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Abstract

We present a general model for di�erentiable feed�forward neural networks� Its general mathemat�
ical description includes the standard multi�layer perceptron as well as its common derivatives�
These standard structures assume a strong relationship between the network links and the neuron
weights� Our generalization takes advantage of the suppression of this assumption� Since our
model is especially well�adapted to gradient�based learning algorithms� we present a direct and
a backward algorithm that can be used to di�erentiate the output of the network� Theoretical
computation times are estimated for both algorithms� We describe a direct application of this
model� a parallelization method that uses the expression of our general backward di�erentiation
to overlap the communication times�

Keywords� feed�forward neural networks� backpropagation� parallel implementation� network�partitioning

R�esum�e

Nous pr�esentons un mod�ele g�en�eral de r�eseaux de neurones di��erentiables non r�ecurrents� Ce
mod�ele inclut l�architecture standard du perceptron multicouche� aussi bien que ses d�eriv�es clas�
siques� Cette architecture standard se base sur une relation forte entre la notion de connexion du
r�eseau et celle de poids des neurones� Notre g�en�eralisation tire pro�t de la suppression de cette
relation� Le mod�ele pr�esent�e �etant plus particuli�erement adapt�e aux algorithmes d�apprentissage
�a base de gradient� nous pr�esentons un algorithme direct ainsi qu�un algorithme r�etropropag�e
pour le calcul de la di��erentielle de la sortie du r�eseau de neurones� Les temps de calcul des deux
algorithmes sont estim�es th�eoriquement� En�n� nous pr�esentons une des principales applications
de ce mod�ele� bas�ee sur l�algorithme g�en�eralis�e de r�etropropagation � une m�ethode de parall�elisa�
tion qui se base sur une connaissance �ne des calculs requis par cet algorithme a�n d�introduire
un recouvrement des communications par les calculs�

Mots�cl�es� r�eseaux de neurones non r�ecurrents� r�etropropagation� impl�ementation parall�ele� partition de
r�eseau



Introduction

The multi�layer perceptron 	mlp
 is now widely used as an e�cient tool for classi�cation and for function
approximation� To enhance its performance and�or to reduce its training time� many authors have proposed
modi�cations of its simple structure�

A mlp consists of several ordered layers of neurons� A neuron is a simple processing unit with several
scalar inputs and one scalar output� It receives the output of each neuron of the previous layer with the
help of a weighted connection� In order to compute its output� it multiplies each input by the corresponding
connection weight� sums the resulting values� adds a threshold and then applies a transfer function to the
sum� The simplest modi�cation idea is to change the transfer function� The preprocessing computation may
also be modi�ed 	see ���
� The neurons may be derived from a radial basis function 	rbf
 as in ��� or from
a multidimensional wavelet 	���
�

Despite their di�erences� all these models share a common principle� they use an acyclic graph of simple
units to compute a complex parametric vectorial function� Unfortunately� they are separately studied most
of the time� especially in simulation softwares� where they are handled by totally independant objects� with
totally di�erent training algorithms�

In this paper� we extend a model proposed by L�eon Bottou and Patrick Gallinari in ��� The extended
model allows to handle any feed�forward neural network model as a particular case of a general mathematical
de�nition� The di�erential of the function calculated by a feed�forward network with respect to its parameters
can be computed either with a direct method or with an extended back�propagation method� These methods
are theoretically compared by means of a precise analysis of the operation amount they need� It shows that
the back�propagation algorithm is not always faster than the direct method�

An e�cient parallelization method of the back�propagation algorithm has been derived from our model�
We take advantage of our precise study of the back�propagation principle to show that a neural network
parallel mapping can be improved thanks to computation�communication overlapping� The e�ciency of the
derived parallel implementation is similar to the most advanced network�partitioning schemes� but it applies
to any feed�forward network�

�



Chapter �

The general model

In this chapter� we do not describe the exact mathematical model 	e�g� the handled sets are ordered to
exactly de�ne the computation process� but this paper does not clearly de�ne this ordering
� It would be too
long� and not really meaningful� The exact de�nitions� theorems and proofs can be found in a technical report
���� We just provide the reader with the main ideas and results� Nevertheless� mathematical expressions
remain when they are useful for the next chapter� or when they point out the cogency of the model� Their
concrete meaning is always given�

��� Motivations

When creating this model� we had in mind our respective studies about mlp control� wavelet networks
	wn
 and mlp learning with genetic algorithms� The interest of a homogeneous approach of these di�erent
problems especially appeared when we wanted to use tools developed by one another� Despite its obvious
signi�cance� the model of �� was not convenient for us� Our needs were�

� maximal generality� with regard to some given basic properties�

� a precise mathematical description of each handled object 	and rigorous proofs
�

� a clear distinction between these objects 	and therefore� autonomous de�nitions
�

� a strong relationship between the theoretical approach and the experimental requirements�

��� Feed�forward neural networks

The key ideas of the model are to generalize the notion of neuron and to allow an arbitrary feed�forward
connection graph�

The main limitation of the standard mlp and of all its derivatives is the strong relationship between
the connection graph and the network weights� one weight for each connection� Whereas the graph should
only be a communication structure that allows the communication between the neurons� and the weights
should be associated to the notion of controlling structure that allows a training algorithm to modify the
local computation performed by each neuron�

Our generalization breaks this link� we use an arbitrary dag 	directed acyclic graph
 for the communi�
cation structure and a control vector for each neuron� The relationship between the input of the neuron�
its control vector and its output is only modeled by a vectorial function which can be of any form� All
considered variables belong to vectorial spaces� This is useful for the generality of the model�

�
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����� The neuron

In our model� a neuron N is a di�erentiable function� Its n input spaces are I�� � � � � In 	with n � IN�
�
Its output space is O� Its control vector belongs to a weight space W � Its output is computed thanks to
its input vectors and its weight vector�

Its partial di�erential with respect to its weight vector is called dNw� Its partial di�erential with respect
to its k�th input is called dNik �

����� The neural net

The underlying structure of a neural net is a dag G � 	N � E
 	N is a set of nodes� E is a set of edges
� A
feed�forward neural network is a dag� where the nodes are neurons that satisfy the following conditions�
If N has no predecessor in the graph� then it is an input neuron� and it has only one input space� In is the
set of the input neurons� If N has p predecessors� then it has exactly p input spaces� one for each predecessor
in the graph 	therefore the dimension of its k�th input space is equal to the dimension of the output of its
k�th predecessor
�

The input x of the neural network is the concatenation 	x�� � � � � xjInj
 of the inputs of the input neurons�
In the same way� its output is the concatenation of the outputs of the output neurons 	no successor in the
graph
� The weight vector w of the whole network is the concatenation 	w�� � � � � wjNj
 of the weight vectors
of all neurons in N �

����� Computing the output

A rigorous mathematical approach requires an exhaustive de�nition of each handled function� Since there is
no a priori knowledge about the graph� the only way to de�ne the computed values is a recursive building�
This method is correct only because the underlying graph is not cyclic�

To illustrate this� let us take the case of an intuitive result� the computation of the network output� Its
mathematical description is as follows�

Let x and w be the input and weight vectors of G� For any neuron N l� its input El and its output ol are
recursively de�ned functions of x and w�

� ol	x�w
 � N l	El	x�w
� wl


� If N l is the k�th element of In� El	x�w
 � xk�

� If N l �� In� and if P 	l
i is its i�th predecessor�

El	x�w
 �
�
oP �l�� 	x�w
� � � � � oP �l�

pl 	x�w

�

����� Input sharing

In a mlp� each input neuron uses the same input vector� In our model� this behavior is modeled by a
di�erentiable input sharing function� that can be of any form� The simplest example is a replicating function
which maps a vector x to a tuple 	x� � � � � x
 of size jInj� It allows all input neurons to share the same input�
as in standard models 	mlp� rbf networks or wns
�

The input sharing method does not change the di�erential of G with respect to its weight vector� Hence�
it is not taken into account hereafter� The model also handles weight sharing�

��� Di�erentials within the general model

����� The direct computation method

As the neuron functions are di�erentiable� the function computed by the network is also di�erentiable 	it
is a composite function
� The simplest method to compute its di�erentials is the standard chain rule� To
simplify� if we consider the composite function f	g	� � � 	h	x



� this method uses local di�erentiation at the

�



level of f � and global di�erentials inside the composite function� With very uncorrect notations� it might be

written� �f����x�
�x

� �f

�g����x�
�
�g����x�

�x
� The exact expression in the model is�

� if N l �� Nk�
� if N l �� In �writing El for El	x�w
��

�ol

�wk
	x�w
 �

plX
j��

dN l
ij

�
El� wl

� �oP �l�j

�wk
	x�w
 	���


� if N l � In�
�ol

�wk
	x�w
 � � 	���


� if N l � Nk�
�ol

�wl
	x�w
 � dN l

w

�
El� wl

�
	���


We have a similar property if we consider �ol

�xi
� where xi is the input of the i�th input neuron�

����� Back�propagation

The key idea of the back�propagation is to di�erentiate f	g	� � � 	h	x



 by means of a local di�erential at
the level of h and a global di�erential �above�� With very uncorrect notations again� it might be written�
�f����x�

�x
� �f����x�

�h�x�
�
�h
�x
�

In the case of our model� we consider ok	x�w
� the output of neuron Nk� as a function of ol	x�w
�
the output of another neuron N l� We therefore de�ne ok�l	x�w� f l
 as the output of node Nk when ol is
set �free� from the network constraints 	it can take arbitrary values� represented by f l
� It follows that
ok�l	x�w� ol	x�w

 � ok	x�w
� But ok and ok�l are mathematically very di�erent� and this equality is only
satis�ed for the constraint f l � ol	x�w
� The main mathematical di�culty is to prove that the intuitive
di�erentiation is correct� the constraint does not add extra di�erentiation terms�

In the model� a �rst local equation states that ok depends on wl only through the output of N l�

�ok

�wl
	x�w
 �

�ok�l

�ol
�
x�w� ol	x�w


�
dN l

w

�
El� wl

�
	���


A similar equation is ful�lled for �ol

�xi
�

The back�propagation appears in the computation of �o
k�l

�ol
� The main equation is� if there is a directed

path from N l to Nk in the graph�

�ok�l

�ol
�
x�w� ol	x�w


�
�

X
Nj

successor of Nl

�ok�j

�oj
�
x�w� oj	x�w


�
dN j

ir�l�j�
	Ej� wj
 	���


where N l is the r	l� j
�th predecessor of N j� If there is no directed path� the di�erential is null� and if
N l � Nk� it is the identity function�

A recursive method to compute �o
k�l

�ol
is given by formula ���� it needs �o

k�j

�oj
for every successor N j of

N l� Therefore� �ok�l

�ol
is computed from the last layer of the network to the input layer� this is a backward

algorithm and therefore an extended back�propagation�

����� Error function

In order to train a neural network� we use an error function which estimates a distance between the output of
the network and a desired output� This error E is considered as a function of the network weights� Gradient
based training methods use its gradient rE � To compute rE � E can be handled as a composite function
of the distance function and the neural output� In this case� the chain rule is applied to this composite
function 	the di�erential of the neural network output is therefore required� it can be computed either with
the direct method or with the extended back�propagation
�

�



The distance function can also be considered as a weightless �nal output neuron of the network� so that
the back�propagation can be fully applied� If the output of this neuron is called EG	x�w
� we can also de�ne
E�l
G 	x�w
� when ol is considered �free� from the network constraints� Then equations ��� and ��� become�

�EG
�wl

	x�w
 �
�E�l

G
�ol

	x�w� ol	x�w

dN l
w	E

l� wl


�E�l
G

�ol
	x�w� ol	x�w

 �

X
Nj

successor of Nl

�E�j
G

�oj
	x�w� oj	x�w

dN j

r�l�j�	E
j� wj
 	���


In practice� a gradient based learning algorithm uses these equations� Since the output of EG is real� every
back�propagated algebraic structure is therefore a gradient vector� wheras the direct method propagates ma�
trices 	so that the algebraic computations are intuitively more complex
� Moreover� in the back�propagation
algorithm� each non�local di�erential is the di�erential of the error with respect to a given neuron� we handle
only one non�local di�erential per neuron� Whereas in the direct algorithm� for each neuron� we handle its
di�erentials with respect to all its direct or indirect predecessors� It justi�es some complexity results�

��� Complexity

The aim of this section is to compare the theoretical time needed by both di�erentiation algorithms� All
proofs can be found in ���

����� Notations and preliminary remarks

Both algorithms need to know the input� the output and the �rst�order di�erentials of each node� Therefore�
the comparison will only focus on the cost of the algebraic operations required by both methods�

We introduce the following quantities�

� the main computation load is mostly due to the numerical operations needed for the algebraic opera�
tions� i�e� �oating point number additions and multiplications� We will assume that the time needed
to perform such an operation is �� This is therefore the unit of our formulae�

� m	i� j� k
 is the time needed to multiply a 	i� j
�matrix and a 	j� k
�matrix 	i�e approximatively ik	�j�
�

 �

� s	i� j
 is the time needed to sum to 	i� j
�matrices 	approximatively ij
�

Let j�j be the function which maps a vectorial space to its dimension 	for instance� jOlj is the dimension of
the output space of node N l
� The same notation will be used for the number of elements of a �nite set 	for
instance jN j � n
�

Let P �	i
 	resp� S�	i

 be the set of the direct and indirect predecessors 	resp� successors
 of neuron
N i� including N i� Let P�	i
 	resp� S�	i

 be the set of the direct and indirect strict predecessors 	resp�
successors
 of neuron N i� i�e� P�	i
 � P �	i
� fN ig 	resp� S�	i
 � S�	i
� fN ig
�

����� Direct algorithm

Theorem � Let G � 	N � E � �
 be a di�erentiable feedforward neural network� With the direct algorithm�
computing the di�erential of G with respect to its parameter vector needs a time equal to�

X
Nj ��In

X
N l�P��j�

�
�	jP 	j
 � S�	l
j � �
 s

���Oj
�� � ��W l

��� � X
Nk�P �j��S��l�

m
���Oj

�� � ��Ok
�� � ��W l

���
�
A 	���


�



which is approximately equal to�

X
Nj ��In

��Oj
�� X
Nl�P��j�

��W l
��
�
�� X

Nk�P �j��S��l�

��Ok
��� �

�
A 	���


Corollary � Let G � 	N � E � �
 be a di�erentiable feedforward neural network� Let F be an output function
for G� with OF as output space� With the direct algorithm� computing the di�erential of FG with respect to
its parameter vector requires algebraic operations which total cost is�

X
Nj ��In

��Oj
�� X
Nl�P��j�

��W l
��
�
�� X

Nk�P �j��S��l�

��Ok
��� �

�
A � jOF jjW j	�jOj � �
 	���


����� Back�propagation

Theorem � Let G � 	N � E � �
 be a feedforward neural network� With the back�propagation algorithm�
computing the di�erential of G with respect to its parameter vector needs a time equal to�

outX
k��

X
Nl�P� �Outk�

�
m	jOOutkj� jOlj� jW lj
 � 	jS	l
 � P �	Outk
j � �
s	jOOutk j� jOlj


�
X

Nj�S�l��P� �Outk�

m	jOOutkj� jOjj� jOlj

	
�

	����


approximately equal to�

outX
k��

jOOutkj
�
�jIOutk j� X

Nl�P��Outk�

�
�jW lj	�jOlj � �
 � jOlj

�
�� X

Nj�S�l��P� �Outk�

jOjj � �

�
A
�
A
�
A 	����


In the same way�

Theorem � Let G � 	N � E � �
 be a di�erentiable feedforward neural network� Let F be an output function
for G� with OF as output space� With the back�propagation algorithm� computing the di�erential of FG with
respect to its parameter vector requires algebraic operations which total cost is�

jOF j
�
�X

Nl

jW lj	�jOlj � �
 �
X

Nl ��Out
jOlj

�
�� X

Nj�S�l�
jOjj � �

�
A
�
A 	����


����� Comparison

In both cases 	i�e� with or without error function
� the cost formulae are not directly comparable� the
theoretical costs must be computed to choose the fastest algorithm� Even for a standard mlp architecture�
the number of neurons can be chosen so that the direct method is faster than the back�propagation to
compute the di�erential of the network output�

Nevertheless computing the di�erential of the error is always faster with the back�propagation than with
the direct method for the mlp and its derivatives 	rbf networks and wns
� Another important result is
that computing the di�erential of the error for a standard model within our mathematical model is as fast
as doing it with the standard back�propagation algorithm�

��� Recapitulation

The proposed model generalizes the mlp model� It allows to separate the connections from the weights�
Since it includes all standard feed�forward models� it allows to compare them� In order to use e�ciently the
standard gradient based learning algorithms� we developed several computation methods for the gradient of
a neural network� Though it works well for mlps� the back�propagation method is not the fastest algorithm
for some other particular cases of the model�

�



Chapter �

Parallelized Back�Propagation

��� Neural networks in parallel

A parallel implementation of neural computations is a possible solution for memory and time�consumming
neural network applications 	for instance real�time data processing
� A survey of existing schemes to paral�
lelize back�propagation can be found in ��� The two main ideas are to distribute the patterns that are used
for training� or to distribute the computation performed by the neural network 	in this case� a pipeline may
sometimes be used in addition
�

Pattern�partitioning schemes require large pattern sets� They can handle any neural network� but they
are not able to implement a stochastic gradient learning algorithm�

Network�partitioning schemes require large neural networks� An e�cient solution is to use parallel imple�
mentations of the algebraic computation a mlp requires� but such a solution can not apply to other neural
networks 	rbf network� wn� sparse network
� Another solution is to map the natural parallelism of a neural
network onto the machine by means of a neuron partition among the processors� As it is shown in ��� a
direct mapping of the neural network calculation leads to an unsatisfactory parallel e�ciency�

The aim of this section is to show how our precise study of the back�propagation algorithm 	paragraph
������ section �
 allows to design an e�cient mapping�

��� Computation�communication overlapping 	CCO


The back�propagation algorithm is usually considered as a � steps calculation� computed outputs are �rst
forwarded from the network input to its output� then the gradient is back�propagated from the output to
the input� Considering equations ���� ���� and ���� each local computation can be divided into four steps�
so that the time�consumming message transfers are overlapped by computation�

�� Neuron Nk computes its output thanks to the input Ek	x�w
 received from its predecessors�

�� Nk computes its local jacobian matrices 	dNk
i and dNk

w
� which only depend on the forwarded data�
It sends simultaneously its computed output to its successors�

�� Nk computes the gradient of the error function with respect to its inputs 	 �E
�o

P�k�j
� for all its predecessors

NP �k�j 
� thanks to the backpropagated gradient 	 �E
�ok


�

�� Nk computes the gradient of the error with respect to its weight vector 	 �E
�wk 
 and updates these weights

thanks to a gradient descent� It sends simultaneously all �E
�oP�k�j

to the corresponding predecessors�

In ��� a general description of the parallel implementation of any feed�forward neural network is given�
We will only consider here the useful case of a multilayered network 	mlp� rbf network or wn
�

�



��� Implemented algorithm

Let L be the number of layers� Let nl be the number of neurons in layer l� Consecutive layers are fully
connected 	standard multilayered structure
�

The ��step approach of the back�propagation can be used for any neural network parallel mapping 	��
�
We consider here a vertical sectioning with p processors� each processor deals with nl�p neurons in layer l�
It is assumed that each nl is a multiple of p� In practice� if a layer contains too few neurons� the whole layer
should me mapped onto one processor�

If fN �p�
l�i gi����

nl
p
are the neurons of layer l mapped on processor p� each processor performs the following

algorithm 	hereafter called cco algorithm
�

for layer�� to layer�L do

step � performed for fN �p�
l�i gi����

nl
p

step � for fN �p�
l�i gi����

nl
p
	the communication is a multinode broadcast


for layer�L to layer�� do

step � for fN �p�
l�i gi����

nl
p
	except for layer �


step � for fN �p�
l�i gi����

nl
p
	the communication is a multinode personnal reduction


For a mlp� step � computation may be included in both step � and step �� Therefore� step � only performs
an all�to�all communication� whereas step � communication is still overlapped�

��� Algorithm e�ciency

����� CCO versus other network partitions

The cco principle can be applied to any neural network mapping� provided that the amount of computation
allows the communication overlapping� Therefore� cco may just be considered as an improving method for
these parallel implementations� and it should be compared with the network�partitioning schemes that split
each neuron computation onto several processors�

The �rst and main advantage of the cco algorithm with respect to such algorithms is to adapt to any

feed�forward neural network� and not only to mlp�like networks�
But for a numerical comparison� we limit ourselves to the case of mlps� It is illustrated by �gure ���� which

uses the characteristics of an iPSC ���� Among numerous network�partitioning schemes� the checkerboarding
method of �� 	hereafter called cb algorithm
 may be taken as a reference� with regard to its high e�ciency
and scalability�

To simplify� the mlps are assumed to have the same number n of neurons in each layer� The algorithms are
implemented on a hypercube architecture of dimension d 	p � �d
 	hardware or simulated
 to minimize the
communication cost� The computation times of both cco and cb algorithms are equal� If a communication
time for N values is modelled as � � N� for the standard case� and � for an overlapped communication�
then the communication times are as follows�

� cco� 	L � �
	�d� � kn� p��
p



� cb� 	L � �
	�d� � kn� �dp
p



where k is the number of simultaneously handled patterns� Considering this model� the best algorithm is
the cco one if d � �� i�e� p � ���� whereas the cb algorithm should be chosen when d � �� Moreover� other
current works show that if an optimal hybrid scheme 	pattern� and network�partitioning are mixed with
an optimal ratio to ensure the minimum learning convergence time
 is considered� then the cco algorithm
should be chosen even with massively parallel computers 	p � ���� for instance
�

It must be noticed that the cco algorithm requires at least O	p
 neurons per layer to allow the neuron
partition and to obtain enough computation time to overlap the data transfers� Whereas the cb algorithm
only requires O	pp
 neurons per layer�

�
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Experiments on an iPSC ��� show that the e�ciency formulae are reliable� though non�blocking commu�
nications do not exactly cost a constant time on this machine�

����� CCO versus pattern�partition

We also consider here the case of a pattern partition implemented on a hypercube architecture� We call it
the pp algorithm�

Both cco and pp may apply to any feed�forward neural network� As any network�partitioning scheme�
the main advantage of the cco algorithm is to allow the parallelization of the stochastic gradient

learning 	weight updating after each pattern presentation
� Indeed� several experiments show that the
number of required epochs 	presentation of the whole training set
 for learning convergence may be modelled
as A � kB� For the pp algorithm� if each processor deals with b patterns� then k � pb 	whereas k � b for
cco
�

For a numerical comparison of the speedups 	without considering the overall learning time
� the commu�
nication times are�

� cco� �	L � �
d� except for a mlp 	transfer time not overlapped within step �� see above


� pp� d� � dW�

where W is the number of neural network weights 	W � Ln	n� �
 for a mlp� W � �Ln� for a simple wn�

W � L	�n�� n��n���
�


 for some advanced versions of the wn model� � � � 
� These communication times show
that the pp algorithm should be chosen only for small neural networks� Figure ��� uses the parameters of
an iPSC ��� 	it contains only theoretically estimated e�ciencies
�

��� Recapitulation

Since the cco algorithm is based on our general model� it adapts to any di�erentiable feed�forward neural
network� Therefore its application domain is much larger than for the most e�cient existing network�
partitioning methods� Moreover� e�ciencies are similar� though they are compared for the worst case of
cco� i�e� mlps 	forward communication not overlapped
�

�
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Since the cco principle allows to improve a standard parallel mapping� it can still implement the stochas�
tic gradient learning� Therefore it outperforms the pattern partitioning scheme for a training task� especially
with numerous processors� provided that the handled neural network is large enough to allow the cco

implementation�

��



Conclusion

In this paper� we have presented a generalized model for feed�forward neural networks which includes and
generalizes the mlp model and its derivatives� Gradient descent based training algorithms can be used
in order to train any network which ful�lls the general conditions� They will use the direct algorithm or
the back�propagation algorithm in order to compute the gradient of the error made by the network on a
speci�ed training set� we have given theoretical cost formulae that allow to choose the fastest algorithm for
a particular network architecture�

An e�cient parallelization method has been designed� based on communication overlapping� This method
derives from an analysis of our generalized back�propagation formulae� It can therefore apply to any feed�
forward neural network�

Our model still extends� it handles second order di�erentiation methods� and it will soon deal with
recurrent networks�

��
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