C Edric

G Egout

Bernard Girau

Fabrice Rossi

A Mathematical Model for Feed-Forward Neural Networks: Theoretical Description and Parallel Application

Keywords: feed-forward neural networks, backpropagation, parallel implementation, network-partitioning R r eseaux de neurones non r ecurrents, r etropropagation, impl ementation parall ele, partition de r eseau

We present a general model for di erentiable feed-forward neural networks. Its general mathematical description includes the standard multi-layer perceptron as well as its common derivatives. These standard structures assume a strong relationship between the network links and the neuron weights. Our generalization takes advantage of the suppression of this assumption. Since our model is especially well-adapted to gradient-based learning algorithms, we p r e s e n t a direct and a backward algorithm that can be used to di erentiate the output of the network. Theoretical computation times are estimated for both algorithms. We describe a direct application of this model: a parallelization method that uses the expression of our general backward di erentiation to overlap the communication times.

Introduction

The multi-layer perceptron (mlp) i s n o w widely used as an e cient tool for classi cation and for function approximation. To enhance its performance and/or to reduce its training time, many authors have proposed modi cations of its simple structure.

A mlp consists of several ordered layers of neurons. A neuron is a simple processing unit with several scalar inputs and one scalar output. It receives the output of each neuron of the previous layer with the help of a weighted connection. In order to compute its output, it multiplies each input by the corresponding connection weight, sums the resulting values, adds a threshold and then applies a transfer function to the sum. The simplest modi cation idea is to change the transfer function. The preprocessing computation may also be modi ed (see 10]). The neurons may be derived from a radial basis function (rbf) a s i n 9], or from a m ultidimensional wavelet [START_REF] Rossi | Geometrical Initilization, Parametrization and Control of Multilayer Perceptrons: Application to Function Approximation[END_REF]).

Despite their di erences, all these models share a common principle: they use an acyclic graph of simple units to compute a complex parametric vectorial function. Unfortunately, they are separately studied most of the time, especially in simulation softwares, where they are handled by totally independant objects, with totally di erent training algorithms.

In this paper, we extend a model proposed by L eon Bottou and Patrick Gallinari in 1]. The extended model allows to handle any feed-forward neural network model as a particular case of a general mathematical de nition. The di erential of the function calculated by a feed-forward network with respect to its parameters can be computed either with a direct method or with an extended back-propagation method. These methods are theoretically compared by means of a precise analysis of the operation amount they need. It shows that the back-propagation algorithm is not always faster than the direct method.

An e cient parallelization method of the back-propagation algorithm has been derived from our model. We t a k e advantage of our precise study of the back-propagation principle to show that a neural network parallel mapping can be improved thanks to computation/communication overlapping. The e ciency of the derived parallel implementation is similar to the most advanced network-partitioning schemes, but it applies to any feed-forward network.

Chapter 1

The general model

In this chapter, we do not describe the exact mathematical model (e.g. the handled sets are ordered to exactly de ne the computation process, but this paper does not clearly de ne this ordering). It would be too long, and not really meaningful. The exact de nitions, theorems and proofs can be found in a technical report 2]1 . W e just provide the reader with the main ideas and results. Nevertheless, mathematical expressions remain when they are useful for the next chapter, or when they point out the cogency of the model. Their concrete meaning is always given.

Motivations

When creating this model, we had in mind our respective studies about mlp control, wavelet networks (wn) and mlp learning with genetic algorithms. The interest of a homogeneous approach of these di erent problems especially appeared when we w anted to use tools developed by one another. Despite its obvious signi cance, the model of 1] w as not convenient for us. Our needs were: maximal generality, with regard to some given basic properties, a precise mathematical description of each handled object (and rigorous proofs), a clear distinction between these objects (and therefore, autonomous de nitions), a strong relationship between the theoretical approach and the experimental requirements.

Feed-forward neural networks

The key ideas of the model are to generalize the notion of neuron and to allow an arbitrary feed-forward connection graph.

The main limitation of the standard mlp and of all its derivatives is the strong relationship between the connection graph and the network weights: one weight for each connection. Whereas the graph should only be a communication structure that allows the communication between the neurons, and the weights should be associated to the notion of controlling structure that allows a training algorithm to modify the local computation performed by e a c h neuron.

Our generalization breaks this link: we use an arbitrary dag (directed acyclic graph) for the communication structure and a control vector for each neuron. The relationship between the input of the neuron, its control vector and its output is only modeled by a v ectorial function which can be of any form. All considered variables belong to vectorial spaces. This is useful for the generality of the model.

The neuron

In our model, a neuron N is a di erentiable function. Its n input spaces are I 1 : : : I n (with n 2 IN ?). Its output space is O. Its control vector belongs to a weight space W. Its output is computed thanks to its input vectors and its weight v ector.

Its partial di erential with respect to its weight v ector is called dN w . Its partial di erential with respect to its k-th input is called dN ik .

The neural net

The underlying structure of a neural net is a dag G = (N E) (N is a set of nodes, E is a set of edges). A feed-forward neural network is a dag, where the nodes are neurons that satisfy the following conditions. If N has no predecessor in the graph, then it is an input neuron, and it has only one input space. Inis the set of the input neurons. If N has p predecessors, then it has exactly p input spaces, one for each predecessor in the graph (therefore the dimension of its k-th input space is equal to the dimension of the output of its k-th predecessor).

The input x of the neural network is the concatenation (x 1 : : : x jInj) of the inputs of the input neurons.

In the same way, its output is the concatenation of the outputs of the output neurons (no successor in the graph). The weight v ector w of the whole network is the concatenation (w 1 : : : w jNj) o f t h e w eight v ectors of all neurons in N .

Computing the output

A rigorous mathematical approach requires an exhaustive de nition of each handled function. Since there is no a priori knowledge about the graph, the only way to de ne the computed values is a recursive building. This method is correct only because the underlying graph is not cyclic.

To illustrate this, let us take the case of an intuitive result: the computation of the network output. Its mathematical description is as follows:

Let x and w be the input and weight v ectors of G. F or any neuron N l , its input E l and its output o l are recursively de ned functions of x and w:

o l (x w) = N l (E l (x w) w l) If N l is the k-th element o f In, E l (x w) = x k .
If N l 6 2 In, a n d i f P (l) i is its i-th predecessor:

E l (x w) = o P (l)1 (x w) : : : o P (l) p l (x w)

Input sharing

In a mlp, e a c h input neuron uses the same input vector. In our model, this behavior is modeled by a di erentiable input sharing function, that can be of any form. The simplest example is a replicating function which maps a vector x to a tuple (x : : : x) of size jInj. I t a l l o ws all input neurons to share the same input, as in standard models (mlp, rbf networks or wns).

The input sharing method does not change the di erential of G with respect to its weight v ector. Hence, it is not taken into account hereafter. The model also handles weight sharing.

Di erentials within the general model 1.3.1 The direct computation method

As the neuron functions are di erentiable, the function computed by the network is also di erentiable (it is a composite function). The simplest method to compute its di erentials is the standard chain rule. To simplify, i f w e consider the composite function f(g(: : : (h(x)))), this method uses local di erentiation at the level of f, and global di erentials inside the composite function. With very uncorrect notations, it might b e written: @f(:::x) @x = @f @g(:::x) @g(:::x) @x . The exact expression in the model is:

if N l 6 = N k : { i f N l 6 2 In(writing E l for E l (x w)): @o l @w k (x w) = p l X j=1 dN l ij ; E l w l @o P (l)j @w k (x w) (1.1) { i f N l 2 In: @o l @w k (x w) = 0 (1.2) if N l = N k : @o l @w l (x w) = dN l w ; E l w l (1.
3) We h a ve a similar property i f w e consider @o l @xi , where x i is the input of the i-th input neuron.

Back-propagation

The key idea of the back-propagation is to di erentiate f(g(: : : (h(x)))) by means of a local di erential at the level of h and a global di erential \above". With very uncorrect notations again, it might be written: @f(:::x) @x = @f(:::x) @h(x) @h @x . In the case of our model, we consider o k (x w), the output of neuron N k , as a function of o l (x w), the output of another neuron N l . W e therefore de ne o k!l (x w f l) as the output of node N k when o l is set \free" from the network constraints (it can take arbitrary values, represented by f l). It follows that o k!l (x w o l (x w)) = o k (x w). But o k and o k!l are mathematically very di erent, and this equality is only satis ed for the constraint f l = o l (x w). The main mathematical di culty i s t o p r o ve that the intuitive di erentiation is correct: the constraint does not add extra di erentiation terms.

In the model, a rst local equation states that o k depends on w l only through the output of N l :

@o k @w l (x w) = @o k!l @o l ; x w o l (x w) dN l w ; E l w l (1.4)
A similar equation is ful lled for @o l @xi . The back-propagation appears in the computation of @o k!l @o l . The main equation is, if there is a directed path from N l to N k in the graph: @o k!l @o l ; x w o l (x w) = X N j successor of N l @o k!j @o j ; x w o j (x w) dN j i r(l j) (E j w j) (1.5)

where N l is the r(l j)-th predecessor of N j . If there is no directed path, the di erential is null, and if N l = N k , it is the identity function.

A recursive method to compute @o k!l @o l is given by formula 1.5: it needs @o k!j @o j for every successor N j of N l . Therefore, @o k!l @o l is computed from the last layer of the network to the input layer: this is a backward algorithm and therefore an extended back-propagation.

Error function

In order to train a neural network, we use an error function which estimates a distance between the output of the network and a desired output. This error E is considered as a function of the network weights. Gradient based training methods use its gradient rE. T o compute rE, E can be handled as a composite function of the distance function and the neural output. In this case, the chain rule is applied to this composite function (the di erential of the neural network output is therefore required: it can be computed either with the direct method or with the extended back-propagation).

The distance function can also be considered as a weightless nal output neuron of the network, so that the back-propagation can be fully applied. If the output of this neuron is called E G (x w), we can also de ne E !l G (x w), when o l is considered \free" from the network constraints. Then equations 1.4 and 1.5 become: @E G @w l (x w) = @E !l G @o l (x w o l (x w))dN l w (E l w l) @E !l G @o l (x w o l (x w)) = X N j successor of N l @E !j G @o j (x w o j (x w))dN j r(l j) (E j w j) (1.6)

In practice, a gradient based learning algorithm uses these equations. Since the output of E G is real, every back-propagated algebraic structure is therefore a gradient v ector, wheras the direct method propagates matrices (so that the algebraic computations are intuitively more complex). Moreover, in the back-propagation algorithm, each non-local di erential is the di erential of the error with respect to a given neuron: we h a n d l e only one non-local di erential per neuron. Whereas in the direct algorithm, for each neuron, we handle its di erentials with respect to all its direct or indirect predecessors. It justi es some complexity results.

Complexity

The aim of this section is to compare the theoretical time needed by both di erentiation algorithms. All proofs can be found in 2].

Notations and preliminary remarks

Both algorithms need to know the input, the output and the rst-order di erentials of each node. Therefore, the comparison will only focus on the cost of the algebraic operations required by both methods. We i n troduce the following quantities: the main computation load is mostly due to the numerical operations needed for the algebraic operations, i.e. oating point n umber additions and multiplications. We will assume that the time needed to perform such an operation is 1. This is therefore the unit of our formulae. m(i j k) is the time needed to multiply a (i j)-matrix and a (j k)-matrix (i.e approximatively ik(2j ; 1)) s(i j) is the time needed to sum to (i j)-matrices (approximatively ij). Let j:j be the function which m a p s a v ectorial space to its dimension (for instance, jO l j is the dimension of the output space of node N l). The same notation will be used for the number of elements of a nite set (for instance jN j = n).

Let P (i) (resp. S (i)) be the set of the direct and indirect predecessors (resp. successors) of neuron N i , including N i . L e t P + (i) (resp. S + (i)) be the set of the direct and indirect strict predecessors (resp. successors) of neuron N i , i . e . P + (i) = P (i) ; f N i g (resp. S + (i) = S (i) ; f N i g).

Direct algorithm

Theorem 1 Let G = (N E <) be a di erentiable feedforward neural network. With the direct algorithm, computing the di erential of G with respect to its parameter vector needs a time equal to: X N j 6 2In X N l 2P + (j) 0 @ (jP(j) \ S (l)j ; 1) s ; O

j W l + X N k 2P(j)\S (l) m ; O j O k W l 1 A (1.7)
which is approximately equal to:

X N j 6 2In O j X N l 2P + (j) W l 0 @ 2 X N k 2P(j)\S (l) O k ; 1 1 A (1.8)
Corollary 1 Let G = (N E <) be a di erentiable feedforward neural network. Let F be an output function for G, with O F as output space. With the direct algorithm, computing the di erential of F G with respect to its parameter vector requires algebraic operations which total cost is:

X N j 6 2In O j X N l 2P + (j) W l 0 @ 2 X N k 2P(j)\S (l)
O k ; 1 1 A + jO F jjW j(2jOj ; 1)

(1.9)

Back-propagation

Theorem 2 Let G = (N E <) be a f e edforward neural network. With the back-propagation algorithm, computing the di erential of G with respect to its parameter vector needs a time equal to:

out X k=1 X N l 2P + (Outk)
m(jO Outk j jO l j jW l j) + (jS(l) \ P (Out k)j ; 1)s(jO Outk j jO l j) + X N j 2S(l)\P + (Outk) m(jO Outk j jO j j jO l j) (1.10) approximately equal to: out X k=1 jO Outk j 0 @ jI Outk j + X N l 2P + (Outk) 0 @ jW l j(2jO l j ; 1) + jO l j 0 @ 2 X N j 2S(l)\P + (Outk)

jO j j ; 1 1 A 1 A 1 A (1.11)
In the same way:

Theorem 3 Let G = (N E <) be a di erentiable feedforward neural network. Let F be an output function for G, with O F as output space. With the back-propagation algorithm, computing the di erential of F G with respect to its parameter vector requires algebraic operations which total cost is: jO F j 0 @ X N l jW l j(2jO l j ; 1) + X N l 6 2Out jO l j 0 @ 2 X N j 2S(l) jO j j ; 1 1 A 1 A

(1.12)

Comparison

In both cases (i.e. with or without error function), the cost formulae are not directly comparable: the theoretical costs must be computed to choose the fastest algorithm. Even for a standard mlp architecture, the number of neurons can be chosen so that the direct method is faster than the back-propagation to compute the di erential of the network output. Nevertheless computing the di erential of the error is always faster with the back-propagation than with the direct method for the mlp and its derivatives (rbf networks and wns). Another important result is that computing the di erential of the error for a standard model within our mathematical model is as fast as doing it with the standard back-propagation algorithm.

Recapitulation

The proposed model generalizes the mlp model. It allows to separate the connections from the weights. Since it includes all standard feed-forward models, it allows to compare them. In order to use e ciently the standard gradient based learning algorithms, we d e v eloped several computation methods for the gradient o f a neural network. Though it works well for mlps, the back-propagation method is not the fastest algorithm for some other particular cases of the model.

Chapter 2

Parallelized Back-Propagation

Neural networks in parallel

A parallel implementation of neural computations is a possible solution for memory and time-consumming neural network applications (for instance real-time data processing). A survey of existing schemes to parallelize back-propagation can be found in 7]. The two main ideas are to distribute the patterns that are used for training, or to distribute the computation performed by the neural network (in this case, a pipeline may sometimes be used in addition).

Pattern-partitioning schemes require large pattern sets. They can handle any neural network, but they are not able to implement a stochastic gradient learning algorithm.

Network-partitioning schemes require large neural networks. An e cient solution is to use parallel implementations of the algebraic computation a mlp requires, but such a solution can not apply to other neural networks (rbf network, wn, sparse network). Another solution is to map the natural parallelism of a neural network onto the machine by means of a neuron partition among the processors. As it is shown in 5], a direct mapping of the neural network calculation leads to an unsatisfactory parallel e ciency.

The aim of this section is to show h o w our precise study of the back-propagation algorithm (paragraph 1.3.2, section 1) allows to design an e cient mapping.

Computation/communication overlapping (CCO)

The back-propagation algorithm is usually considered as a 2 steps calculation: computed outputs are rst forwarded from the network input to its output, then the gradient i s b a c k-propagated from the output to the input. Considering equations 1.4, 1.5, and 1.6, each local computation can be divided into four steps, so that the time-consumming message transfers are overlapped by computation.

1. Neuron N k computes its output thanks to the input E k (x w) received from its predecessors. 2. N k computes its local jacobian matrices (dN k i and dN k w), which only depend on the forwarded data.

It sends simultaneously its computed output to its successors.

3. N k computes the gradient of the error function with respect to its inputs (@E @o P (k) j , for all its predecessors N P (k)j), thanks to the backpropagated gradient (@E @o k). 4. N k computes the gradient of the error with respect to its weight v ector (@E @w k) and updates these weights thanks to a gradient descent. It sends simultaneously all @E @o P (k) j to the corresponding predecessors. In 6], a general description of the parallel implementation of any feed-forward neural network is given. We will only consider here the useful case of a multilayered network (mlp, rbf network or wn).

Implemented algorithm

Let L be the number of layers. Let n l be the number of neurons in layer l. Consecutive l a yers are fully connected (standard multilayered structure).

The 4-step approach o f t h e b a c k-propagation can be used for any neural network parallel mapping [START_REF] Ghosh | Mapping neural networks onto message-passing multicomputers[END_REF]). We consider here a vertical sectioning with p processors: each processor deals with n l =p neurons in layer l. It is assumed that each n l is a multiple of p. In practice, if a layer contains too few neurons, the whole layer should me mapped onto one processor.

If fN (p) l i g i=1:: n l p are the neurons of layer l mapped on processor p, e a c h processor performs the following algorithm (hereafter called cco algorithm):

for layer=1 to layer=L do step 1 performed for fN (p) l i g i=1:: n l p s t e p 2 f o r fN (p) l i g i=1:: n l p (the communication is a multinode broadcast) for layer=L to layer=1 do s t e p 3 f o r fN (p) l i g i=1:: n l p (except for layer 1) s t e p 4 f o r fN (p) l i g i=1:: n l p (the communication is a multinode personnal reduction) For a mlp, step 2 computation may be included in both step 3 and step 4. Therefore, step 2 only performs an all-to-all communication, whereas step 4 communication is still overlapped.

Algorithm e ciency 2.4.1 CCO versus other network partitions

The cco principle can be applied to any n e u r a l n e t work mapping, provided that the amount of computation allows the communication overlapping. Therefore, cco may just be considered as an improving method for these parallel implementations, and it should be compared with the network-partitioning schemes that split each neuron computation onto several processors.

The rst and main advantage of the cco algorithm with respect to such algorithms is to adapt to any feed-forward neural network, and not only to mlp-like n e t works.

But for a numerical comparison, we limit ourselves to the case of mlps. It is illustrated by gure 2.1, which uses the characteristics of an iPSC 860. Among numerous network-partitioning schemes, the checkerboarding method of 7] (hereafter called cb algorithm) may b e t a k en as a reference, with regard to its high e ciency and scalability.

To simplify, the mlps are assumed to have the same numbern of neurons in each l a yer. The algorithms are implemented on a hypercube architecture of dimension d (p = 2 d) (hardware or simulated) to minimize the communication cost. The computation times of both cco and cb algorithms are equal. If a communication time for N values is modelled as + N for the standard case, and for an overlapped communication, then the communication times are as follows: cco: (L ; 1)(2d + kn p;1 p) cb: (L ; 1)(2d + kn 2d p p)

where k is the numb e r o f s i m ultaneously handled patterns. Considering this model, the best algorithm is the cco one if d 8, i.e. p 256, whereas the cb algorithm should be chosen when d > 8. Moreover, other current w orks show that if an optimal hybrid scheme (pattern-and network-partitioning are mixed with an optimal ratio to ensure the minimum learning convergence time) is considered, then the cco algorithm should be chosen even with massively parallel computers (p > 4096 for instance).

It must be noticed that the cco algorithm requires at least O(p) neurons per layer to allow the neuron partition and to obtain enough computation time to overlap the data transfers. Whereas the cb algorithm only requires O(p p) neurons per layer. Experiments on an iPSC 860 show that the e ciency formulae are reliable, though non-blocking communications do not exactly cost a constant time on this machine.

CCO versus pattern-partition

We also consider here the case of a pattern partition implemented on a hypercube architecture. We call it the pp algorithm.

Both cco and pp may apply to any feed-forward neural network. As any network-partitioning scheme, the main advantage of the cco algorithm is to allow the parallelization of the stochastic gradient learning (weight updating after each pattern presentation). Indeed, several experiments show that the number of required epochs (presentation of the whole training set) for learning convergence may be modelled as A + kB. F or the pp algorithm, if each processor deals with b patterns, then k = pb (whereas k = b for cco).

For a numerical comparison of the speedups (without considering the overall learning time), the communication times are: cco: 2 (L ; 1)d except for a mlp (transfer time not overlapped within step 2, see above) pp: d + dW where W is the number of neural network weights (W = Ln(n + 1) f o r a mlp, W = 2 Ln 2 for a simple wn, W = L(2n 2 + n 2 (n;1) 2) for some advanced versions of the wn model, : : :). These communication times show that the pp algorithm should be chosen only for small neural networks. Figure 2.2 uses the parameters of an iPSC 860 (it contains only theoretically estimated e ciencies).

Recapitulation

Since the cco algorithm is based on our general model, it adapts to any di erentiable feed-forward neural network. Therefore its application domain is much larger than for the most e cient existing networkpartitioning methods. Moreover, e ciencies are similar, though they are compared for the worst case of cco, i . e . mlps (forward communication not overlapped). Since the cco principle allows to improve a standard parallel mapping, it can still implement the stochastic gradient learning. Therefore it outperforms the pattern partitioning scheme for a training task, especially with numerous processors, provided that the handled neural network is large enough to allow the cco implementation.

Conclusion

In this paper, we h a ve presented a generalized model for feed-forward neural networks which includes and generalizes the mlp model and its derivatives. Gradient descent based training algorithms can be used in order to train any n e t work which ful lls the general conditions. They will use the direct algorithm or the back-propagation algorithm in order to compute the gradient of the error made by the network on a speci ed training set: we h a ve given theoretical cost formulae that allow t o c hoose the fastest algorithm for a particular network architecture.

An e cient parallelization method has been designed, based on communication overlapping. This method derives from an analysis of our generalized back-propagation formulae. It can therefore apply to any feedforward neural network.

Our model still extends: it handles second order di erentiation methods, and it will soon deal with recurrent n e t works.

 CCO and CB -10 neurons per layer per processor theoretical CCO efficiency theoretical CB efficiency experimental CCO efficiency

Figure 2

 2 Figure 2.1: cco versus cb (2 layers, k = 5)

 Figure 2.2: cco versus pp (2 layers, k = 160, p = 1 6)

available with the WWW at URL: http://www.ens-lyon.fr/ bgirau