l SD (u) d l i SD (u) Y (y)
Z (v) Z (x) l i-1 l i-1 Z (y) l i Z (x) l i Z (y) a b b h h s1 l i-1 U (v) l i U (v) s1 Z (v)
SD (v) SD (v) l i-1 l i b l i-1 l i i+1 l+1 i i-1 l+1 Z (w) l+1 Z (w) i SD (u) SD (u) D (v) D (v)
Step 5. Compute the cross-ranks Z l+1 i+1 (v) $ D l i (v). The ranks involved in the computation are shown in Fig. 14b).

5 Implementing the EREW Algorithm on a Distributed Memory Architecture 5.1 D l i and SD l i Data Placement By making D l i reside on the same set of processors holding U l i , the structure of the CREW algorithm remains unchanged. Moreover, the data movements applied to U l i are also applied to D l i . SD l i is a cover list of D l+1 i;1 residing on the same set of processors holding D l+1 i;1 (or U l+1 i;1). Fig. 15 shows the active window for di erent v alues of i and from level 7 to level 9 of an example of the EREW version (N > 9). There, we can mainly appreciate the data placement and the size of the new lists. They contain the same set of arguments as a U l i list their values are given below. First, we start by the size of D l i , which i s g i v en by the sum of the sizes of the two lists involved in the merge operation. jD l i j = jZ l+1 i j + jSD l i j where jSD l i j = jD l+1 i;1 j 4 , which implies a recurrence to the size of D at the upper level during the previous algorithm stage. jD l i j = 0 for l = N. T o replace the recurrence, the size of D l i can be obtained by the formula given below.

SD (v) l+1 l+1 l i l i D (v) U (v) Z (v) Z (v) i i+1 l-1 i i+1 l-1 SD (v) s3 s1 s2 s 3 (i) s 3 (ii) s 3 (i) s 3 (i i) cover list cover list SD (v) l+1 l+1 l i l i D (v) Z (v) Z (v) i i+1 l-1 i i+1 l-1 SD (v) s3 s1 s2 s 3 (i) s 3 (ii) a) b) U (v)
As the value of i progresses, the size of D l i increments. Next, we will prove that for the maximum possible size of D l i , jD l i j < jU l i j. Recall that we m a k e D l i reside on the same set of processors holding U l i . The size of D l i attains its maximum value when i is equal to 3l+2. This comes from the fact that the EREW algorithm does not compute D l i for a value of i equal to 3l+3 (see Fig. 15). For jU l i j the maximum value of i is end level therefore, in order to guarantee the correct data placement for D l i we need to prove the following relation: jD l 3l+2 j < jU l 3l j:

SD (v)

Using Eq. (6) to determine the maximum value of jD l 3l+2 j we obtain: 32 31 2 l;1 ; 1 31 < 2 l 2 l;0:95 ; 1 31 < 2 l : The rest of the arguments are known straightforwardly: s(D l i) = s(U l i), s(SD l i) = s(U l+1 i;1), d(D l i) = d(U l i), d(SD l i) = d(U l+1 i;1), o set(D l i) = o set(U l i), o set(SD l i) = o set(U l+1 i;1). l = 7 l = 8 l = 9 jZ 15 j = 1jU 15 j = 2 jZ 16 j = 2jU 16 j = 4 jZ 17 j = 4jU 17 j = 8 jD 17 j = 1 jZ 17 j = 1 jU 17 j = 2 jZ 18 j = 8jU 18 j = 1 6jD 18 j = 2 jZ 18 j = 2 jU 18 j = 4 jZ 19 j = 1 6 jU 19 j = 3 2jD 19 j = 4 jZ 19 j = 4 jU 19 j = 8 jD 19 j = 1 jZ 19 j = 1 jU 19 j = jZ 20 j = 3 2 jU 20 j = 6 4jD 20 j = 8 jZ 20 j = 8 jU 20 j = 1 6jD 20 j = 2 jZ 20 j = 2 jU 20 j = jZ 21 j = 6 4 jU 21 j = 1 2 8 jD 21 j = 1 6 jZ 21 j = 1 6jU 21 j = 3 2jD 21 j = 4 jZ 21 j = 4 jU 21 j = jD 22 j = 3 2 + 1 jSD 22 j = 1jZ 22 j = 3 2jU 22 j = 6 4jD 22 j = 8 jZ 22 j = 8 jU 22 j = jD 23 j = 6 4 + 2 jSD 23 j = 2jZ 23 j = 6 4jU 23 j = 128 jD 23 j = 1 6 jZ 23 j = 1 6jU 23 j = jSD 24 j = 4jZ 24 j = 1 2 8 jU 24 j = 256 jD 24 j = 3 2 + 1jSD 24 j = 1jZ 24 j = 3 2jU 24 j = jSD 25 j = 8 jD 25 j = 6 4 + 2jSD 25 j = 2jZ 25 j = 6 4jU 25 j = 128 jSD 26 j = 1 6 jD 26 j = 128 + 4 jSD 26 j = 4jZ 26 j = 128 jU 26 j = 256 jSD 27 j = 3 3 jSD 27 j = 8jZ 27 j = 256 jU 27 j = 512 jSD 28 j = 1 6 jSD 29 j = 3 2 jSD 30 j = 6 4

The EREW Algorithm

Below w e present the pseudo code for the distributed memory implementation of the EREW version of Cole's parallel merge sort. The macros MERGE UP() and MERGE DOWN() are de ned at the end. The function Merge with help() has been de ned in Section 3.4 (the code related to R4 computation should be omitted). The algorithm performs in 4 log n parallel steps using exactly n processors.

Parallel Merge () U 0 0 = Initial Data.

for (i = 0 i < 3 log n i = i + 3) for (j = 1 j 3 j = j + 1)

For every U l i+j 2 W i+j (U) do in parallel For l = b(i + j)

Form the cover list Z l i+j from U l;1 i (every b 4 j cth element)

Step We g a ve a proposition to implement Cole's parallel merge sort on a distributed memory architecture. Both, the CREW and the EREW algorithms have been considered. A data placement algorithm has been presented as well as the associated data movements. Our proposition sorts n items using exactly n processors in O(log n) parallel time. The constant in the running time is only one greater than the one obtained for the PRAM model. We e n visage to consider the case where n > p , n being the number of elements to sort and p the number of processors employed. A rst approach w ould be to consider that each of the p processors contains n=p virtual processors, and then to apply the actual algorithm taking into account that some data exchange will correspond to internal

7 3. 1 10 3. 3

 71103 s Parallel Merge Sort: the CREW algorithm 1 3 Implementing the CREW Algorithm on a Distributed Memory Architecture The Active W i n d o w :7 3.2 Data Placement :8 3.2.1 Initial Data Placement and Resource Constraints : : : : : : : :8 3.2.2 W i (U) Data Placement : Data Movements : 17 3.4 The CREW Algorithm : 19 1 Introduction

Figure 1 :

 1 Figure 1: Cole's Parallel Merge Sort: CREW version for N = 6.

Figure 2 :

 2 Figure 2: Cole's Parallel Merge Sort for N = 3.

Figure 3 :

 3 Figure 3: Constant time merge performed a t n o des of level l of the tree. Ranks computation.

Figure 5 :

 5 Figure 5: Merge operation. R4 computation.

Figure 6 :

 6 Figure 6: d Computation.

 i o set = 5 e t c :The o set argument o f U l i is computed by the following function (see TableI):o set (U l i)/* pos is the rank of U l i in W i (U) * / pos = l ; b(i) if (i mod 3) 6 = 0) then if pos

Figure 7 :

 7 Figure 7: Data placement algorithm.

 1. A subset of P k is obtained by shifting P k 0 o set (U b(i)+k 0 i) ; o set (U b(i)+k i) processors to the left, where k < k 0 . 2. A superset of P k 0 is obtained by shifting P k o set (U b(i)+k 0 i) ; o set (U b(i)+k i) processors to the right, where k < k 0 .

 For every U l i+3 2 W i+3 (U) do in parallel /* Performed in two parallel steps */ /* First step: n processors are used */ For l = b(i + 3) Form the cover list Z l i+3 from U l;1 i (every element) MERGE UP (U l i+3) /* Second step */ For l > b (i + 3)

 sets in M m i */ /* Compute the rank of the leftmost element * / x left rank = e ! M m i if e > (e ! M m i) then x left rank = x left rank + 1 endif /* Compute the rank of the rightmost element * / x right rank = f ! M m i if f = (f ! M m i) then x right rank = x right rank -1 endif /* Forming sets in N l i */ /* Compute the rank of the leftmost element * / y left rank = e ! N l i if e > (e ! N l i) then y left rank = y left rank + 1 endif /* Compute the rank of the rightmost element * / y right rank = f ! N l i if f = (f ! N l i) then y right rank = y right rank -1 endif if x left rank > x right rank or y left rank > y right rank then 8 the cross-ranks between the set of elements in M m i * and the set of elements in N l i */ Compute cross ranks (x left rank, x right rank, y left rank, y right rank) /* The low-level function Compute cross ranks (xlr, xrr, ylr, yrr), whose * implementation is not shown, will relate the set of processors holding * the elements of M m i with rank s, where xlr s xrr, with the set of * processors holding the elements of N l i with rank t, w h e r e ylr t yrr, * in order to compute the desired cross-ranks. This can be done in at most * 5 comparisons. */ endif For every processor P k holding an element g of M m i or N l i do in parallel /* COMPUTE THE FINAL RANK */ g ! L l i = g ! M m i + g ! N l i /* STORE DATA NEEDED TO COMPUTE R4 */ Remember whether g is an element from M m i or from N l i , next:

Figure 8 :

 8 Figure 8: The data placement algorithm and data movements. The number between parenthesis corresponds to the o set assigned by the algorithm. 4 Cole's Parallel Merge Sort: the EREW algorithm

Figure 9 :

 9 Figure 9: EREW algorithm. Ranks computation during a step.

Fig. 12 picturesY

 12 the ranks used to perform the merge. Note that the ranks j and d in the gure are known respectively from j) and d) at any n o d e o f level l + 1. The cross-ranks are computed by means of the function Merge with help c

Figure 10 :

 10 Figure 10: a) EREW algorithm. Ranks known at stage i-1.

Figure 11 :

 11 Figure 11: EREW algorithm. Step 1.

Figure 12 :

 12 Figure 12: EREW algorithm. Step 2.

Figure 13 :

 13 Figure 13: EREW algorithm. a) Ranks used t o c ompute steps 3, 4 and 5. b) Step 3.

Figure 14 :

 14 Figure 14: EREW algorithm. a) Step 4. b) Step 5.

Figure 15 :

 15 Figure 15: Cole's Parallel Merge Sort: EREW version for N > 9.

if (j 6 = 3) then

Step 2 MERGE DOWN (D l;1 i+j) if (j = 1) then +Shift (U l i+j) +Shift (D l i+j) endif endif For l > b (i + j) if (j 6 = 3) then Receive (+, U read/write operations. A second approach consists in optimizing the previous one by sorting the elements locally at each processor using the best known sequential sort, next considering the n=p elements in a processor as a "data unit" and nally applying the actual algorithm using p processors and p "data units".