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A grouped instance of a cellular automaton (CA) is another one obtained by grouping several states into blocks and by letting interact neighbor blocks. Based on this operation (and on the subautomaton notion), a preorder on the set of one dimensional CA is introduced. It is shown that (CA, ) admits a global minimum and that on the bottom of (CA, ) v ery natural equivalence classes are located. These classes remind us the rst two w ell-known Wolfram ones because they capture global (or dynamical) properties as nilpotency or periodicity. Non trivial properties as the undecidability o f and the existence of bounded in nite chains are also proved. Finally, i t i s s h o wn that (CA, ) admits no maximum. This result allows us to conclude that, in a \grouping sense", there is no universal CA.

R esum e

Une instance groupe e d'un automate cellulaire (AC) est un autre obtenu par groupage de plusieurs etats en blocs et par l'interaction \naturelle" de ces blocs. Bas e sur cette op eration (et sur la notion de sous-automate), un pr eordre sur l'ensamble des AC a une dimension est introduit. Il est montr e que (AC, ) admet un minimum global et que des classes d'equivalence tr es naturelles se trouvent en bas de (AC, ). On retrouve dans ces classes les deux premi eres bien connues de Wolfram qui capturent des propiet es globales (ou dynamiques) comme la nilpotence et la p eriodicit e. Des propiet es non triviales comme l'ind ecidabilit e de et l'existence de cha înes in nies born ees sont aussi prouv ees. Finalement i l est montr e q u e ( A C, ) n'admet pas de maximum. Cet resultat nous permet de conclure qu'il n'existe pas de AC u n i v ersel d'un point de vue \groupage".

Mots-cl es: automates cellulaires, groupage, ordre, classi cation dynamique, universalit e intrins eque en temps r eel.

Introduction

A one dimensional cellular automaton with unitary radius, or simply a CA, is an in nite array of nite state machines called cells and indexed by ZZ. These identical cells evolve synchronously at discrete time steps following a local rule by w h i c h the state of a cell is determined as a function of its own state together with the states of its two neighbors. These devices are capable to simulate any T uring machine [START_REF] Mazoyer | A l i n e ar speed-up theorem for cellular automata[END_REF]) and, despite their simplicity, they may exhibit very complex behavior. The goal of this paper is to introduce an order on the set of CA by considering them as algebraic objects.

A rst approach i s t o s a y t h a t a C A A is a subautomaton of a CA B if the transition table of A is contained (after a suitable relabeling of the states) on the transition table of B. This notion takes into account only the nite-state-machine nature of the CA cells but not their spatial dimension.

On the other hand, the evolution of a CA from a particular initial con guration is usually represented by a space-time diagram in ZZ 2 . When observing it, the human eye t ypically changes the scale in order to remove irrelevant microscopic details and to discover a macroscopic behavior. We call to the CA that generate this scaled space-time diagrams grouped instances (or powers) of the original one. They are obtained by grouping several states into blocks and by considering as transitions the interactions of neighbor blocks. In section 2 this de nition is formally stated.

In section 3 it is shown that previous grouping operation (together with the subautomaton notion) e ectively allows us to introduce a preorder on the set of CA. In fact, it su ces to note A B when a grouped instance of A is a subautomaton of a grouped instance of B. This preorder induces a canonical equivalence relation. More precisely, w e s a y t h a t t wo C A A and B are equivalent i f A B and B A. Notice that, as we expected it, at least all the grouped instances of a CA are equivalent.

In section 4 we show that (CA, ) admits a global minimum and that on the bottom of (CA, ) v ery natural equivalence classes are located. These classes remind us the rst two w ell-known Wolfram ones [START_REF] Smith | Simple computation-universal cellular spaces[END_REF]) because they capture global (or dynamical) properties as nilpotency or periodicity . As a corollary, the undecidability o f is stated.

In section 5 a non trivial property concerning (CA, ) i s p r o ved: the existence of two incomparable in nite chains with a common upper bound.

Finally, in section 6 a natural question is answered. In fact, it is shown that (CA, ) has no maximum. In other words, for any CA, the subsystems of all its grouped instances will never cover all the CA classes. This result allows us to conclude that, in a \grouping sense", there is no universal CA.

De nitions

Formally, a CA is a couple (Q ) where Q is a nite set of states and :

Q 3 ! Q is a transition function. A con guration of a CA (Q ) is a bi-in nite sequence C 2 Q ZZ , and its global transition function G : Q ZZ ! Q ZZ is such t h a t ( G (C)) i = (C i;1 C i C i+1 ).
Given a particular state s 2 Q, w e denote its corresponding homogeneous con guration as s = ( s s s ) 2 Q ZZ . W e denote IN = IN ; f 0g and, to each n 2 IN , w e associate the set of states S n = f0 n ; 1g.

We s a y t h a t ( Q 1 1 ) is a subautomaton of (Q 2 2 ), and we n o t e ( Q 1 1 ) (Q 2 2 ), if there exists an injection ' : Q 1 ! Q 2 such that for all x y z 2 Q 1 : '( 1 (x y z)) = 2 ('(x) ' (y) ' (z)). When the function ' is a bijection we s a y that (Q 1 1 ) a n d ( Q 2 2 ) are isomorph and we note (Q 1 1 ) = (Q 2 2 ).

For any C A ( Q ) the evolution of a nite block of states looks like a light-cone (see gure 1). This basic fact inspires the notion of the n-block e v olution function n : Q 2n+1 ! Q, which is recursively de ned as follows:

Fig. 1 Dependences diagram representing a block of states evolution as a light-cone.

By grouping several states into blocks and by letting interact triplets of blocks as schematically appears in gure 2, we generate CA with (exponentially) more states.

Formally, the n-grouped instance of a CA (Q ) is the CA (Q ) n = ( Q n n g ), where q 2 Q n is denoted (q 1 q n ) and for all x ỹ z 2 Q n :

( n g (x ỹ z)) i = n (x i x n y 1 y i y n z 1 z i ) Fig. 2 Blocks interaction.
Finally we i n troduce a binary relation on the set of CA. It is denoted as and it associates two CA when a grouped instance of the rst is a subautomaton of a grouped instance of the second. More precisely, for two C A ( Q 1 1 ) and (Q 2 2 ),

(Q 1 1 ) (Q 2 2 ) () 9 n m 2 IN : ( Q 1 1 ) n (Q 2 2 ) m
3 An Order on CA Here we show that the relation is a preorder on CA. This preorder induces a canonical equivalence relation and it satis es two basic properties proved at the end of the section. The rst one says that all the grouped instances of a given CA are -equivalent, and the second one that by \superposing" two C A w e obtain a common maximum.

Lemma 1 Let (Q ) b e a C A . F or all i n 2 IN such that i < n it holds:

n (w ;n w n ) = n;i ( i (w ;n w ;n+2i ) i (w ;n+1 w ;n+2i+1 ) i (w n;2i w n )) Proof By induction. Lemma 2 Let (Q 1 1 ) (Q 2 2
) b e t wo CA. For all n 2 IN it holds:

(Q 1 1 ) n (Q 2 2 ) n
Proof Let ' : Q 1 ! Q 2 be a suitable injection. First we h a ve to prove b y induction on n that '( n 1 (w ;n w n )) = n 2 ('(w ;n ) ' (w n )): It is direct for n = 1. Assuming it true for n, and denoting A n+1 = '( n+1 1 (w ;n;1 w n+1 )), it follows: A n+1 = '( n 1 ( 1 (w ;n;1 w ;n w ;n+1 ) 1 (w n;1 w n w n+1 ))) = n 2 ('( 1 (w ;n;1 w ;n w ;n+1 )) ' ( 1 (w n;1 w n w n+1 ))) = n 2 ( 2 ('(w ;n;1 ) ' (w ;n ) ' (w ;n+1 )) 2 ('(w n;1 ) ' (w n ) ' (w n+1 ))) = n+1 2 ('(w n;1 ) ' (w n+1 ))

Let us consider now the injection ' : ( Q 1 ) n ! (Q 2 ) n such t h a t '(x) = ( '(x 1 ) ' (x n )): It follows that for all x ỹ z 2 (Q 1 ) n :

('(( 1 ) n g (x ỹ z)) i = '( n 1 (x i y i z i )) = n 2 ('(x i ) ' (y i ) ' (z i )) = (( 2 ) n g ('(x) '(ỹ) '(z)) i Lemma 3 Let (Q ) b e a C A . F or all n m 2 IN it holds: ((Q ) n ) m = (Q ) nm Proof Denoting ã 2 (Q n ) m as (ã 1 ãm ) with ãi = ( a i1 a in ) 2 Q n and b 2 Q nm as (b 11 b 1n b m1
b mn ) with b ij 2 Q, and de ning the bijection ' :

( Q n ) m ! Q nm
such that ('(ã)) ij = ( ãi ) j , in order to prove the lemma it su ces to show that next identity holds for all i m j n and for all x ỹ z 2 (Q n ) m :

( n g ) m (x i xm ỹ1 ỹm z1 zi )] j = nm ((x i ) j (x m ) n (ỹ 1 ) 1 (ỹ m ) n (z 1 ) 1 (z i ) j ) because '(( n g ) m g (x ỹ z))] ij = (( n g ) m g (x ỹ z)) i ] j = ( n g ) m (x i xm ỹ1 ỹm z1 zi )] j and nm g ('(x) ' (ỹ) ' (z))] ij = nm (('(x)) ij ('(z)) ij ) = nm ((x i ) j (z i ) j )
We prove nally the identity b y induction on m. F or m = 1 it holds directly. Assuming it true for m, it follows:

( n g ) m+1 (x i zi )] j = ( n g ) m ( n g (x i xi+1 xi+2 ) n g (z i;2 zi;1 zi ))] j = nm (( n g (x i xi+1 xi+2 )) j ( n g (z i;2 zi;1 zi )) j ) = nm ( n ((x i ) j (x i+2 ) j ) n ((z i;2 ) j (z i ) j )) = n(m+1) ((x i ) j (z i ) j )
Proposition 1 The relation is a preorder on CA. Proof The re exivity holds directly. F or the transitivity, let us consider

(Q 1 1 ) (Q 2 2 ) and (Q 2 2 ) (Q 3 3 ). By de nition, there exist n 1 m 1 n 2 m 2 2 IN such that (Q 1 1 ) n 1 (Q 2 2 ) m 1 and (Q 2 2 ) n 2 (Q 3 3 ) m 2
. By applying lemma 2 and lemma 3, together with the transitivity o f , w e conclude that (Q 1 1 ) n 1 n 2 (Q 3 3 ) m 1 m 2 :

Remark 1 The preorder de ned on CA induces:

i. An equivalence relation on CA, where:

(Q 1 1 ) (Q 2 2 )] , (Q 1 1 ) (Q 2 2 ) and (Q 2 2 ) (Q 1 1 )]
ii. A strict preorder < on CA, where:

(Q 1 1 ) < (Q 2 2 )] , (Q 1 1 ) (Q 2 2 ) and (Q 1 1 ) 6 (Q 2 2 )]
iii. The canonical order on (CA/ ) compatible with .

Proposition 2 For any C A ( Q ), all its grouped instances are equivalent. In other words, for all i j 2 IN : ( Q ) i (Q ) j . Proof It su ces to notice that by lemma 3, ((Q ) j ) i (Q ) ij ((Q ) i ) j :

In order to obtain a local maximum for a nite family of CA, let us consider the following \superposition" operation:

De nition 1 Let fBg be such that fBg 6

Q for every CA (Q ). Let (Q 1 1 ) (Q 2 2 ) be two CA. Then (Q ) = ( Q 1 1 ) (Q 2 2 ) i f Q = ( Q 1 f Bg) (Q 2 f Bg) and for all x = ( x 1 x 2 ) ỹ = ( y 1 y 2 ) z = ( z 1 z 2 ) 2 Q : (x ỹ z) = 8 > < > : ( 1 (x 1 y 1 z 1 ) B ) if (x ỹ z) 2 (Q 1 f Bg) 3 (B 2 (x 2 y 2 z 2 )) if (x ỹ z) 2 (fBg Q 2 ) 3 (B B) otherwise Proposition 3 For every two C A ( Q 1 1 ) and (Q 2 2 ) the CA (Q ) = ( Q 1 1 ) (Q 2 2 ) satis es (Q 1 1 ) (Q ) a n d ( Q 2 2 ) (Q ).
Proof It su ces to consider the injections '

1 : Q 1 ! Q with '(x 1 ) = ( x 1 B ) and ' 2 : Q 2 ! Q with '(x 2 ) = ( B x 2 ):
4 On the Bottom of (CA, )

In this section we study the equivalence classes represented by the simplest CA. We s h o w that for trivial transition functions (constant, identity, shift) very natural classes which capture global (or dynamical) properties as periodicity or nilpotency are generated. The undecidability o f is concluded. In order to localize previous classes on the bottom of (CA, ) w e m ust start by s h o wing that (CA, ) e ectively has a bottom. In fact, next proposition says that there exists a global minimum consisting on all the isomorph CA having only one state:

Proposition 4 The canonical order on (CA/ ) compatible with admits a global minimum which corresponds to the class of CA having a single state.

Proof Let (fsg s ) b e s u c h that s (s s s) = s. Let (Q ) be a CA. By the niteness of Q there exist q 2 Q and P 2 IN with 1 P j Qj such that P (q q) = q, and therefore (fsg s ) (Q ) P . Finally notice that if jQj > 1 then (fsg s ) < (Q ) because any grouped instance of a singleton CA is also a singleton CA.

Nilpotency

Fo r a C A ( Q ) its limit set (Q ) is de ned as the set of all the con gurations that can occur after arbitrarily many computation steps. More precisely, i f w e de ne 0 = Q ZZ and i = G ( i;1 ) for i 1, then (Q ) = T 1 i=1 i . W e s a y that a CA belongs to the class NIL, and we call it nilpotent, if its limit set is a singleton. In other words, NIL= f(Q ) : ( jQj > 1) ^(j (Q )j = 1 ) g Obviously, when the limit set is a singleton it corresponds to an homogeneous con guration. In 2] it is proved that when nilpotency holds then this con guration is reached from any other one in a nite and xed number of steps. More precisely, NIL= f(Q

) : ( jQj > 1) ^(9s 0 2 Q n 2 IN )(8C 2 Q ZZ )(G n (C) = s 0 )g
We i n troduce now the simplest nilpotent CA: those reaching the homogeneous con guration in one step. Let therefore n > 1 . T h e C A ( S n 0 n ) i s s u c h that for all x y z 2 S n :

0 n (x y z) = 0 .
Lemma 4 For all n > 1 it holds: (S 2 0 2 ) (S n 0 n ): Proof First notice that if p q then 0 p = 0 q Sp , and therefore (S p 0 p ) (S q 0 q ). Let n > 1 and let ñ 2 IN be such that n 2 ñ. It follows that (S n 0 n ) (S 2 0 2 ) ñ because (S 2 0 2 ) ñ = (S 2 ñ 0 2 ñ ):

Lemma 5 If (Q ) (S 2 0 2 ) t h e n ( Q ) 2 NILor jQj = 1 . Proof If (Q ) (S 2 0 2 ) then 9i j 2 IN : ( Q ) i (S 2 0 2 ) j . I t f o l l o ws: 9i j 2 IN : ( Q ) i (S 2 j 0 2 j ) =) 9i 2 IN s = ( s 1 s i ) 2 Q i : 8c 1 c2 c3 2 Q i i g (c 1 c2 c3 ) = s =) 9i 2 IN s 0 2 Q : 8c 2 Q 2i+1 i (c) = s 0 =) (Q ) 2 NIL_ j Qj = 1 Proposition 5 Let (Q ) be a CA. It holds: (Q ) (S 2 0 2 ) () (Q ) 2 NIL Proof If (Q ) 2
NILthen, by de nition, 9n 2 IN and s 0 2 Q such that 8c 2 Q 2n+1 n (c) = s 0 . It follows that (Q ) n = (S jQj n 0 jQj n ) w i t h jQj n > 1 and therefore, by lemma 4, (Q ) (S 2 0 2 ). The other implication corresponds to lemma 5 and to the fact that if

(S 2 0 2 ) (Q ) then jQj > 1. Proposition 6 (Q ) < (S 2 0 2 ) if and only if (Q ) is isomorph to the minimum. Proof Let us suppose that (Q ) < (S 2 0 2 ) a n d jQj > 1. By lemma 5 , ( Q ) 2 NIL, a n d therefore (Q ) (S 2 0 2 ). )( Corollary 1 Give n a C A ( Q ), it is undecidable to know i f ( Q ) (S 2 0 2 ).
Proof By the fact that the nilpotency problem is undecidable [START_REF] Culik | On the limit sets of cellular automata[END_REF]).

Periodicity and Shift-Like B e h a vior

Some other global properties concerning cyclic behavior are considered. First we s a y that a CA belongs to the class P E R , a n d w e call it periodic, if every con guration belongs to a cycle. More precisely,

P E R= f(Q ) : ( jQj > 1) ^(8C 2 Q ZZ 9n 2 IN : G n (C) = C)g
On the other hand we i n troduce the R SHIFT and L SHIFT classes. In this case, for every con guration there exists an n 2 IN for which the con guration reappears n cells shifted after n time steps. In other words,

R SHIFT = f(Q ) : ( jQj > 1) ^(8C 2 Q ZZ 9n 2 IN : ( ( G ) n (C)) i = C i;n )g L SHIFT = f(Q ) : ( jQj > 1) ^(8C 2 Q ZZ 9n 2 IN : ( ( G ) n (C)) i = C i+n )g
As in the nilpotency case, for these classes the length of the cycles does not depend on the considered con gurations. This result is stated in next lemma: Lemma 6 It holds the following:

P E R = f(Q ) : ( jQj > 1) ^(9n 2 IN 8C 2 Q ZZ : G n (C) = C)g R SHIFT = f(Q ) : ( jQj > 1) ^(9n 2 IN 8C 2 Q ZZ : ( ( G ) n (C)) i = C i;n )g L SHIFT = f(Q ) : ( jQj > 1) ^(9n 2 IN 8C 2 Q ZZ : ( ( G ) n (C)) i = C i+n )g Proof Let (Q ) 2 P E R .
Let us consider any con guration C in which a l l t h e w ords over Q appear (it su ces to construct it as a suitable concatenation). Denoting the period of the cycle to which C belongs as n , it follows that 8c = ( c ;n c 0 c n ) 2 Q 2n +1 : n (c) = c 0 and therefore any other con guration C 2 Q ZZ is n -periodic. For the R SHIFT and the L SHIFT classes the proof is exactly the same.

We i n troduce now the simplest periodic and shift-like CA: those having unitary length cycles. More precisely, let n > 1 a n d l e t ( S n I n ), (S n n ) ( S n ;1 n ) be the CA such that, for all x y z 2 S n :

I n (x y z) = y n (x y z) = x ;1 n (x y z) = z It follows the same as for the nilpotency case. In fact, the proofs of next two propositions are completely equivalent to those of proposition 5 and proposition 6:

Proposition 7 Let (Q ) be a CA. It holds: (Q ) (S 2 I 2 ) () (Q ) 2 P E R (Q ) (S 2 2 ) () (Q ) 2 R SHIFT (Q ) (S 2 ;1 2 ) () (Q ) 2 L SHIFT Proposition 8 Let (S 2 2 ) 2 f (S 2 I 2 ) (S 2 2 ) (S 2 ;1 2 )g. Then (Q ) < (S 2 2 ) if and only if (Q ) is isomorph to the minimum.
Corollary 2 The canonical order on (CA/ ) compatible with is partial. Moreover, the classes R SHIFT , L SHIFT , NIL, and P E Rare two b y t wo incomparables.

Proof It su ces to consider non periodic con gurations (for instance: 0001000 ) a n d to notice that its behavior (its evolution) could never be simultaneously of two t ypes.

Two Incomparable In nite Chains with a Common

Upper Bound

A non trivial property concerning (CA, ) i s p r o ved in this section: the existence of two incomparable in nite chains with a common upper bound. The bound will correspond to a suitable composition of the CA that solves a slightly modi ed version of the well-known ring squad problem [START_REF] Martin | A universal cellular automaton in quasi-linear time and its s-m-n form[END_REF]) with another one that simply transmits signals. The two c hains are introduced in next de nition:

De nition 2 Let f(S n n )g n>1 and f(S n n )g n>1 be two families of CA such that, for each n > 1:

n (x y z) = x if x = y = z 0 otherwise n (x y z) = minfx y zg Before proving that previous families are incomparable and in nite chains, notice that there exists a pair of points belonging to di erent c hains which are comparable. In fact, the initial points (S 2 2 ) a n d ( S 2 2 ) are isomorph. On the other hand, they are located above the NILclass as it is showed in next proposition:

Proposition 9 For all (Q NIL NIL ) 2 NILit holds:

(Q NIL NIL ) < (S 2 2 ) (Q NIL NIL ) < (S 2 2 ) Proof Let (Q NIL NIL ) 2 NIL. First (S 2 2 ) (Q NIL NIL ) because (S 2 2 ) i s n o t
nilpotent. On the other hand, notice that (S 2 0 2 ) (S 2 2 ) 2 because it su ces to consider ' : S 2 ! (S 2 ) 2 such t h a t '(x) = ( 0 x): Lemma 7 Let n > 1. For all i 2 IN it holds: jfx 2 (S n ) i : ( n ) i g (x x x) = xgj = n jfx 2 (S n ) i : ( n ) i g (x x x) = xgj = n Proof First, for all x 2 S n :

( n ) i g (x x x x x x) = x x ( n ) i g (x x x x x x) = x x Let x = ( x 1 x i ) 2 (S n ) i be such that 91 k < i such that x k 6 = x k+1 . Without loss of generality, let us assume x k > x k+1 . It follows:

(( n ) i g (x x x)) k = 0 6 = x k (( n ) i g (x x x)) k x k+1 < x k
Let x y 2 S n be such that ' x > ' y > 0 and y 6 = 0. It follows:

'(0 0) = '(( n ) i g (x x y y x x)) = ( m ) j g (' x ' x ' y ' y ' x ' x ) = (' y ' y ) = '(y y) )( Now in order to obtain an upper bound for the two previously introduced in nite chains we are going to compose a pair of CA. One of them is related to the classical ring squad problem introduced in 5] and which consists to design a CA capable to synchronize \as soon as possible" an array of cells of arbitrary size. In lemma 9 a result that appears in 6] concerning a slightly modi ed version of the original problem known as two-ends ring squad is formally stated: Lemma 9 6] There exists a CA (Q F S F S ) such that fG l G r q 0 g Q F S and which satis es for all n 2 IN the following: ( F S ) n+2 g (G l q 0 q 0 G r G l q 0 q 0 G r G l q 0 q 0 G r ) = ( G l q 0 q 0 G r ) For all substring x of the triple concatenation (G l q 0 q 0 G r G l q 0 q 0 G r G l q 0 q 0 G r ) 2 (Q F S ) 3(n+2) such t h a t jxj = 2 k + 1 with k < (n + 2), it holds:

( F S ) k (x) 6 = q 0

In next gure it is represented the case n + 2 = 4 :

l G q 0 q 0 l G q 0 q 0 q 0 q 0 G r G r l G q 0 q 0 G r G r l G / = q 0
Fig. 3 Two-ends ring squad.

The CA to be composed with (Q F S F S ) i s i n troduced in next de nition. Its cells simply transmit the signals (or states) coming from its left (resp. right) neighbor to its right (resp. left) neighbor keeping only its own information. More precisely, De nition 3 Let Q be an arbitrary set of states. We de ne the CA (S signal 3 and for all x y z 2 S signal Q : signal Q (x y z) = ( x l y c z r ) where all the states of S signal Q are denoted s = ( s l s c s r ).

Q signal Q ) s u c h that S signal Q = Q

An Unbounded In nite Chain

In this section we prove that (CA, ) has no maximum. In other words, for any CA, the subsystems of all its grouped instances will never cover all the CA classes. This result allows us to conclude that, in a \grouping sense", there is no universal CA. The proof is implicitly based on the existence of an unbounded in nite chain obtained after \processing" the next one:

De nition 5 f(S n n )g n>1 is the family of CA such that, for each n > 1:

n (x y z) = x if x = z y if x 6 = z
Notice that the bottom of previous family is located above the NILclass or more precisely, as it is shown in next proposition, above t h e C A ( S 2 2 ) i n troduced in de nition 2:

Proposition 15 (S 2 0 2 ) < (S 2 2 ) < (S 2 2 ). Proof First it su ces to notice, as it is shown in gure 5, that (S 2 2 ) (S 2 2 ) 2 by t h e injection ' : S 2 ! (S 2 ) 2 such that '(x) = ( 0 x). On the other hand, let us suppose that there exist i j 2 IN such that (S 2 2 ) i (S 2 2 ) j . B y l e m m a 2 , ( S 2 2 ) 2i (S 2 2 ) 2j . B y The following is the key result of the present section. It says, in a general way, that the n 's transition functions are too complicated to be simulated by grouped instances of a CA. This impossibility is based on the fact that, for any grouped instance of a CA, any c e l l belonging to a block has not access during the interaction process to the whole information contained on the neighbor blocks. Formally: Proposition 16 For every CA (Q ) and for every n 2 IN such that n > jQj it holds: 8i 2 IN : ( S n n ) 6 (Q ) i Proof Suppose that there exist (Q ) a n d n i 2 IN such that n > jQj and (S n n ) (Q ) i . Then, by de nition, there exists an injection ' : S n ! Q i such that: 8x y z 2 S n : '( n (x y z)) = i g ('(x) ' (y) ' (z)) Let i 0 be the smallest index of Q i for which there exist at least two elements of '(S n ) h a ving di erent v alues (see gure 6). Formally: i 0 = m i n fk 2 IN : 9(x 1 x i ) (y 1 y i ) 2 '(S n ) s u c h t h a t x k 6 = y k g Notice that i 0 2 f 1 ig is well de ned because jS n j > 1. It follows: 8x z 2 '(S n ) : x 6 = z ) x i 0 6 = z i 0 In fact, suppose that there exist x z 2 '(S n ) with x 6 = z such that x i 0 = z i 0 . By construction of i 0 there always exists ỹ 2 '(S n ) s u c h that x i 0 6 = y i 0 . On the other hand:

x i 0 = ( i g (x ỹ x)) i 0 = 2i+1 (x i 0 x i y 1 y i x 1 x i 0 ) = 2i+1 (x i 0 x i y 1 y i z 1 z i 0 ) = ( i g (x ỹ z)) i 0 = y i 0 )( Finally it follows that : S n ! Q with (x) = ( '(x)) i 0 is an injection and therefore n j Qj: )( Fig. 6 Cell i 0 and the information it may access.

In order to conclude that (CA, ) admits no maximum we are going to show that every CA is contained in all the grouped instances of a suitable composition of itself with the CA that transmits signals introduced in de nition 3. More precisely, Lemma 10 For any C A ( Q ) there exists a normalized version (Q ) = ( Q ) satisfying, for all i 2 IN : ( Q ) (Q ) i .

Proof Let us denote B as a state not belonging to any CA. Let (Q ) b e a C A . W e de ne Q = S signal fQ fBgg and for all x y z 2 Q : (x y z) = ( ( (x l y c z r ) (x l y c z r ) (x l y c z r )) if x l y c z r 2 Q signal fQ fBgg (x y z) otherwise For any i 2 IN , the injection ' : Q ! (Q ) i that allows us to conclude the lemma is the following: '(x) = ( ( xxx) (BBB) (BBB)) (see gure 7). Fig. 7 Embedding (Q ) i n to (Q ) i for i = 3 . Proposition 17 For every CA (Q ) and for every n > jQj: ( S n n ) 6 (Q ). Proof Suppose that there exist (Q ) n>jQj and i j 2 IN such t h a t ( S n n ) i (Q ) j .

Then, by lemma 1 0 , ( S n n ) (Q ) j , which contradicts proposition 16.

Corollary 3 (CA, ) has no maximum. Proposition 18 It holds, for all n 1: (S n n ) < (S (n+1) 3 +1 (n+1) 3 +1 ):

Proof (S n n ) (S (n+1) 3 +1 (n+1) 3 +1 ) because S n S (n+1) 3 +1 and (n+1) 3 +1 S n = n .

On the other hand, let us suppose that (S (n+1) 3 +1 (n+1) 3 +1 ) (S n n ). Considering that jS n j = ( n + 1) 3 we c o n tradict proposition 17. Proposition 19 For every CA (Q ) there exists another one ( Q ~ ) such that (Q ) < ( Q ~ ).

Proof It su ces to consider ( Q ~ ) = ( Q ) (S jQj+1 jQj+1 ). By proposition 3 (Q ) ( Q ~ ). On the other hand, if ( Q ~ ) (Q ) t h e n ( S jQj+1 jQj+1 ) (Q ): )(

Fig. 5

 5 Fig. 5 Embedding (S 2 2 ) i n to (S 2 2 ) 2 .

(w ;1 w 0 w 1 ) = (w ;1 w 0 w 1 ) n (w ;n w 0 w n ) = n;1 ( (w ;n w ;n+1 w ;n+2 ) (w n;2 w n;1 w n ))

This work was partially supported by Chilean-French Cooperation Programs (specially ECOS-97).

Proposition 10 For all n > 1 it holds:

(S n n ) < (S n+1 n+1 ) (S n n ) < (S n+1 n+1 ) Proof First (S n n ) (S n+1 n+1 ) because n+1 j Sn = n . Let us suppose that there exist i j 2 IN such that (S n+1 n+1 ) i (S n n ) j . Let ' : ( S n+1 ) i ! (S n ) j be the suitable injection. It follows that, if x 2 (S n+1 ) i is such t h a t ( n+1 ) i g (x x x) = x then ( n ) j g ('(x) ' (x) ' (x)) = '(x) a n d w e c o n tradict lemma 7. For (S n n ) < (S n+1 n+1 ) t h e argument is exactly the same. Lemma 8 Let i n 2 IN with n > 1 and let ã = ( a 1 a i ) 2 (S n ) i . It holds:

where a = m i n fa 1 a i g Proof It su ces to notice that, for all x = ( x ;i x 0 x i ) 2 (S n ) 2i+1 it holds:

( n ) i (x ;i x 0 x i ) 6 = 0 () x ;i = = x 0 = = x i 6 = 0 ( n ) i (x ;i x 0 x i ) = minfx ;i x 0

x i g Proposition 11 For all n > 2 m>2 i t h o l d s : ( S m m ) (S n n ): Proof Let us suppose that there exist i j 2 IN such t h a t ( S m m ) i (S n n ) j and let us denote ' : ( S m ) i ! (S n ) j the suitable injection. It follows that:

8x 2 S m 9' x 2 S n such that '(x x) = ( ' x ' x )

In fact, '(x x) = '(( m ) i g (x x x x x x)) = ( n ) j g ('(x x) ' (x x) ' (x x)) = (' x ' x ) ( b y lemma 8)

Let x 2 S m be such t h a t 0 x < m ; 1 a n d '(x x) 6 = ( 0 0). It follows: '(x x) = '(( m ) i g (m ; 1 m ; 1 x x m ; 1 m ; 1))

Proof Let us suppose that there exist i j 2 IN such t h a t ( S n n ) i (S m m ) j and let us denote ' : ( S n ) i ! (S m ) j the suitable injection. As in the proof of proposition 11, it holds the following: 8x 2 S n 9' x 2 S m such that '(x x) = ( ' x ' x )

The composition CA is almost the \superposition" of the two previously introduced CA (with the set of signals Q = f0 1g). The exception is done at the last step of the ring squad period: the only triplets of 1 signals not destroyed (transformed into 0) are those arriving simultaneously to a cell. Formally: De nition 4 Let (Q D) be the CA such t h a t Q = Q F S S signal f0 1g and, for all (x 1 x 2 ),(y 1 y 2 ),(z 1 z 2 ) 2 Q : D((x 1 x 2 ) (y 1 y 2 ) (z 1 z 2 )) = 8 > > < > > :

( F S (x 1 y 1 z 1 ) 000) if F S (x 1 y 1 z 1 ) = q 0 and signal f0 1g (x 2 y 2 z 2 ) 6 = (111) ( F S (x 1 y 1 z 1 ) signal f0 1g (x 2 y 2 z 2 )) otherwise

Proposition 13 For all n > 1:

by the injection ' : S n ! Q n+1 that follows:

'( 0 ) = ( ( G l 000) (q 0 000) (q 0 000) (G r 000)) '(x) = ( G l 000) (q 0 000) (q 0 000) (q 0 111)

| {z }

x with 0<x n;1 (q 0 000) (q 0 000) (G r 000))

In fact, as it is shown in gure 4, D n+1 g ('(x) ' (y) ' (z)) = ( '(x) if '(x) = '(y) = '(z) '(0) otherwise = '( n (x y z))

On the other hand (Q D) (S n n ) because (S n+1 n+1 ) (S n n ): 000 q 0 q 0 111 000 G r G l 000 000 q 0 q 0 111 000 G r G l 000 000 q 0 q 0 111 000 G r G l 000 000 q 0 q 0 111 000 G r G l 000 000 q 0 q 0 111 000 G r G l 000 000 q 0 q 0 111 000 G r G l 000 000 q 0 000 G r G l 000 G l 000 000 q 0 q 0 111 000 q 0 G r 000 Fig. 4 \Simulating" by ( Q D) 4 the transitions of (S 3 3 ) f o r ( 2 2 2) and (2 2 1). Proposition 14 For all n > 1: (S n n ) < (Q D). Proof Let n 2 IN . ( S n n ) (Q D) n+1 by the injection ' : S n ! Q n+1 that follows: '( 0 ) = ( ( G l 000) (q 0 000) (q 0 000) (G r 000)) '(x) = ( G l 000) (q 0 111) (q 0 111)

| {z }

x with 0<x n;1 (q 0 000) (q 0 000) (G r 000))

In fact, as for n : D n+1 g ('(x) ' (y) ' (z)) = '(minfx y zg) = '( n fx y zg) On the other hand (Q D) (S n n ) because (S n+1 n+1 ) (S n n ):

Concluding Remarks

In this paper we h a ve i n troduced a preorder on the set of CA. We h a ve shown that on the bottom of this structure very natural equivalence classes are located. These classes remind us the rst two w ell-known Wolfram ones because they capture global (or dynamical) properties as nilpotency or periodicity. Non trivial properties as the undecidability o f and the existence of bounded in nite chains were also proved. Finally, i t w as shown that (CA, ) admits no maximum. This result allowed us to conclude that, in a \grouping sense", there is no universal CA. Further research should be guided by the following ideas:

A deeper understanding of the (CA, ) structure could help us to develop a complexity notion on CA. If a CA A is a grouped instance of B, t h e n B could be thought as an e cient codi cation of A. It seems very natural to look for characterizations of reducible CA and to study the associated computational complexity problem. The concept of intrinsic or self-referenced simulation on CA was introduced in 1]. It simply means that we \simulate directly a CA without passing through Turing machines". In 4] appears an intrinsic universal CA working on quasi linear time but restricted to totalistic transitions. Our relation may b e i n terpreted as a particular kind of simulation working on real time. A clarifying study about the di erent notions of simulations (and the time they take) should be done in the future.