
HAL Id: hal-02101945
https://hal-lara.archives-ouvertes.fr/hal-02101945v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A mathematical model for feed-forward neural networks :
theoretical description and parallel applications.

Cedric Gegout, Bernard Girau, Fabrice Rossi

To cite this version:
Cedric Gegout, Bernard Girau, Fabrice Rossi. A mathematical model for feed-forward neural net-
works : theoretical description and parallel applications.. [Research Report] LIP RR-1995-23, Labo-
ratoire de l’informatique du parallélisme. 1995, 2+12p. �hal-02101945�

https://hal-lara.archives-ouvertes.fr/hal-02101945v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

A Mathematical Model

for Feed�Forward Neural Networks�

Theoretical Description

and Parallel Application

C�edric G�egout

Bernard Girau

Fabrice Rossi

September ����

Research Report No �����

Ecole Normale Supérieure de Lyon

Adresse électronique : lip@lip.ens−lyon.fr
Téléphone : (+33) 72.72.80.00 Télécopieur : (+33) 72.72.80.80

46 Allée d’Italie, 69364 Lyon Cedex 07, France

A Mathematical Model

for Feed�Forward Neural Networks�

Theoretical Description

and Parallel Application

C�edric G�egout

Bernard Girau

Fabrice Rossi

September ����

Abstract

We present a general model for di�erentiable feed�forward neural networks� Its general mathemat�
ical description includes the standard multi�layer perceptron as well as its common derivatives�
These standard structures assume a strong relationship between the network links and the neuron
weights� Our generalization takes advantage of the suppression of this assumption� Since our
model is especially well�adapted to gradient�based learning algorithms� we present a direct and
a backward algorithm that can be used to di�erentiate the output of the network� Theoretical
computation times are estimated for both algorithms� We describe a direct application of this
model� a parallelization method that uses the expression of our general backward di�erentiation
to overlap the communication times�

Keywords� feed�forward neural networks� backpropagation� parallel implementation� network�partitioning

R�esum�e

Nous pr�esentons un mod�ele g�en�eral de r�eseaux de neurones di��erentiables non r�ecurrents� Ce
mod�ele inclut l�architecture standard du perceptron multicouche� aussi bien que ses d�eriv�es clas�
siques� Cette architecture standard se base sur une relation forte entre la notion de connexion du
r�eseau et celle de poids des neurones� Notre g�en�eralisation tire pro�t de la suppression de cette
relation� Le mod�ele pr�esent�e �etant plus particuli�erement adapt�e aux algorithmes d�apprentissage
�a base de gradient� nous pr�esentons un algorithme direct ainsi qu�un algorithme r�etropropag�e
pour le calcul de la di��erentielle de la sortie du r�eseau de neurones� Les temps de calcul des deux
algorithmes sont estim�es th�eoriquement� En�n� nous pr�esentons une des principales applications
de ce mod�ele� bas�ee sur l�algorithme g�en�eralis�e de r�etropropagation � une m�ethode de parall�elisa�
tion qui se base sur une connaissance �ne des calculs requis par cet algorithme a�n d�introduire
un recouvrement des communications par les calculs�

Mots�cl�es� r�eseaux de neurones non r�ecurrents� r�etropropagation� impl�ementation parall�ele� partition de
r�eseau

Introduction

The multi�layer perceptron 	mlp
 is now widely used as an e�cient tool for classi�cation and for function
approximation� To enhance its performance and�or to reduce its training time� many authors have proposed
modi�cations of its simple structure�

A mlp consists of several ordered layers of neurons� A neuron is a simple processing unit with several
scalar inputs and one scalar output� It receives the output of each neuron of the previous layer with the
help of a weighted connection� In order to compute its output� it multiplies each input by the corresponding
connection weight� sums the resulting values� adds a threshold and then applies a transfer function to the
sum� The simplest modi�cation idea is to change the transfer function� The preprocessing computation may
also be modi�ed 	see ���
� The neurons may be derived from a radial basis function 	rbf
 as in ��� or from
a multidimensional wavelet 	���
�

Despite their di�erences� all these models share a common principle� they use an acyclic graph of simple
units to compute a complex parametric vectorial function� Unfortunately� they are separately studied most
of the time� especially in simulation softwares� where they are handled by totally independant objects� with
totally di�erent training algorithms�

In this paper� we extend a model proposed by L�eon Bottou and Patrick Gallinari in ��� The extended
model allows to handle any feed�forward neural network model as a particular case of a general mathematical
de�nition� The di�erential of the function calculated by a feed�forward network with respect to its parameters
can be computed either with a direct method or with an extended back�propagation method� These methods
are theoretically compared by means of a precise analysis of the operation amount they need� It shows that
the back�propagation algorithm is not always faster than the direct method�

An e�cient parallelization method of the back�propagation algorithm has been derived from our model�
We take advantage of our precise study of the back�propagation principle to show that a neural network
parallel mapping can be improved thanks to computation�communication overlapping� The e�ciency of the
derived parallel implementation is similar to the most advanced network�partitioning schemes� but it applies
to any feed�forward network�

�

Chapter �

The general model

In this chapter� we do not describe the exact mathematical model 	e�g� the handled sets are ordered to
exactly de�ne the computation process� but this paper does not clearly de�ne this ordering
� It would be too
long� and not really meaningful� The exact de�nitions� theorems and proofs can be found in a technical report
���� We just provide the reader with the main ideas and results� Nevertheless� mathematical expressions
remain when they are useful for the next chapter� or when they point out the cogency of the model� Their
concrete meaning is always given�

��� Motivations

When creating this model� we had in mind our respective studies about mlp control� wavelet networks
	wn
 and mlp learning with genetic algorithms� The interest of a homogeneous approach of these di�erent
problems especially appeared when we wanted to use tools developed by one another� Despite its obvious
signi�cance� the model of �� was not convenient for us� Our needs were�

� maximal generality� with regard to some given basic properties�

� a precise mathematical description of each handled object 	and rigorous proofs
�

� a clear distinction between these objects 	and therefore� autonomous de�nitions
�

� a strong relationship between the theoretical approach and the experimental requirements�

��� Feed�forward neural networks

The key ideas of the model are to generalize the notion of neuron and to allow an arbitrary feed�forward
connection graph�

The main limitation of the standard mlp and of all its derivatives is the strong relationship between
the connection graph and the network weights� one weight for each connection� Whereas the graph should
only be a communication structure that allows the communication between the neurons� and the weights
should be associated to the notion of controlling structure that allows a training algorithm to modify the
local computation performed by each neuron�

Our generalization breaks this link� we use an arbitrary dag 	directed acyclic graph
 for the communi�
cation structure and a control vector for each neuron� The relationship between the input of the neuron�
its control vector and its output is only modeled by a vectorial function which can be of any form� All
considered variables belong to vectorial spaces� This is useful for the generality of the model�

�
available with the WWW at URL�

http���www�ens�lyon�fr��bgirau

�

����� The neuron

In our model� a neuron N is a di�erentiable function� Its n input spaces are I�� � � � � In 	with n � IN�
�
Its output space is O� Its control vector belongs to a weight space W � Its output is computed thanks to
its input vectors and its weight vector�

Its partial di�erential with respect to its weight vector is called dNw� Its partial di�erential with respect
to its k�th input is called dNik �

����� The neural net

The underlying structure of a neural net is a dag G � 	N � E
 	N is a set of nodes� E is a set of edges
� A
feed�forward neural network is a dag� where the nodes are neurons that satisfy the following conditions�
If N has no predecessor in the graph� then it is an input neuron� and it has only one input space� In is the
set of the input neurons� If N has p predecessors� then it has exactly p input spaces� one for each predecessor
in the graph 	therefore the dimension of its k�th input space is equal to the dimension of the output of its
k�th predecessor
�

The input x of the neural network is the concatenation 	x�� � � � � xjInj
 of the inputs of the input neurons�
In the same way� its output is the concatenation of the outputs of the output neurons 	no successor in the
graph
� The weight vector w of the whole network is the concatenation 	w�� � � � � wjNj
 of the weight vectors
of all neurons in N �

����� Computing the output

A rigorous mathematical approach requires an exhaustive de�nition of each handled function� Since there is
no a priori knowledge about the graph� the only way to de�ne the computed values is a recursive building�
This method is correct only because the underlying graph is not cyclic�

To illustrate this� let us take the case of an intuitive result� the computation of the network output� Its
mathematical description is as follows�

Let x and w be the input and weight vectors of G� For any neuron N l� its input El and its output ol are
recursively de�ned functions of x and w�

� ol	x�w
 � N l	El	x�w
� wl

� If N l is the k�th element of In� El	x�w
 � xk�

� If N l �� In� and if P 	l
i is its i�th predecessor�

El	x�w
 �
�
oP �l�� 	x�w
� � � � � oP �l�

pl 	x�w

�

����� Input sharing

In a mlp� each input neuron uses the same input vector� In our model� this behavior is modeled by a
di�erentiable input sharing function� that can be of any form� The simplest example is a replicating function
which maps a vector x to a tuple 	x� � � � � x
 of size jInj� It allows all input neurons to share the same input�
as in standard models 	mlp� rbf networks or wns
�

The input sharing method does not change the di�erential of G with respect to its weight vector� Hence�
it is not taken into account hereafter� The model also handles weight sharing�

��� Di�erentials within the general model

����� The direct computation method

As the neuron functions are di�erentiable� the function computed by the network is also di�erentiable 	it
is a composite function
� The simplest method to compute its di�erentials is the standard chain rule� To
simplify� if we consider the composite function f	g	� � � 	h	x

� this method uses local di�erentiation at the

�

level of f � and global di�erentials inside the composite function� With very uncorrect notations� it might be

written� �f����x�
�x

� �f

�g����x�
�
�g����x�

�x
� The exact expression in the model is�

� if N l �� Nk�
� if N l �� In �writing El for El	x�w
��

�ol

�wk
	x�w
 �

plX
j��

dN l
ij

�
El� wl

� �oP �l�j

�wk
	x�w
 	���

� if N l � In�
�ol

�wk
	x�w
 � � 	���

� if N l � Nk�
�ol

�wl
	x�w
 � dN l

w

�
El� wl

�
	���

We have a similar property if we consider �ol

�xi
� where xi is the input of the i�th input neuron�

����� Back�propagation

The key idea of the back�propagation is to di�erentiate f	g	� � � 	h	x

 by means of a local di�erential at
the level of h and a global di�erential �above�� With very uncorrect notations again� it might be written�
�f����x�

�x
� �f����x�

�h�x�
�
�h
�x
�

In the case of our model� we consider ok	x�w
� the output of neuron Nk� as a function of ol	x�w
�
the output of another neuron N l� We therefore de�ne ok�l	x�w� f l
 as the output of node Nk when ol is
set �free� from the network constraints 	it can take arbitrary values� represented by f l
� It follows that
ok�l	x�w� ol	x�w

 � ok	x�w
� But ok and ok�l are mathematically very di�erent� and this equality is only
satis�ed for the constraint f l � ol	x�w
� The main mathematical di�culty is to prove that the intuitive
di�erentiation is correct� the constraint does not add extra di�erentiation terms�

In the model� a �rst local equation states that ok depends on wl only through the output of N l�

�ok

�wl
	x�w
 �

�ok�l

�ol
�
x�w� ol	x�w

�
dN l

w

�
El� wl

�
	���

A similar equation is ful�lled for �ol

�xi
�

The back�propagation appears in the computation of �o
k�l

�ol
� The main equation is� if there is a directed

path from N l to Nk in the graph�

�ok�l

�ol
�
x�w� ol	x�w

�
�

X
Nj

successor of Nl

�ok�j

�oj
�
x�w� oj	x�w

�
dN j

ir�l�j�
	Ej� wj
 	���

where N l is the r	l� j
�th predecessor of N j� If there is no directed path� the di�erential is null� and if
N l � Nk� it is the identity function�

A recursive method to compute �o
k�l

�ol
is given by formula ���� it needs �o

k�j

�oj
for every successor N j of

N l� Therefore� �ok�l

�ol
is computed from the last layer of the network to the input layer� this is a backward

algorithm and therefore an extended back�propagation�

����� Error function

In order to train a neural network� we use an error function which estimates a distance between the output of
the network and a desired output� This error E is considered as a function of the network weights� Gradient
based training methods use its gradient rE � To compute rE � E can be handled as a composite function
of the distance function and the neural output� In this case� the chain rule is applied to this composite
function 	the di�erential of the neural network output is therefore required� it can be computed either with
the direct method or with the extended back�propagation
�

�

The distance function can also be considered as a weightless �nal output neuron of the network� so that
the back�propagation can be fully applied� If the output of this neuron is called EG	x�w
� we can also de�ne
E�l
G 	x�w
� when ol is considered �free� from the network constraints� Then equations ��� and ��� become�

�EG
�wl

	x�w
 �
�E�l

G
�ol

	x�w� ol	x�w

dN l
w	E

l� wl

�E�l
G

�ol
	x�w� ol	x�w

 �

X
Nj

successor of Nl

�E�j
G

�oj
	x�w� oj	x�w

dN j

r�l�j�	E
j� wj
 	���

In practice� a gradient based learning algorithm uses these equations� Since the output of EG is real� every
back�propagated algebraic structure is therefore a gradient vector� wheras the direct method propagates ma�
trices 	so that the algebraic computations are intuitively more complex
� Moreover� in the back�propagation
algorithm� each non�local di�erential is the di�erential of the error with respect to a given neuron� we handle
only one non�local di�erential per neuron� Whereas in the direct algorithm� for each neuron� we handle its
di�erentials with respect to all its direct or indirect predecessors� It justi�es some complexity results�

��� Complexity

The aim of this section is to compare the theoretical time needed by both di�erentiation algorithms� All
proofs can be found in ���

����� Notations and preliminary remarks

Both algorithms need to know the input� the output and the �rst�order di�erentials of each node� Therefore�
the comparison will only focus on the cost of the algebraic operations required by both methods�

We introduce the following quantities�

� the main computation load is mostly due to the numerical operations needed for the algebraic opera�
tions� i�e� �oating point number additions and multiplications� We will assume that the time needed
to perform such an operation is �� This is therefore the unit of our formulae�

� m	i� j� k
 is the time needed to multiply a 	i� j
�matrix and a 	j� k
�matrix 	i�e approximatively ik	�j�
�

 �

� s	i� j
 is the time needed to sum to 	i� j
�matrices 	approximatively ij
�

Let j�j be the function which maps a vectorial space to its dimension 	for instance� jOlj is the dimension of
the output space of node N l
� The same notation will be used for the number of elements of a �nite set 	for
instance jN j � n
�

Let P �	i
 	resp� S�	i

 be the set of the direct and indirect predecessors 	resp� successors
 of neuron
N i� including N i� Let P�	i
 	resp� S�	i

 be the set of the direct and indirect strict predecessors 	resp�
successors
 of neuron N i� i�e� P�	i
 � P �	i
� fN ig 	resp� S�	i
 � S�	i
� fN ig
�

����� Direct algorithm

Theorem � Let G � 	N � E � �
 be a di�erentiable feedforward neural network� With the direct algorithm�
computing the di�erential of G with respect to its parameter vector needs a time equal to�

X
Nj ��In

X
N l�P��j�

�
�	jP 	j
 � S�	l
j � �
 s

���Oj
�� � ��W l

��� � X
Nk�P �j��S��l�

m
���Oj

�� � ��Ok
�� � ��W l

���
�
A 	���

�

which is approximately equal to�

X
Nj ��In

��Oj
�� X
Nl�P��j�

��W l
��
�
�� X

Nk�P �j��S��l�

��Ok
��� �

�
A 	���

Corollary � Let G � 	N � E � �
 be a di�erentiable feedforward neural network� Let F be an output function
for G� with OF as output space� With the direct algorithm� computing the di�erential of FG with respect to
its parameter vector requires algebraic operations which total cost is�

X
Nj ��In

��Oj
�� X
Nl�P��j�

��W l
��
�
�� X

Nk�P �j��S��l�

��Ok
��� �

�
A � jOF jjW j	�jOj � �
 	���

����� Back�propagation

Theorem � Let G � 	N � E � �
 be a feedforward neural network� With the back�propagation algorithm�
computing the di�erential of G with respect to its parameter vector needs a time equal to�

outX
k��

X
Nl�P� �Outk�

�
m	jOOutkj� jOlj� jW lj
 � 	jS	l
 � P �	Outk
j � �
s	jOOutk j� jOlj

�
X

Nj�S�l��P� �Outk�

m	jOOutkj� jOjj� jOlj

	
�

	����

approximately equal to�

outX
k��

jOOutkj
�
�jIOutk j� X

Nl�P��Outk�

�
�jW lj	�jOlj � �
 � jOlj

�
�� X

Nj�S�l��P� �Outk�

jOjj � �

�
A
�
A
�
A 	����

In the same way�

Theorem � Let G � 	N � E � �
 be a di�erentiable feedforward neural network� Let F be an output function
for G� with OF as output space� With the back�propagation algorithm� computing the di�erential of FG with
respect to its parameter vector requires algebraic operations which total cost is�

jOF j
�
�X

Nl

jW lj	�jOlj � �
 �
X

Nl ��Out
jOlj

�
�� X

Nj�S�l�
jOjj � �

�
A
�
A 	����

����� Comparison

In both cases 	i�e� with or without error function
� the cost formulae are not directly comparable� the
theoretical costs must be computed to choose the fastest algorithm� Even for a standard mlp architecture�
the number of neurons can be chosen so that the direct method is faster than the back�propagation to
compute the di�erential of the network output�

Nevertheless computing the di�erential of the error is always faster with the back�propagation than with
the direct method for the mlp and its derivatives 	rbf networks and wns
� Another important result is
that computing the di�erential of the error for a standard model within our mathematical model is as fast
as doing it with the standard back�propagation algorithm�

��� Recapitulation

The proposed model generalizes the mlp model� It allows to separate the connections from the weights�
Since it includes all standard feed�forward models� it allows to compare them� In order to use e�ciently the
standard gradient based learning algorithms� we developed several computation methods for the gradient of
a neural network� Though it works well for mlps� the back�propagation method is not the fastest algorithm
for some other particular cases of the model�

�

Chapter �

Parallelized Back�Propagation

��� Neural networks in parallel

A parallel implementation of neural computations is a possible solution for memory and time�consumming
neural network applications 	for instance real�time data processing
� A survey of existing schemes to paral�
lelize back�propagation can be found in ��� The two main ideas are to distribute the patterns that are used
for training� or to distribute the computation performed by the neural network 	in this case� a pipeline may
sometimes be used in addition
�

Pattern�partitioning schemes require large pattern sets� They can handle any neural network� but they
are not able to implement a stochastic gradient learning algorithm�

Network�partitioning schemes require large neural networks� An e�cient solution is to use parallel imple�
mentations of the algebraic computation a mlp requires� but such a solution can not apply to other neural
networks 	rbf network� wn� sparse network
� Another solution is to map the natural parallelism of a neural
network onto the machine by means of a neuron partition among the processors� As it is shown in ��� a
direct mapping of the neural network calculation leads to an unsatisfactory parallel e�ciency�

The aim of this section is to show how our precise study of the back�propagation algorithm 	paragraph
������ section �
 allows to design an e�cient mapping�

��� Computation�communication overlapping 	CCO

The back�propagation algorithm is usually considered as a � steps calculation� computed outputs are �rst
forwarded from the network input to its output� then the gradient is back�propagated from the output to
the input� Considering equations ���� ���� and ���� each local computation can be divided into four steps�
so that the time�consumming message transfers are overlapped by computation�

�� Neuron Nk computes its output thanks to the input Ek	x�w
 received from its predecessors�

�� Nk computes its local jacobian matrices 	dNk
i and dNk

w
� which only depend on the forwarded data�
It sends simultaneously its computed output to its successors�

�� Nk computes the gradient of the error function with respect to its inputs 	 �E
�o

P�k�j
� for all its predecessors

NP �k�j
� thanks to the backpropagated gradient 	 �E
�ok

�

�� Nk computes the gradient of the error with respect to its weight vector 	 �E
�wk
 and updates these weights

thanks to a gradient descent� It sends simultaneously all �E
�oP�k�j

to the corresponding predecessors�

In ��� a general description of the parallel implementation of any feed�forward neural network is given�
We will only consider here the useful case of a multilayered network 	mlp� rbf network or wn
�

�

��� Implemented algorithm

Let L be the number of layers� Let nl be the number of neurons in layer l� Consecutive layers are fully
connected 	standard multilayered structure
�

The ��step approach of the back�propagation can be used for any neural network parallel mapping 	��
�
We consider here a vertical sectioning with p processors� each processor deals with nl�p neurons in layer l�
It is assumed that each nl is a multiple of p� In practice� if a layer contains too few neurons� the whole layer
should me mapped onto one processor�

If fN �p�
l�i gi����

nl
p
are the neurons of layer l mapped on processor p� each processor performs the following

algorithm 	hereafter called cco algorithm
�

for layer�� to layer�L do

step � performed for fN �p�
l�i gi����

nl
p

step � for fN �p�
l�i gi����

nl
p
	the communication is a multinode broadcast

for layer�L to layer�� do

step � for fN �p�
l�i gi����

nl
p
	except for layer �

step � for fN �p�
l�i gi����

nl
p
	the communication is a multinode personnal reduction

For a mlp� step � computation may be included in both step � and step �� Therefore� step � only performs
an all�to�all communication� whereas step � communication is still overlapped�

��� Algorithm e�ciency

����� CCO versus other network partitions

The cco principle can be applied to any neural network mapping� provided that the amount of computation
allows the communication overlapping� Therefore� cco may just be considered as an improving method for
these parallel implementations� and it should be compared with the network�partitioning schemes that split
each neuron computation onto several processors�

The �rst and main advantage of the cco algorithm with respect to such algorithms is to adapt to any

feed�forward neural network� and not only to mlp�like networks�
But for a numerical comparison� we limit ourselves to the case of mlps� It is illustrated by �gure ���� which

uses the characteristics of an iPSC ���� Among numerous network�partitioning schemes� the checkerboarding
method of �� 	hereafter called cb algorithm
 may be taken as a reference� with regard to its high e�ciency
and scalability�

To simplify� the mlps are assumed to have the same number n of neurons in each layer� The algorithms are
implemented on a hypercube architecture of dimension d 	p � �d
 	hardware or simulated
 to minimize the
communication cost� The computation times of both cco and cb algorithms are equal� If a communication
time for N values is modelled as � � N� for the standard case� and � for an overlapped communication�
then the communication times are as follows�

� cco� 	L � �
	�d� � kn� p��
p

� cb� 	L � �
	�d� � kn� �dp
p

where k is the number of simultaneously handled patterns� Considering this model� the best algorithm is
the cco one if d � �� i�e� p � ���� whereas the cb algorithm should be chosen when d � �� Moreover� other
current works show that if an optimal hybrid scheme 	pattern� and network�partitioning are mixed with
an optimal ratio to ensure the minimum learning convergence time
 is considered� then the cco algorithm
should be chosen even with massively parallel computers 	p � ���� for instance
�

It must be noticed that the cco algorithm requires at least O	p
 neurons per layer to allow the neuron
partition and to obtain enough computation time to overlap the data transfers� Whereas the cb algorithm
only requires O	pp
 neurons per layer�

�

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

2 3 4 5 6 7 8 9

pa
ra

lle
l e

ffi
ci

en
cy

 (
m

ax
=

1)

hypercube dimension (d)

Compared efficiency for CCO and CB - 10 neurons per layer per processor

theoretical CCO efficiency
theoretical CB efficiency

experimental CCO efficiency

Figure ���� cco versus cb 	� layers� k � �

Experiments on an iPSC ��� show that the e�ciency formulae are reliable� though non�blocking commu�
nications do not exactly cost a constant time on this machine�

����� CCO versus pattern�partition

We also consider here the case of a pattern partition implemented on a hypercube architecture� We call it
the pp algorithm�

Both cco and pp may apply to any feed�forward neural network� As any network�partitioning scheme�
the main advantage of the cco algorithm is to allow the parallelization of the stochastic gradient

learning 	weight updating after each pattern presentation
� Indeed� several experiments show that the
number of required epochs 	presentation of the whole training set
 for learning convergence may be modelled
as A � kB� For the pp algorithm� if each processor deals with b patterns� then k � pb 	whereas k � b for
cco
�

For a numerical comparison of the speedups 	without considering the overall learning time
� the commu�
nication times are�

� cco� �	L � �
d� except for a mlp 	transfer time not overlapped within step �� see above

� pp� d� � dW�

where W is the number of neural network weights 	W � Ln	n� �
 for a mlp� W � �Ln� for a simple wn�

W � L	�n�� n��n���
�

 for some advanced versions of the wn model� � � �
� These communication times show
that the pp algorithm should be chosen only for small neural networks� Figure ��� uses the parameters of
an iPSC ��� 	it contains only theoretically estimated e�ciencies
�

��� Recapitulation

Since the cco algorithm is based on our general model� it adapts to any di�erentiable feed�forward neural
network� Therefore its application domain is much larger than for the most e�cient existing network�
partitioning methods� Moreover� e�ciencies are similar� though they are compared for the worst case of
cco� i�e� mlps 	forward communication not overlapped
�

�

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250

pa
ra

lle
l e

ffi
ci

en
cy

 (
m

ax
=

1)

total number of neurons per layer

Compared theoretical efficiencies for CCO and PP (with MLP and standard WN)

CCO efficiency (MLP)
PP efficiency (MLP)

CCO efficiency (WN)
PP efficiency (WN)

Figure ���� cco versus pp 	� layers� k � ���� p � ��

Since the cco principle allows to improve a standard parallel mapping� it can still implement the stochas�
tic gradient learning� Therefore it outperforms the pattern partitioning scheme for a training task� especially
with numerous processors� provided that the handled neural network is large enough to allow the cco

implementation�

��

Conclusion

In this paper� we have presented a generalized model for feed�forward neural networks which includes and
generalizes the mlp model and its derivatives� Gradient descent based training algorithms can be used
in order to train any network which ful�lls the general conditions� They will use the direct algorithm or
the back�propagation algorithm in order to compute the gradient of the error made by the network on a
speci�ed training set� we have given theoretical cost formulae that allow to choose the fastest algorithm for
a particular network architecture�

An e�cient parallelization method has been designed� based on communication overlapping� This method
derives from an analysis of our generalized back�propagation formulae� It can therefore apply to any feed�
forward neural network�

Our model still extends� it handles second order di�erentiation methods� and it will soon deal with
recurrent networks�

��

Bibliography

�� L� Bottou and P� Gallinari� A Framework for the Cooperation of Learning Algorithms� In Neural
Information Processing Systems� volume �� pages �������� Morgan Kau�man� �����

�� C� G�egout� B� Girau� and F� Rossi� A generic feed�forward neural network model� Technical report
NC�TR�������� NeuroCOLT� Royal Holloway� University of London� �����

�� C� G�egout� B� Girau� and F� Rossi� NSK� an Object�Oriented Simulator Kernel for Arbitrary Feed�
forward Neural Networks� In Int� Conf� on Tools with Arti�cial Intelligence� pages ������� New Or�
leans 	Louisiana
� ����� IEEE�

�� L� Fuentes� J�F� Aldana� and J�M� Troya� Urano � an object�oriented arti�cial neural network simulation
tool� In Proc� Int� Workshop on Arti�cial Neural Networks� volume ���� pages �������� Springer�Verlag�
�����

�� J� Ghosh and K� Hwang� Mapping neural networks onto message�passing multicomputers� Journal of
parallel and distributed computing� ���������� May �����

�� B� Girau� Mapping neural network backpropagation onto parallel computers with computa�
tion�communication overlapping� In Euro�Par	
� � Parallel Processing� volume ��� of Lecture Notes in
Computer Science� pages �������� Springer� �����

�� V� Kumar� S� Shekhar� and M�B� Amin� A scalable parallel formulation of the back�propagation al�
gorithm for hypercubes and related architectures� IEEE Trans� on Parallel and Distributed Systems�
�	��
����������� �����

�� A� Linden� Th� Sudbrack� Ch� Tietz� and F� Weber� An object�oriented framework for the simulation of
neural nets� In Advances in Neural Information Processing Systems� volume V� pages �������� Morgan
Kaufmann� �����

�� T� Poggio and F� Girosi� Networks for approximation and learning� Proc� IEEE� ��	�
�����������
September �����

��� F� Rossi and C� G�egout� Geometrical Initilization� Parametrization and Control of Multilayer Percep�
trons� Application to Function Approximation� In Int� Conf� on Neural Networks� volume I� pages
�������� ����� IEEE�

��� Q� Zhang and A� Benveniste� Wavelet networks� IEEE Trans� On Neural Networks� �	�
���������
November �����

��

