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Abstract

We describe a new, practical, constructive method for solving the well-known
conflict-free scheduling problem for the locally sequential, globally parallel
(LSGP) case of systolic array synthesis. Earlier attempts to solve this problem
provided a solution with an important practical disadvantage, which we dis-
cuss. Here, we provide a closed form solution that enables the enumeration of
all valid schedules. The second part of the paper discusses another practical
issue: reducing the cost of hardware whose function is to control the flow of
data, enable or disable functional units, and generate memory addresses. We
present a new technique for controlling the complexity of these housekeeping
functions in a systolic array. Both of these techniques have been incorporated
into a software system for the automatic synthesis of hardware accelerators
developed by HP Labs.

Keywords: Hardware accelerators, systolic arrays, automatic synthesis, LSGP partitioning

Résumé

Nous présentons une méthode constructive permettant de résoudre le probléme
bien connu de 'ordonnancement sans conflits du partitionnement localement sé-
quentiel, globalement séquentiel (LSGP) de la synthése de réseaux systoliques.
Les techniques proposées antérieurement conduisent & des solutions compor-
tant quelques inconvénients pratiques majeurs que nous discutons. Ici, nous
donnons une expression analytique des solutions qui nous permet d’énumérer
tous les ordonnancements valides. La seconde partie du rapport discute d’un
autre aspect pratique: comment réduire le cott du matériel dont le role est de
controler le flot des données, d’activer ou de désactiver les unités fonctionnelles
et de générer les adresses mémoire. Nous montrons comment maitriser la com-
plexité de ces calculs de maintenance du circuit. Ces deux techniques ont été
intégrées dans un logiciel de synthése automatique d’accélérateurs matériels,
développé dans les laboratoires de Hewlett-Packard.

Mots-clés: Accélérateurs matériels, réseaux systoliques, synthése automatique, partitionnement LSGP
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Abstract

We describe a new, practical, constructive method for solving the well-known conflict-free scheduling
problem for the locally sequential, globally parallel (LSGP) case of systolic array synthesis. A loop
nest and a linear mapping to virtual processors is given, as is a clustering of rectangular arrangements
of virtual processors into physical processors. A solution to the scheduling problem is a linear map of
iteration indices to time that satisfies linear inequality constraints determined by data dependences. The
schedule is conflict-free if no two iterations are scheduled simultaneously on the same processor. We say
that such a schedule juggles. It is tight if it juggles and, in the steady state, all processors are busy every
cycle.

Earlier attempts to solve this problem by Darte and Delosme [1, 2] provided a solution with an
important practical disadvantage, which we discuss below. Megson and Chen [3] later used Darte’s
analytic technique to provide a partial solution to the problem. Here, we provide a closed form solution
that enables the enumeration of all tight schedules.

The second part of the paper discusses another practical issue: reducing the cost of hardware whose
function is to control the flow of data, enable or disable functional units, and generate memory addresses.
We present a new technique for controlling the complexity of these housekeeping functions in a systolic
array.

Both of these techniques have been incorporated into a software system for the automatic synthesis
of hardware accelerators developed by HP Labs.

1 Introduction — hardware accelerators and systolic arrays

The continuing rapid growth of the consumer electronics industry (for example HDTV, set-top boxes, dig-
ital photography, mobile communication, high resolution scanners, copiers, and printers, toys and games)
demands low-cost and low-power digital electronics that perform image and signal processing and other data
handling tasks at impressive computational rates. Many current designs employ embedded general-purpose
computers that must be assisted by application-specific hardware, which may or may not be programmable,
in order to meet the computational demands at low enough cost. Such systems are difficult and expensive to
design. Automatic synthesis of application-specific hardware accelerators is therefore an increasingly impor-
tant technology. An ideal situation would be one in which a source program can be automatically compiled
onto a system consisting of a general-purpose processor and one or more hardware accelerators that have been
automatically designed and interfaced to the whole system, using the program as a behavioral specification.

The most obvious way to obtain significant performance from custom hardware is to exploit parallelism.
A well-understood approach to automatic parallel hardware synthesis is the automatic transformation of a
loop nest into a form that enables its implementation as a systolic array [4].

This paper addresses two important practical issues in systolic array synthesis. The first concerns the
problem of the combined scheduling of computation and its mapping to a prespecified array of systolic
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processors. The goal is to map each iteration of a loop nest to a processor and a time step in such a way
that all processors are kept busy at all times, and none is overloaded. Previous theoretical solutions to this
problem made it inconvenient to quickly find a mapping and schedule that accomplish this. We shall present
some new theoretical insight into this problem that leads directly to an efficient solution.

The second issue is the hardware cost of systolic implementations of loop nests. All parallel realizations of
sequential algorithms come at some cost; in our case, the cost is additional computation — which would lead
to additional hardware in an application-specific accelerator — that is needed to control and coordinate the
systolic processors. We develop a new low-cost technique for control and coordination that is theoretically
appealing, and we give some experimental evidence that it significantly reduces cost in comparison with
standard approaches, which can be prohibitively expensive.

The following section (Section 2) gives an overview of systolic array synthesis and presents the conflict-
free scheduling problem that is the subject of the first part of this paper. Section 3 explains the existing
theoretical solution to this problem, developed by the first author of this paper, and discusses the problems
with using it in a practical system. Section 4 presents our new theoretical approach and describes how it
leads to an improved implementation. Section 5 introduces the issue of the added cost of parallelization in
systolic form, and Section 6 gives our new approach, with experimental evidence that it is successful. We
offer some concluding remarks in Section 7.

2 Mapping and scheduling in systolic computation

We assume a classical model of systolic computation, in which the iterations of a perfect n-deep loop nest,
for example

for (j1 = 0; j1 < N; ji++) {

for (jn = 0; jn < N; jn++) {
a=a+ 2;
}
}

are identified by the corresponding integer n-vector ; = (j1,.-. ,Jn) of loop indices. (A perfect nest has
no code, other than a single nested loop, in any except the innermost loop.) An m-dimensional grid of
systolic processors with rectangular topology is given, and each processor is identified by its coordinate
vector. The systolic mapping problem is to define a start time 7(; 7) and a processor m(7) such that processor
7(j) commences computation of iteration j at clock cycle 7(j). We use the term schedule for the timing
function 7 and mapping for the processor assignment 7. In any detailed model of systolic synthesis, and in
all real implementations, the operations belonging to iteration ; are not all assumed to occur at time T(;)
This time, rather, is a start time for iteration j, and all the detailed actions belonging to that iteration are
scheduled relative to this start time.

The scheduling and mapping must satisfy several validity requirements. Among these are the need to en-
sure that interprocessor communication occurs only between neighboring processors, conflict-free scheduling
(no processor should be overloaded at any time), and causality (the data required by an operation must be
available to the processor to which it is mapped at the time for which it is scheduled.).

In classical systolic scheduling, as introduced by Kung and Leiserson [5] and elaborated by Moldovan [6]
and Quinton [7], the scheduling function 7 is an integer-valued linear function of the iteration vector, defined
by its integer coefficient vector. The spatial mapping is defined by an (n — 1) X n integer matrix IT of full
rank, so that the processor array is (n — 1)-dimensional. (In this paper, all matrices and vectors are integer
unless otherwise stated. For technical reasons, we require a bit more of II, namely that it can be extended
(by adding one more row) to a unimodular matrix. This prohibits a mapping matrix such as ( 2 4 ) that
maps to processors whose coordinates are always multiples of some integer larger than one.)



2.1 Nonlinear mappings — tiling and clustering

As a practical matter, full-rank linear mapping has the significant problem that one has little control over
the number of processors; in practice, one would like to choose the number of processors and their topology
a priori, based on such practical considerations as the need to map to a piece of existing hardware, or to
conform to a fixed allotment of chip area, board space, or power. For this reason, the linear map II is viewed
as a mapping onto an array of wirtual processors (VPs). The virtual processors are later associated with
physical processors, but this map is many-to-one.

One approach to the problem of handling arbitrarily large data sets and iteration spaces with fixed-size
systolic arrays is to decompose the whole computation into a sequence of similar computations on subsets of
the data [8, 9, 10, 11, 12, 13]. This approach is known as tiling in the compiler literature, and as the locally
parallel; globally sequential (LPGS) method in systolic synthesis. We view these techniques as being very
important for reducing the size of the problem, primarily as a way to reduce the local storage in synthesized
systolic processors. For this reason, we do not want to constrain the tile size by requiring the number of
virtual processors to match the number of physical processors. To do so would usually produce tiles too
small to obtain significant benefit from reuse of intermediate results in the array.

We use an alternative approach, which we call clustering, and which has also been called partitioning or
the locally sequential, globally parallel (LSGP) technique in the systolic synthesis literature. The idea is to
tile the processor space rather than the iteration space.

Clustering assigns a rectangular neighborhood in the array of virtual processors to each physical processor.
This amounts to choosing a rectangular cluster shape — a small (n — 1)-dimensional rectangle — and then
covering the (n — 1)-dimensional array of virtual processors with nonoverlapping clusters. The cluster shape
is chosen so that the set of clusters forms an m-dimensional grid of the same shape as the systolic processor
grid. The systolic processor will have enough throughput, and the schedule of the iterations will allow enough
time, so that each systolic processor will do the work of its assigned virtual processors.

Formally, the clustering is defined as follows. An m-dimensional grid of systolic processors is also assumed
to be given, with m < n—1. Let the iteration space, the set of values allowed for f, be J; we assume that J
consists of the integral points in a polytope. Let the shape of the systolic processor array be the m-vector

]3, so that the systolic processor coordinates satisfy 0 < p; < P;, i = 1,...,m. The virtual processor
array is the image of J under II. Let the smallest rectangle that covers the set of virtual processors have
dimensions V, so that if ¢ = IIj for some j € J, then 0 < v; <V;, i =1,...,(n—1). (We must apply a

shift, in general, to make the virtual processor coordinates nonnegative.) The idea of clustering is to first
extend P into an (n—1) element vector, if necessary, by adding ones in the first n — 1 —m positions, and then

to match up the elements of P with those of V. There are clearly ( nn_z ! > possible matchings, and we

will not consider the issue of how to choose a good one here; we just assume that the job has been somehow
done and the elements of P have been permuted accordingly. (A later paper will consider this and other
implementation questions.) We can then define the shape of the cluster, C = (C1,...,Cyr_1), by requiring
that

The processor grid of shape ]3, whose processors each cover a cluster of shape c , covers the whole virtual
processor space of shape V. The number of virtual processors assigned to a systolic processor is not more
than v =[], C;.

2.2 Schedules consistent with clustered mappings

Assume that the physical processor can perform one loop iteration per cycle. (Alternatively, the processor
may be software pipelined, and for some given initiation interval X it is able to start a new iteration every
A cycles. We give more detail concerning the schedule later.) We constrain the schedule so that on each
physical processor, exactly one of its assigned virtual processors is active at any given time — i.e. there are
no conflicts for the shared physical processor. Our point of view here is that the physical processor array
is given, the mapping II is given, and a clustering (the shape of the neighborhood rectangle) is given and



is compatible with the physical processor array, the mapping, and the iteration space. We will show how
to construct all possible linear schedules that satisfy this no-conflict constraint. We do not address here
the important questions of how these three parameters (mapping, processor topology, clustering) should be
chosen — we intend to treat these and other topics in another paper. In our theory and our implementation,
however, those parameters are chosen first, and the schedule is constrained by the choice. (In fact, our system
tries a number of possibilities, generates a tight schedule for each of them, and evaluates the resulting systolic
implementations. One reason for concern for the efficiency of the scheduling task is that it is invoked for
each combination of processor grid and mapping that is explored.)

We now need to give some more detail concerning software pipelined schedules. We assume that the
schedule of operations is affine. Let O(;) represent the occurrence of the operation O at iteration j of the
loop nest. We schedule this operation at time

7(0,7) = 7.j + po -

Thus, each operation has its own scalar time offset (p) relative to the start of the iteration. These offsets are
necessary in order to use a fast processor clock, so that the cycle time is not dependent on the complexity of
the loop body. For a one-dimensional loop nest, the scheduling problem is referred to as the software pipelin-
ing problem, and the 1-vector 7 is called the initiation interval. Systolic scheduling is a multidimensional
generalization.

The need to compute values before they are used leads to linear inequality constraints on 7. Consider
for example the loop

for (j = 0; j < 100; j++) {
aljl = alj-11 + alj-21;
b[j] = al[j-1] * 3.1415926;
}

and assume that the latency of the add unit is 3 cycles. The two inputs to the add operation are (in
most cases) the results of the add at earlier iterations. The add cannot start until these values have been
produced. For this reason, we cannot start the add at iteration j, scheduled for time 7.5 + p.qq until the
latter of 7.(§ — 1) + paaa + 3 and 7.(§ — 2) + paaa + 3. (For reasons of notational cleanliness, we have dropped
the subscript 1 from both j and 7 in this one-dimensional example.) Thus, we have two linear inequality
constraints, namely 7 > 3 and 27 > 3. Obviously, the second is implied by the first. Note also that the shift
P.aa does not appear. This will always be the case — it is well known (Bellman and Ford) that the causality
constraints on 7 are independent of the offsets p: the offsets cancel in all the relevant inequalities. The same
theory shows that the multiplication in this example does not constrain 7 at all, because it is not part of a
cycle in the data flow. On the contrary, once an initiation interval 7 consistent with the constraint due to
the cycle is found, the offsets are then constrained by puue > (—7) + paaa + 3, the terms involving j having
canceled.

Thus, from now on, we are interested only in finding the linear schedule T(;) = %'.f for the iterations, not
the affine schedule for the operations. We will say that a virtual processor ¥ is active at time ¢ if there is an
iteration j € 7 such that

t= 7"".; and ¥ = Hj.

We assume that the physical processors have enough hardware resources to sustain a compute rate of
one loop iteration every A cycles. (We use A since this time period is something like a wavelength, an inverse
frequency.) This leads to different constraints on 7. Let @ be a smallest integer null vector ! of IT. Thus, @
connects the iteration fto the very next iteration, f+ i, that is mapped to the same virtual processor. We
know that the physical processor will visit each of its  simulated virtual processors once, in some round-
robin manner, before returning to Hj again. Therefore, we want to allow at least yA cycles between visits.
Thus

|7.d] > yA. (1)

L Appendix A reviews some basic facts about integer matrices and lattices that we use in this paper.



But we need more. The throughput inequality (1) ensures that the physical processor is not overloaded
on average. But we are trying to determine a schedule that is precise (all actions scheduled for a certain
machine cycle) and correct. We must therefore guarantee that all scheduled iterations begin at times that
are unique multiples of \. We cannot allow two iterations to begin at the same time, nor can we allow them
to begin at times that are not multiples of A, as this will produce conflicts for hardware resources.

It is now obvious that the problem really does not depend on \; we can just define the clock period to be
A clocks, and set A to one, making the necessary scaling of the functional unit latencies. (Rational latencies
present no particular problems.)

The problem we seek to solve here is this

CONFLICT-FREE SYSTOLIC SCHEDULING: Given C, the mapping II of rank (n — 1) which has @ as
its smallest integer null vector, and linear inequality constraints on 7, choose 7 satisfying these constraint and
such that no two virtual processors assigned to a given physical processor are scheduled to be simultaneously
active.

We say that a schedule that satisfies the no-conflict constraint for the given cluster “juggles”; imagine a
juggling processor with its v balls (virtual processors) in the air, and only one hand, capable of holding only
one ball at any given time. If 7 juggles and satisfies (1) with equality,

T =7 (2)

then we say that the schedule is tight. It is simple to show that 7 cannot be a tight schedule if its elements
are divisible by some nontrivial common divisor.

Our main result is a construction that produces all tight schedules for a given cluster C. We have not
obtained any results concerning nontight, juggling schedules, except for the obvious. If a schedule is tight
for cluster shape D # Cand D >C elementwise, then this schedule is a nontight, juggling schedule for c.

Example 1

We take a simple finite-impulse response filter as an example. Suppose the loop nest is

for (j1 = 0; j1 < 1000; ji++) {
for (j2 = 0; j2 < 40; j2++) {
y[31] = y[j1] + wlj2] * x[j1+j2];

}
}

Let P = (4) and IT = (0, 1) be a given processor topology (a four-processor linear array) and linear mapping
from iteration (ji,j2) to virtual processor vy = jo. Clearly, there are 40 virtual processors, and a cluster of
10 adjacent virtual processors to each physical processor. We seek a schedule 7'(;) = T1J1 + T2j2. Since the
smallest integer null vector of II is u = (1, 0), the throughput constraint requires that |7.@| = || > 10, and
for a tight schedule 7y = £10. The schedule juggles if the residues modulo 10 of the times {0, 72, 272, ... ,972}
are all different. Clearly, this is so if and only if 75 and 10 are relatively prime. O

3 Darte’s solution

The idea of Darte’s (and initially Darte and Delosme’s) solution [1, 2] is to produce a cluster shape C
compatible with the given schedule vector 7. In fact, Darte’s method can be used to enumerate all of the
cluster shapes C for which the given schedule 7 is tight. The main objection to the method is not that it is
incorrect (it always produces pairs (C, 7) such that 7 is a tight schedule for ) or incomplete (it can be used
to find all cluster shapes for which 7 is tight). The objection is that it allows the tail to wag the dog. What
is natural in many, although possibly not all, practical situations is that the physical and virtual processor
arrays are known, and thus the set of possible cluster shapes is known or is quite tightly constrained. The
task at hand is to find a tight schedule for the known cluster shape. Using Darte’s approach, this must be
done by an indirect and possibly very costly trial-and-error approach: choose 7 and then check to see if the



given cluster shape is one of those for which 7 is tight. If not, try a different schedule. By way of contrast, the
new theorem that we later describe leads to a simple method that directly enumerates the tight schedules.

Darte’s theorem and method work this way. There exist unimodular matrices having a given integer
vector as a row or column if and only if this vector’s elements have no nontrivial common divisor. The
inverse of any unimodular matrix having first row equal to 7 has as its second through n-th columns an
n X (n — 1) matrix Q whose columns are a basis for the lattice of iterations scheduled for time zero. Let II
be the mapping matrix; we require that IT has a unimodular extension. Let A = IIQ. Then A is a square
integral matrix of order (n — 1) whose columns are the coordinates of a set of virtual processors active at
time zero. Darte called A the “activity matrix”. Let H, be the Hermite normal form? of A: A = H,Q,
with @, unimodular. The columns of H, generate the lattice of virtual processors active at time zero, and
the diagonal elements of H, are a cluster shape for which 7 is a tight schedule. This remains true for the
Hermite normal form of any permutation of the rows of A. Furthermore, this is a necessary and sufficient
condition for tight schedules (the necessity being the difficult part). Thus, given 7, Darte’s method produces
all cluster shapes C of size |7.d| that juggle with 7. If the schedule is specified and an appropriate cluster
shape is desired, then this method gives all possible choices.

We now show that a procedure which derives the cluster shape from the schedule may give a too limited
set, of choices. For example, suppose that

100 L
H—<0 1 0), vy=6, and 7=(1,5,6)

Then
_5 —6
o= 1 o0 | and A:<_15 _06>
0 1

Both the Hermite normal forms of A and of the (one and only other) matrix obtained by permuting the rows

of A are equal to
10
1 6 /)°

Thus, there is a single choice, the cluster of shape 1 x 6; in particular, a 3 x 2 or 2 x 3 cluster is forbidden.
In practical applications, we have seen clusters that are extremely long and narrow produced this way, for
particular values of 7, and these are often impossible to use since the virtual processor grid does not contain
even one cluster of this shape.

We propose below to reverse the direction of information flow. We have argued that the cluster shape
may well be determined prior to scheduling; thus, we will assume that it is given, and will show how to
construct all of the tight schedules. With this capability, one may enumerate the allowable tight schedules
and choose one based on other criteria, requiring that any linear inequality constraints be satisfied, and
minimizing some cost or time measure, for example.

Megson and Chen attempt to guarantee a tight schedule for some given cluster shape ¢ by working with
the Hermite form of A = IIQ) more or less directly. Relying on the fact that the Hermite form of a triangular
matrix X has the same diagonal as X (up to sign), they choose A to be triangular with the elements of
C on the diagonal, and they assume that II is known. They then look at the general solution @ to the
underconstrained linear system IIQ) = A (i.e. a particular solution ()¢ and an arbitrary multiple of @ added
to each column of Qp) and from the solutions they infer 7. They try to choose the unconstrained components
of @ and the off-diagonal elements of A to obtain an acceptable schedule (via the inverse of a unimodular
extension of Q). Thus, while Megson-Chen is a “dog wags tail” method, producing tight schedules from the
specified cluster shape, it does not have real advantages compared to Darte’s: one will still need to search
for desirable tight schedules indirectly, by manipulating parameters other than the elements of 7.

The clear advantage of the method we propose here is that it works directly with 7. Thus, one has
far more control over the resulting schedule, and may quickly determine a tight schedule that meets other
requirements.

2See Appendix A.



4 Construction of tight schedules

We now present a way to construct the set of all tight schedules for a given cluster C. First, for the
sake of illustration, we assume that II consists of the first (n — 1) rows of the identity matrix, so that
Hu = He,, = I1(0, ... ,0,1)t = 0. We write o A z for the greatest common divisor of z and z. f z Az = 1 we
say that z and z are relatively prime.

We shall first prove that 7 is a tight schedule for c if

7T = (ki, k2Cy, k3C1Cs, ..., kpnCy-+-Croy) (3)
where k; and C; are relatively prime and k,, = £1. (Note then that 7 satisfies (2) by construction.)

Proposition 1 Let C be given and let I1 be as above. If T satisfies (3) then it is a tight schedule for C.

Proof We give a proof in two dimensions, as the general case presents nothing new. (The argument is
rigorous, but is so simple that it doesn’t warrant an overly technical presentation.)

Consider the times at which VP (virtual processor) (c1,c2) is active. (Here 0 < ¢; < C; is the local
coordinate within the cluster.) We show that the residues modulo « of these times are some arrangement of
the integers 0,1,...7 — 1, no two of them identical. This implies that ¢ and 7 juggle, and since (2) must
hold, it implies that 7 is a tight schedule.

First, note that if we show this for one physical processor, then it will be true for all: the activity times
on some arbitrarily chosen processor p’ are shifted by a constant, 7.(p1C1, ... ,pn—1Cn—1), compared with
the times on processor zero. We therefore assume that the processor coordinates p; are all equal to zero.

The activity times satisfy ¢t = 7"’.; = k1j1 + k2C1ja £ vj3 where j; = p;C; +¢; for i = 1,2. We set p; = 0.
Then the times at which VP (¢, ¢2) is active satisfy

t=kic1 + kaCieo (mod ’)/) .

We need to show that there are no conflicts, that is, that there does not exist another VP in the cluster
that has the same activity time modulo the cluster size. Suppose that there is such a conflicting VP, and
that its coordinates are d = (d;,dz). In other words, the VP coordinates ¢ and d satisfy

k1(01 — d1) + kQCl(CQ — dg) =0 (mod 0102) .

The second term is obviously congruent to zero modulo C;. This implies that the first term must likewise be
a multiple of Cy. Given that k1 and C; are relatively prime and given the bounds on the virtual processor
coordinates, the only possible value for the first term is zero; in other words, it must be the case that ¢; = d; .
We can then drop the first term, and conclude that

kQ(CQ — d2) =0 (mod CQ) .

Now the same reasoning shows that ¢ and d are identical. |

Now note that we may make any preliminary permutation of the axes and apply the construction of
Proposition 1.

Example 2

Suppose that @ = (0,0, 1) and that C, the cluster shape, is (2,3). Let 73 = 6. From (3), either 7 = (kq, 2k», 6)
or 7 = (3ky, k2, 6) with k; AC; = 1, for i = 1,2. Taking ky = 1 and k» = 5 for example, we get the activity
tableau (which shows the residues modulo « of the times at which each VP in the cluster is active)

11513
412

in the first case (the ¢; axis is vertical) and



in the second. The number in each box denotes the residue modulo 6 of the times at which the virtual
processor that lives there is active. For a juggling schedule, these are all different. O

Now consider the converse of Proposition 1. Clearly, tightness does not imply that (3) holds, because
of the axis permutation that can be applied. But after some preliminary permutation of the axes, (3) does
hold for all tight schedules, as we next demonstrate. We first assume that Ile,, = 0, and that 7 satisfies (2),
t.e. that 7, = £~.

We shall use the same group theoretic result that Darte originally employed in his theory. Let (G, +) be
a finite abelian group. For g € G and 1 < ¢ < order(g), denote by [g], the subset {0,g,...,(¢ — 1)g} of G.
Let Sy,...,S, be subsets of G. If every g € G has a unique representation g = g1 + - -- + g, with g; € S;
for all 1 <i <mn, then G is said to be the direct sum of the subsets.

Theorem 1 If a finite abelian group is the direct sum of subsets of the form [g],, then at least one of the
subsets is a (cyclic) subgroup.

Proof Proved by Hajos [14]. [ ]

Now consider the residues modulo v of the activity times in a cluster of shape C'. The statement that
the schedule is tight is equivalent to the statement that these residues are exactly all the elements of the
additive group Z., of the integers modulo v, a finite abelian group. Furthermore, Z., is clearly the direct sum
of the subsets found along the coordinate axes of the cluster: the (n — 1) subsets [1;]c;, 1 < i < n. Hajos’s
theorem implies that one of them is a subgroup. Since an arbitrary permutation of the axes is permitted, we
may be allowed to label this the (n — 1)%. This implies that 7,,_1C),_1 = 0 mod v, and no smaller multiple
of 7,—1 has this property. This is equivalent to

Tpo1 =kp_1C1 X --- x O

with k,_1 A Cp_1 = 1. Thus, the last two elements of 7 have the required form.

We now show how to proceed recursively. Define 7,1 = C; X --- x C),_o. Consider the activity times in
the subcluster corresponding to ¢,_1 = 0, taken modulo v,,—1. All v,,_1 of these values must be different,
for they repeat, each of them, C,,_; times as ¢,,_1 varies (since 7,1 is a multiple of 7,,_1), and each occurs
Cp—1 times in the whole cluster. So they are the elements of the finite abelian group Z.,_,, and again by
Hajos’s Theorem, the activity times along one of the remaining axes, modulo 7,—1, form a cyclic subgroup.
The argument above then applies, and by induction, 7 has the form (3) up to a permutation of its first
(n — 1) elements and the corresponding permutation of c.

We have therefore proved the main result of this section:

Theorem 2 Let C be a given cluster shape. If 11 consists of (n — 1) rows of the identity, then 7 is a tight

schedule if and only if (3) holds, up to a permutation of the elements of C and the same permutation of those
elements of T corresponding to nonzero columns of II.

Now we show that the restriction on II is unnecessary. Let S be the inverse of a unimodular extension
of TI. The last column of S is the projection vector %. The remaining columns are the vectors that describe
the virtual processor array. In particular, the first (n — 1) rows of S™! are the projection matrix II. The
transformation matrix M is the matrix whose first row is 7 and whose last (n — 1) rows are II:

Mz<§>. (4)

Thus



is the mapplng from iteration j to time ¢t and virtual processor . We now change basis in the iteration
space: j' =85~ 17 j are the coordinates of the iteration with respect to the basis consisting of the columns of
S. In this basis, the transformation becomes

t - - 7.5 7.5 -
(5)=ai=asi=(53)7=(1770)7 2

Clearly, T is a tight schedule with cluster shape C and mapping II if and only it 7.5 is a tight schedule for c
with the mapping (I,—; 0). Hence, the generalized condition (3) applied to 7.5 is a necessary and sufficient
condition for a tight schedule. The formula does not specify the components of 7 but rather the components
of 7.5, and 7 is recovered through the integer matrix S—1.

For later use, we need to record some important properties of the mapping matrix and its Hermite normal
form. It is fairly straightforward to show, as a consequence of Darte’s theorem on schedules and the cluster
shapes for which they are tight, that the Hermite normal form of the mapping matrix M (see (4) above) is
(up to a row permutation if IT)

1 0 . . . 0
* Cl
MT = H,, = e . (6)
. 0
* . . . % Chq
where the cluster shape is = (C1,...,Cn_1). The unimodular matrix 7! is a unimodular extension of

7. We call T the “time" matrix. Its first column is a vector «f such that 7.4 = 1; the vector « connects an
isochrone (hyperplane in the iteration domain of simultaneously scheduled points, scheduled at time t) to
the next isochrone (at time ¢ + 1).

We have used these results to generate schedules in a practical system for synthesis of systolic arrays;
the details of the implementation will appear in a later report.

5 Reducing the cost of control in systolic processors

The loop body of the systolic loop nest can be viewed as a behavioral specification of the systolic processor
hardware. The body of the loop after transformation into LSGP form provides this specification. As an
example, for a two-dimensional processor array, the loop has the following form (up to further optimization):

for (¢t = 0; t < TMAX; t++) {
for (p1 = 0; pl < P1; pl++) in parallel {
for (p2 = 0; p2 < P2; p2++) in parallel
{
Calculate the cluster coordinates
c of the active virtual processor;
Calculate the global coordinates
v of the active virtual processor;
Calculate the iteration space coordinates
j of the iteration mapped to VP v at time t;
if ( j is in the iteration space )
{
Execute the loop body of iteration j;
X



This code is produced through a sequence of loop transformations, which we now describe.

The first transformation is a tiling. We tile the iteration space, then we synthesize a systolic array for the
parallel execution of a single tile. The outer loops over tiles are executed by a host processor. The reason
for this tiling is to reduce v, the number of virtual processors simulated by each physical processor, for this
will result in a reduction in the local storage requirements of the systolic processor. Tile shape is ultimately
constrainted by the available bandwidth into and out of the systolic array.

A vital technique in realizing the advantages of systolic computation is to pipeline data through the
systolic array instead of loading and storing data in shared memory. We model this in the code by using
data arrays indexed by time and processor, a technique suggested by Collard [15]. (J. F. Collard views the
idea as part of the folklore.) Left hand side occurrences of these data arrays are always indexed by ¢ and p
without offset. A right hand side occurrence with indices ¢ - ot and p — 6}) refers to the value created for
this data array 0t clocks earlier on the processor at distance dp from the current referencing processor. This
step requires that we do exact value-based data dependence analysis.

We also change the loop structure: the time and processor coordinates become the loop indices. The
strides and loop bounds are known from the initiation interval A, the schedule, and the given array shape.

The parallel loop body will generally contain code, which we refer to as housekeeping or control code,
not present in the original loop, or implicitly present, whose cost we consider here. Housekeeping code has
several forms and functions:

Cluster coordinates. For each time t on the given processor §, one may need to compute the local position
¢ within the cluster: 0 < ¢ < C, for k=1,...,(n—1). These are the position of the currently active
VP.

Virtual processor coordinates. One may also need the global virtual processor coordinate vy = ¢ +
kak,fOrk‘: 1,... ,(n—l).

Iteration space coordinates. Since the iteration space coordinates f may appear in the loop body, these
. . . . .= t
will sometimes need to be computed. The usual technique is to use the relation j = M ! ( 7 ) . (The
result is guaranteed to be integer when ¥ is active at time ¢, even though M ! is a matrix with rational
elements.)

Cluster edge predicates. When referring to data computed at a different iteration, the mapping to a
neighboring virtual processor is straightforward: v is just I1d where d is the inter-iteration distance of
the dependence. But due to clustering, this virtual processor may be on the same physical processor,
or on one of several neighboring processors. Cluster edge predicates are tests involving comparison of
the cluster coordinates ¢ and the cluster shape C that are used to find the correct source processor for
the data.

Tile edge predicates. These test the global iteration coordinates against the limits of the current tile in
order to find the cases in which the source of a dependence is another iteration in the same tile; if not,
the data must be read from the global memory.

Memory addresses. When data is “live-in” to the loop nest, or is “live-out”, it is read from or stored into
global memory. The memory address, which is the location of an array element whose indices are affine
functions of the iteration space coordinates j, must be computed.

Iteration space predicates. These test the global iteration coordinates against the limits of the iteration
space, to see if there is an iteration scheduled for the given processor at the current time, so as to shut
off the processor when it has no scheduled work. Iteration space predicates are present in addition to
tile edge predicates when the tiling covers a superset of the iteration space.

Our first experiments with systolic processor synthesis revealed that these housekeeping computations
completely overwhelmed the cost of the hardware that carries out the computations inherent in the original
loop body, especially when that computation is simple. The result was an inefficient systolic processor.
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One reason for this inefficiency was the method used to compute cluster coordinates and the various
predicates. Our original approach took the rather obvious viewpoint that each processor, at each time, com-
putes the cluster coordinates of its active virtual processor, which is a function of the processor coordinates
P and the time ¢. We generated the code by first applying standard techniques [16] for code generation after
a nonunimodular loop transformation (using Hermite form) to generate a loop nest that scans the active
virtual processors for each time. The cluster shape appears in this loop nest as the strides for the virtual
processor loops. We then inferred the local processor coordinates ¢ from the lower bounds for the virtual
processor loops, which are functions of p and ¢, by taking their residues modulo C.

This technique is memory efficient, but computationally very expensive. Using the loop bounds obtained
this way to generate the cluster coordinates of the active virtual processor is expensive: it involves too many
maximum and minimum operations, quotient and remainder operations, additions and multiplications. The
computation of the i-th cluster coordinate involves, in general, i additions and multiplications, plus a quotient
operation and a remainder operation (for computing ¢;). The total complexity of the computation of cluster
coordinates is thus O(n?) expensive operations. Indeed, it is a form of integer triangular system solution.
We know that

( 2 ) =Mj=H,T" '] =Hpi

where H,, is the Hermite Normal Form of M, and i is integer. Furthermore, we know (see (6) above) that
the (1, 1) element of Hy, is unity and that the rest of the diagonal of H,, consists of the elements of C. The
requirement that the triangular system above has an integer solution 7 in fact completely determines the
residues modulo (1,C) = diag(H,,) of @, which are the cluster coordinates of the VP active at time ¢ on
processor g = &+ C. This in turn determines 7. Solving this system, inferring the cluster coordinates in the
process, has O(n?) complexity.

This cost can be reduced to O(n) by a slightly different use of the special form of a tight schedule. Let
us ignore the permutation. Reconsider (5). Since 7 is tight for the given cluster shape C, it follows that

t=(79).7 = k1j} + k2Crjy + -+ knCiCa -+ Coia i,

and
T=(1,---sdh_1), P=0+C, and ¢=0modC.
with the residue operation applied elementwise to the vectors. Thus,

t = kyv; mod C; and ¢; = v; mod C;) = ¢; = k; 't mod C,
1

where kl_l is the multiplicative inverse of k; mod C (exists since k; A C1). In general, ¢; = v; mod C; =
k;* (...) mod C;. The following Matlab function uses this idea to compute the cluster coordinates:

function ¢ = time2vp(t, C, p, k)

% mod(a,b) returns a mod b.
% intinv(a, b) returns the multiplicative inverse of a mod b
% when a and b are relatively prime.

for i = 1:n-1
c(i) = mod(intinv(k(i), C(i)) * t, C(i));
v(i) = p(i) * C(i) + c(i);
t = (t - k(i) * v(i)) / C(1);

end

Obviously, the running time is O(n). Some computations can be optimized further. For example the products
p;C; are constant for a given processor, the multiplicative inverses can be pre-computed since k; is a constant.
The residue ki_lt mod C; can be optimized into table lookup, with a table of size C;, using t mod C; as the
index into the table. But, from the viewpoint of generating hardware, it still has a few disadvantages since
it involves a quotient and a remainder for each dimension, and it does nothing to assist with addresses,
iteration space coordinates, or predicates.
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We now discuss methods for making a major reduction in the cost of housekeeping computations, to the
point where their cost is tolerable. We shall show by three examples that once these techniques are employed
the overall cost of the systolic processor is in line with what one would expect from examining the original
loop body. The reduction in cost, compared with the straightforward implementation above, is typically an
order of magnitude.

We shall examine two alternatives. Both of them trade space for time. They exploit the fact that the
various relevant quantities may be efficiently inferred from the values they took on the same processor at an
earlier time.

For the first option, we exploit the fact that in a tightly scheduled systolic design, all of the cluster
coordinates and virtual processor coordinates and all but one of the global iteration space coordinates are
periodic with period =, as are all predicates defined by comparing these periodic functions to one another
and to constants. The remaining iteration space coordinate satisfies

Jn(t) = jn(t —v) +1.

(These assertions apply when II consist of rows of the identity; things are only slightly more complicated in
general.) Any quantity that depends linearly on j, can be updated with a single add. Quantities (such as
predicates) that depend only on the other coordinates are similarly periodic. This is the cheapest approach
possible in terms of computation; its only disadvantage is in storage. We need to store the last ~ values of
any coordinate or related quantity that we wish to infer by this y-order recurrence. When = is fairly large
(say more than ten or so) these costs become significant.

In the next section, we describe a technique that allows us to update the cluster coordinates ¢(t,p) from
their values at an arbitrary previous cycle but on the same processor: &(t,p) = R((t — dt,p)) (here R stands
for this recurrence map.) We may choose any time lag 0t. (Provided, of course, that dt is not so small that
the recurrence becomes a tight dataflow cycle inconsistent with the schedule that we have already chosen.)
The technique shows how to construct the corresponding R. We make use of the properties of the tight
schedules discussed above in doing this. The form of R is quite straightforward. Using a binary decision tree
of depth (n — 1), we find at the leaves of the tree the increments é(t, p) — ¢(t — 0t,p). The tests at the nodes
are comparisons of scalar elements of &t — ¢, p) with constants that depend only on C' and the schedule 7.
They are thus known at compile time and can be hard coded into the processor hardware.

These cluster coordinates are the key. For most of the integer-valued (as opposed to boolean-valued)
housekeeping parameters are linear functions of these, including the global virtual processor coordinates ¥,
the global iteration space coordinates ]_", and the memory addresses. If we know the change in & then we also
know the changes in all of these derived values, and these changes appear as explicit constants in the code.
Thus, only one addition is needed to compute each such value.

Concerning the predicates, recall that the virtual processors within a cluster are visited in a round robin
schedule that repeats with period =y, since the schedule is assumed to be tight. Thus, any predicate that
compares local or global virtual processor coordinates with constants must also be periodic with period .
Depending on the relative cost of comparison and storage of a one-bit predicate, as well as the cluster size
v, we may choose not to recompute these using comparisons but rather to store them in a buffer of size ~.

We have thus reduced the problem of cost reduction to that of the update of the cluster coordinates. We
consider this in the next section.

6 Updating the cluster coordinates

This section describes a temporal recurrence method for computing the cluster coordinates (¢) of the single
active virtual processor on a given processor at some given time, without interprocessor communication.
From ¢& we recover the other relevant parameters and predicates as discussed above. There is a unique VP
active at each time, precisely because the schedule is tight.

Recall the properties of the Hermite normal form of the mapping matrix and the time matrix 7', whose
first column is @ (6). In fact, M = (1, 2)! is the first column of H,,. Moreover, because of the properties of
a Hermite form, the vector  is “in the box™ 0 < Z < € (inequality elementwise). (It is therefore a legitimate
cluster coordinate vector, and also a legitimate successor to the virtual processor whose cluster coordinates
are zero.)
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First, we explain how to infer &(t) from &t — dt) with a little work and the aid of the activity tableau.
We show an example before the general theory.

Example 3

Let n = 3; let = (4,5). Assume that ez is the smallest integer null vector of the space mapping, and let
7 = (7,4,20), a tight schedule (with k&y = 7, k2 = 1, k3 = 1). The times at which the virtual processor
¢ = (c1,c2) is active are the times congruent modulo 20 to the value at position (c¢1,c¢2) in the activity
tableau:

1159|1317
14 118 | 2 | 6 | 10
711115119 3
0| 4] 8|12 16

The ¢ axis is the vertical axis in this diagram.

If iteration ; is scheduled at a time that is a multiple of 20, then the cluster’s lower left hand virtual
processor (whose cluster coordinates are ¢ = 0) computes it (this is true only for the physical processor
P = 0. For other processors, this property may be shifted). Iteration f+ W is the iteration computed by this
physical systolic processor one cycle later, and its cluster coordinates are ¢ = 7.

In this example, the Hermite form of the mapping is

7 4 20 1 00 7T 4 2 3 4 0
M=11 0 0 =13 4 0 -5 -3 —-15 | =H,T 'and T = 0o 3 5
01 0 0 3 5 3 2 9 -1 -2 -1

0
the tableau entry at time O to the one at time 1. From the tableau we see that to advance one clock we would
move in the direction z — up three and no change in column — unless this takes us out of the tableau, i.e.,
unless we are in rows 2, 3, or 4. In that case, we move to the right a distance 2 modulo the tableau extent
of 5, and down 1. O

How can we generalize this, to 6t > 1 and to more than two dimensions? One simple idea is to construct
the tableau as we have. Then, for each time 0 < ¢ < v — 1, find ¢ and ¢t + 6t in the tableau. The difference
of their positions in the tableau is a possible change that may need to be made. It will turn out that there
are only two possible changes for the first component. For each of these, there are two possible changes to
the second component, and so forth. In other words, there is a binary tree of component changes. To find
the correct new cluster coordinates (¢t 4+ dt) from the current coordinates &, first add the only one of the
two possible changes to the first component that leaves it in the box. Descend from the tree root to the
corresponding child; do the same for the second component, etc. The choice will always be unambiguous.

The vector z = ( 3 > (the first column of H,, below the diagonal entry of unity) is indeed the offset from

Back to Example 3

In this example, we illustrate the fact that the technique works for an arbitrary é¢. Let us look at a tableau
in which we replace each entry with the offset to the VP that is active three cycles later:

('3) ]-) ('3) ]-) ('37 ]-) ('37 ]-) ('3) '4)
(1,4) | (1,-1) | (1,-1) | (1,-1) | (1,-1)
(1,4) | (1,-1) | (1,-1) | (1,-1) | (1,-1)
( ]-) 4) (1) '1) (]-7 '1) (]-7 ']-) (1) ']-)
The decision tree that corresponds is given in Figure 1. O

In the following example, we illustrate the fact that the technique works for an arbitrary dimension. In
general, the tree has depth (n —1). At each leaf, we have specified the full change for the cluster coordinate
vector, and by linearity we also infer the corresponding changes to all relevant virtual processor coordinates,
iteration space coordinates, array indices, memory addresses, and any other linearly related and useful
quantities.
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Example 4
Let C = (4,3,2); let 7 = (7,8,12,24). The three-dimensional activity tableau is

C3 = 0 C3 = 1
21| 5 |13} 9 |17 ] 1
14 | 22] 6 2 |10 | 18
7115123 19| 3 |11
0| 8|16 12|20 | 4

By searching the tableau we find these six possible transitions when 6t = 1:

3 3 3 3 -1 -1
2 2 -1 -1 -2 1
1 -1 -1 1 0 0

Now consider the first coordinate, which must lie in the range 0 < ¢; < 4. One can add 3 if the value is 0
or subtract 1 otherwise; in other words, there is no ambiguity about which of the two possible changes to
make. If the change in the first coordinate is 3, then the change in the second is either 2 or -1, etc. The
decision tree is given in Figure 2. O

if (c(1) + 3 < Cc(1)) {

c(1) += 3;
if (c(2) + 2 <C(2) {
c(2) += 2;
if (c(1) + 1 < C(1)) if (c(3) + 1 < C(3))
{ c(3) += 1;
c(1l) += 1; else
if (c(2) + 4 < C(2)) c(3) += (-1);
{ }
c(2) += 4; else {
} c(2) += (-1);
else if (c(3) + 1 < C(3))
{ c(3) +=1;
c(2) += (-1); else
} c(3) += (-1);
} }
else }
{ else {

c(1) += (-3);
if (c(2) + 1 < C(2))

c(1) += (-1);
if (c(2) + 1 < C(2) {

{ c(2) +=1;
c(2) +=1; c(3) += 0;

} }

else else {

{ c(2) += (-2);
c(2) += (-4); c(3) += 0;

} }

} }

Figure 1: Decision tree code for Ex. 3.

Figure 2: Decision tree code for Ex. 4.
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6.1 A general updating scheme

We now show how to construct the decision tree from first principles, without resort to construction and
exploration of the activity tableau. We shall also prove the assertions of unambiguity and correctness made
above. Since 7 is tight, we have that (up to permutation of the indices, and with the proviso that II consists
of (n — 1) rows of the identity)

7_": (kl, k‘QCl, ey kn_lCl ---Cn_g, :|:’)/) (7)

where k; AC; =1forall 1 <¢<n-—1.
We consider the set C of cluster coordinates within a cluster of virtual processors, i.e. within one systolic

processor:
C={ceZ"'|0<e,<C; k=1,...,(n—1)}.

For every position ¢ € C, we associate a local clock at which the given virtual processor is active
tc(a =TiC1 +Th—1Cn—1 (HlOd 7) .

t. maps C one-to-one onto [0..(y — 1)]. Let 0t be a given time lag. We wish to know the set B of all of the
differences of positions (members of C —C, the set of differences of cluster coordinate vectors) that can occur
as values of 771(t + §t) — 771(t). We abuse notation and use 7 for its first (n — 1) components wherever
convenient. By definition, B consists of the position-difference vectors # that satisfy 7.Z = 6t (mod ). By
(7) we have

kla:l + k‘QC’lZUQ + -4 k‘n_101 X e X Cn_gmn_l =t (HlOd ’)/) . (8)

Now divide 6t by Cy: then 6t = ¢1Cy + r1 where 0 < r; < Cy. By (8), we have that kiz1 = r1 mod C,
so that 1 = ki Lr mod Cq, (recall that k; and C; are relatively prime, so that k; has an inverse in the
additive group of the integers modulo C7). Because € B has elements bounded in absolute value by the
elements of C, it follows that there are only two possible values for z,

z1 € {k7'r1 mod Oy, (k{'ri mod Cy) — C1 } .

These are the two possible differences of the first coordinate of &(t + dt) and cGﬁ) The choice is made on the
simple basis of which leads to a new point in the box. Only one can. So

kl_lT'l mod C; if (01 (t) + kl_lT'l mod Cl) < (4

c(t+6t) = (t) + { k;'(r; mod Cy) — C;  otherwise

Pursuing this line of argument, for each choice of change in first coordinate we determine the two possible
choices for the change z2 in second coordinate. From (8) we have that k2Cizo + -+ + k101 X --- X
Cp—2Zpn—1 = (6t — k1z1) (mod 7). We already know that d¢t — ki1 is a multiple of C;. Thus, we have that

koxy = (((5t — klxl)/C’l) (mod 02) .
Thus, as before, we conclude that
zy € {ky ' ((6t — k121)/C1) mod Cs, (k3 ((6t — k121)/C1) mod Cs) — Co} .

Continuing in this way, we arrive at the tree of changes of cluster coordinates.

Matrix-oriented approach The decision tree phenomenon can also be explained from a matrix-oriented
and geometric viewpoint that has the additional advantage of simplifying the computation of the different
changes in coordinates.

Remember the meaning of the columns of the matrix T'. T is a basis of Z" such that MT = H,,; the first
row of MT gives the time difference along each column vector of 7', and the last rows are the coordinates
of the column vectors of T' in the virtual processor array. Since the first row of MT is (1,0, ... ,0), the first
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column @ of T' connects an isochrone to the next isochrone, and the remaining columns fo, ... tn lie in an
isochrone. Given the iteration j, what we want to find is a vector k such that M (J + k) = (¢ + 6t, 2)* where Z
is in the box. We know already that k exists and is unique since the schedule juggles. This can also be seen
from the fact that H,, has the C;’s on the diagonal: writing k= T)\ we end up with a triangular system
that can be easily solved thanks to the structure of H,,. We can add a suitable linear combination of #s,

, tn t0 0t x @ (the first component of M (5t x @) does not change) so that the (n — 1) last components
of M (0t x w) are in the box. This vector (let us denote it by 5[0, ...,0]) will be one of the candidates in
the decision tree. Now, either the second component of M (] + 5| [0,...,0] is still strictly less than Cy, then
we are in the first case (first branch of the tree), or this component is strictly less than 2C} and we simply
subtract 5 to go back in the box: 5[1,0, ...,0 = 5[0, ...,0] — t5 (plus possibly a linear combination of #3,

, T, so that the (n — 2) last components of M[1,0,...,0] are in the box) is one of the candidates in the
decision tree. Continuing in this way, we end up with at most 2("~1) vectors (at most two cases for each
dimension, and only one when the corresponding component of the move vector is zero).

The notation in brackets for the vectors  specifies if the move is nonnegative (0) or negative (1): for
example, 5| [0,1,1] corresponds to the case where we move forwards in the first dimension and backwards in
the two other dimensions.

We illustrate this technique on the previous examples.

Back to Example 3

We take §t = 1. From the matrix H,,, we read that we may have to move along & = (3,0) in the virtual
space (which corresponds to the vector 5[0,0] = (3,0,—1) in the original space). If ¢; + 3 > 4, then we
subtract the second column of H,,, i.e. (4,3), we find the move vector (—1,—3), and we add the third
column to go back in the box: (3,0) — (4,3) + (0,5) = (—1,2). This corresponds in the original space to
5[1, 0]=(3,0,—1)—(4,3,-2)+(0,5,—1) = (—1,2,0). Then, for both vectors, we check the last component:
in the first case, no other vector is required since the second component of (3,0) is 0. In the second case, we
may have to subtract (0,5): the last candidate is thus (—1,2) — (0,5) = (=1, —3) and 8[1,1] = (=1, —-3,1).

The technique works the same way for arbitrary d¢. You begin with the change §tf, and “correct" it as

necessary with the remaining columns of H,, in order to find the tree of changes. O
ack to Example 4

In this case, C= 4,3,2), 7= (7,8,12,24), and we find:

7 8 12 24 3 4 0 0 1 0 0 O
1 0 0 O 2 1 3 0 34 00
MT = 01 0 O 1 1 0 2 o 21 3 0 = Hm
0 0 1 0 -2 -2 -1 -1 1 1 0 2
We thus find successively, in the virtual space, the vectors (written as rows) (3,2,1), (—1,1,0) = (3,2,1
(4;17 1)) (3;_1;1) = (3)27 1) - (0 3 0) ( -2 0) ( ]-7 1)0) (0 3 0) (3 2 _1) ( 2 1) ( )072) an
(3,-1,-1)=(3,-1,1)—(0,0,2), and, in the orlglnal space, the correspondlng vectors 6[ 0 0] (3,2,1,— )
3[1,0,0] = (=1,1,0,0), 6]0,1,0] = (3,—1,1, 1), 8[1,1,0] = (—=1,-2,0,1), 8[0,0,1] = (3,2, —1, 1), and
3[0,1,1] = (3, -1, —1,0). O

This technique gives the necessary tests in the decision tree directly, as well as the corresponding changes
in the cluster coordinates and the original loop indices.

6.2 Measuring the cost of control code

We show here the results of systolic loop transformation, with our efficient recurrence scheme for cluster
coordinates and the parameters that depend on them linearly. We use three loop nests as test cases. The
first, from an application in digital photography, is a nest of depth six, in which the loop body contains only
a simple multiply-accumulate statement

x[i1][i2] [i3] [i4] += y[i1]1[i3][i5][i6] * z[i1+i3] [4*i3+i6]
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Photography Printing Matrix Mult.
operation | original transformed naive | original transformed | original transformed
+ 5 7 52 22 31 5 6
X 1 1 34 1 1 1 1
+ 0 0 4 0 0 0 0
compare 1 6 35 18 18 1 3

Table 1: Operation counts in inner loop, before and after parallelization (and with a naive scheme.)

The second, from a printing application, is a much more complicated loop body. The third is matrix
multiplication.

Using the mechanisms described in this paper, we transformed the loop nests. Full details of the mecha-
nisms used (for uniformization, loop transformation, mapping and scheduling, etc.) will appear in another
paper. By way of illustration, we present the original and the transformed loop nests for matrix multiplication
in Appendix B.

We show the number of inner-loop integer operations in the original and the fully transformed loop nests
in Table 6.2. In addition, for the photography application, we show the same statistics for the code as
transformed by the naive methods that we have earlier described. (The counts were obtained by examining
source code. One add was charged in the original code for each array reference (assuming compiler strength
reduction of the address calculation). One add and one compare was charged for control of the inner
loop. The text was then scanned for other arithmetic operations, with duplicate expressions assumed to
be caught by common subexpression elimination optimization. Division by a constant is assumed done by
a multiplication.) It is clear from this data that the housekeeping due to parallelization has added to the
computational cost of the loop body. The number of operations increased by seven in the simple photography
loop, nine in the more complicated case printing loop, and only three in the matrix product loop. The ratio
of the added operation count to the original operation count is 3 : 7 for the matrix multiply loop, 1 : 1 for the
photography loop, and 9 : 41 for the more complicated loop. The photography loop has a deeper decision
tree than does matrix multiply, because of the deep loop nest; this accounts for the different costs. Evidently,
with optimization, housekeeping costs are not trivial, but they are manageable. The naive method, however,
produces intolerably costly code for calculation of the predicates of conditionals and for array addresses.
In the example given, about 36 percent of all operations in the naive code are generated in the O(n?)
algorithm for cluster coordinates; about 27 percent are due to the calculation of all predicates directly from
their definitions, and about 35 percent are due to array addressing; the remaining two percent are for loop
control.

7 Conclusion

The first part of this paper provides a simple characterization of all tight LSGP schedules, solving a long-
standing problem in systolic array synthesis. The characterization allows a synthesis system to directly
enumerate all of the tight schedules in any desired region of the space of schedules, which can be very useful
in generating tight schedules that have some other desirable properties.

Parallelization is known to have some cost. We have shown how to make these costs very manageable
by use of a fairly sophisticated optimization strategy that takes full advantage of the form of LSGP parallel
codes with tight schedules. We made essential use of the mathematical properties of tight schedules, using the
characterization of them that we provided in the first part of this paper. Synthesis of specialized processors
for the systolic code that we generate is likely to result in highly efficient use of chip area; indeed our
experiments with a simple chip area model confirms this. We conclude that the technique explained in the
second section of this paper can control the added computational cost due to parallelization to the point at
which it is not overly burdensome, especially for loop nests that have more than a handful of computations
in the innermost loop.
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A Integer matrices and lattices

A few of the basic terms and facts that we use are collected here. For a thorough discussion, see [17] or [18].

A lattice in a finite-dimensional vector space is the set of integer linear combinations of a set of linearly
independent vectors. If the vector space has a norm, then an equivalent definition is that a lattice is an
additive subgroup (a set of vectors closed under addition and subtraction) whose elements are all separated
from one another by some minimum distance.

The set of integer linear combinations of an arbitrary finite set of vectors (whether linearly independent
or not) is also a lattice. (For example, the set of all integer linear combinations of 14 and 21 is the set of all
integer multiples of their greatest common divisor, 7.) If the integer linear combinations of a set S C L of
vectors is all of the lattice L then we say that S generates L. If A is any matrix, the lattice generated by
A is just the lattice generated by its columns. Every m-dimensional lattice (contained in an m-dimensional
subspace and in no smaller subspace) has a set of m of its elements that generates it.

In this paper we consider only lattices that are subsets of Z™.

Let A be an integer matrix with nullity v, its integer null vectors are a lattice, which we call the null
lattice of A. Clearly, there exists a set of v integer null vectors of A that generates its null lattice. When
v = 1, we call this selected null vector the smallest integer null vector of A; it is unique up to sign.

A square integer matrix is called unimodular if the absolute value of its determinant is one.

Lemma 1 A unimodular matriz has an integer inverse.

Proof Cramer’s rule. [ |

Lemma 2 A unimodular matriz maps the integer vectors one-to-one and onto themselves.

Corollary 1 The lattice generated by the columns of A is the same as the lattice generated by AQ for any
unimodular matriz (.

Let A be an n x n integer matrix of rank n. Then there exists a lower triangular matrix H and a
unimodular matrix U for which

A=HU with h; >0 and OSh” < hy;  for all 1<4,5<n.
The matrix H is called the Hermite normal form of A, and it is unique.

Lemma 3 Let Q be unimodular and let A be square and nonsingular. Then A and AQ have the same
Hermite normal form.

Proof If H = AU where H is in Hermite form and U is unimodular, then H = AU = (4Q)(Q'U) is also
a Hermite decomposition. ]

Lemma 4 Let L be square and lower triangular. The diagonal of the Hermite normal form of L is the
absolute value of the diagonal of L.

Proof Adding or subtracting one column to or from another is a unimodular transformation. Multiplying
a column by —1 is too. These operations can bring any lower triangular matrix into Hermite normal form.
See [17] for more details. [ ]
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B A transformed loop nest
Here is the original loop nest for a matrix multiplication example.

for (i=0; i < 1400; i++)
for (j=0; j < 1800; j++)
for (k=0; k < 1600; k++)
c[il[j] = c[i1[3j] + alil[k] * b[k1[j];

The system was instructed to generate a systolic array with four processors in a 2 x 2 arrangement, each of
which is capable of one loop iteration per cycle. The mapping direction was specified to be u = ( 0 0 1 )

The inner loop was first tiled, with tiles of shape ( 6 6 1600 ) The tiling mechanism we use is
restricted to tiling along planes parallel to the iteration space axes. The tile shape was chosen so that the
memory bandwidth needed to support the systolic array’s demands was two words per cycle; this available
memory bandwidth is a user-prescribed parameter.

The VP array therefore had shape ( 6 6 ), giving a cluster shape C = ( 3 3 ); there were therefore
v =9 VPs in each cluster.

The schedule 7 = ( -1 -3 9 ) was selected. (According to the theory above, this schedule is tight.)

Here is the transformed inner loop. Note the presence of 3n — 2 = 7 integer additions for calculating
coordinates, 2 additions, one per addressed array, for address updates, and 8 comparisons for control pur-
poses. This is the housekeeping burden. In order to make the schema more obvious, we have not optimized
the loop to the greatest possible extent. All but two of the comparisons generate ~y-periodic results and
therefore could be removed, and replaced with one-bit wide FIFO buffers of length v = 9 if this were deemed
desirable. Moreover, some of the coordinates are not used, and their computation would be suppressed in
an optimized version. The costs of an optimized systolic matrix multiply loop are given in Table 6.2.

/* Systolic processor code for matrix multiplication on a 2 X 2 systolic array */

for (t = -20; t <= 14391; t++)
{
for (P_1 = 0; P_1 <= 1; P_1++)
{
for (P_2 = 0; P_2 <= 1; P_2++)
{

/* decision tree for update of cluster coordinates
and addresses using delta_t = 6 */
delta_cl = 0;
if (ua_c2[t - 6]1[P_11[P_2] < 2)
{
delta_c2 = 1;
delta_k = 1;
addr_change_a = 8;
addr_change_b = 14408;

else

delta_c2 = -2;
delta_k = 0;

addr_change_a
addr_change_b = -16;

1]
o
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/%
cl
c2
/%
vl
v2
/%
i
j =
k
/%

updated cluster coordinates */
= delta_cl + ua_cl[t - 6][P_11[P_2];
= delta_c2 + ua_c2[t - 6] [P_1][P_2];
virtual processor coordinates. CPi holds C(i) P(i) */
= cl + CP1[P_1]1[P_2];
c2 + CP2[P_11[P_21;

iteration coordinates */

i_tile + v2;

j_tile + vi;

delta_k + ua_i3[t - 6][P_11[P_2];
updated addresses */

addr_a = addr_change_a + ua_addr_alt - 6][P_1]1[P_2];
addr_b = addr_change_b + ua_addr_b[t - 6][P_1]1[P_2];

/%

if
{

determine if the processor is active:
does it have a valid iteration */

((1 < 1400) && (j < 1800) && (0 <= k) && (k < 1600))
/* get value of matrix A from its previous use... */
if (vl <= 26)

{
if (c1l < 6)
{
/* which may be on this processor... */
tmp_2 = ua_alt - 3]1[P_1]1[P_2];
}
else
{

/* or a neighboring processor */
tmp_2 = uwa_alt - 3][P_11[P_2 + 1];
}
ua_al[t][P_11[P_2] = tmp_2;

}
else
{
/* or, for the first use, from memory. */
uva_al[t] [P_1][P_2] = *addr_a;
}

/* get value of matrix B as well */
if (v2 <= 30)

{
if (c2 < 7)
{
tmp_3 = ua_bl[t - 11[P_1]1[P_2];
}
else
{
tmp_3 = ua_b[t - 1J[P_1 + 1]1[P_2];
}
uva_b[t][P_1][P_2] = tmp_3;
}
else
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{
ua_b[t][P_1]1[P_2] = *addr_b;
}

/* perform the loop computation */
uva_c[t][P_1]1[P_2] = uva_c[t - 91[P_11[P_2] +
uva_alt][P_11[P_2] * ua_b[t]1[P_1]1[P_2];
}

/* push the coordinates and addresses into the fifos */
ua_addr_b[t]1[P_1]1[P_2] = addr_b;

ua_addr_al[t][P_1]1[P_2] = addr_a;

ua_c2[t]1[P_11[P_2] = c2;

ua_c1[t][P_11[P_2] = ci;

ua_i3[t]1[P_11[P_2] = k;
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