N

N
N

HAL

open science

Hyperbolic Recognition by Cellular Automata

Christophe Papazian, Eric Rémila

» To cite this version:

Christophe Papazian, Eric Rémila. Hyperbolic Recognition by Cellular Automata. [Research Report]

LIP RR-2002-03, Laboratoire de I'informatique du parallélisme. 2002, 24+14p. hal-02101943

HAL Id: hal-02101943
https://hal-lara.archives-ouvertes.fr /hal-02101943
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lara.archives-ouvertes.fr/hal-02101943
https://hal.archives-ouvertes.fr

AN

Laboratoire de I'Informatique du
Paralléisme

Ecole Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON % CENTRE NATIONAL
nO 8512 DE LA RECHERCHE

SCIENTIFIGUE

Eric

Christophe Papazian Janvier 2002

Hyperbolic Recognition by Cellular
Automata

Rémila

Research Report N° 2002-03

Ecole Normale Supérieure de
Lyon

46 Allée d'Italie, 69364 Lyon Cedex 07, France W‘
Téléphone : +33(0)4.72.72.80.37 l N R' [A
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : 1ip@ens-lyon.fr

Hyperbolic Recognition by Cellular Automata

Christophe Papazian
Eric Rémila

Janvier 2002

Abstract

Graph automata were first introduced by P. Rosenstiehl. A. Wu and A. Rosen-
feld showed later how a graph automaton can study its own structure, by
building a system of signals that explore the underlying graph, giving in this
way algorithms in linear time allowing to know if the graph is a regular grid.
Then, E. Rémila extended this result to other geometrical structures.

We show here a very general method that allows to recognize all finite subsets
of some Cayley graphs, without using some particular Euclidean information,
like orientation, but some more general properties of automatic groups. De-
pending on the class of graphs we want to recognize, we can finally do different
processing on the border of the detected geometrical structure, by using the
small cancellations theorem. We study such graphs due to their good properties
in network computing.

Keywords: Finite automata, Hyperbolic graphes

Résumé

Les graphes d’automates ont été introduits par P. Rosensthiel. A. Wu et A.
Rosenfeld ont ensuite montré comment un graphe d’automates peut étudier
sa propre structure, en construisant un systeme de signaux qui explorent le
graphe sous-jacent, donnant ainsi un algorithme en temps linéaire permettant
a un graphe d’automates de savoir si son graphe est un rectangle, puis E. Rémila
a étendu cette reconnaissance & d’autres structures géométriques,

Nous proposons ici une méthode tres générale qui permet de reconnaitre les
classes des sous-graphes finis de certains graphes de cayley, sans utiliser des
propriétés euclidienne, comme la notion d’orientation, mais des propriétés tres
générales, comme celles des groupes automatiques. Selon la classe de graphe que
I’on souhaite reconnaitre, on peut alors effectuer des traitements différents de
reconnaissance sur les bords de la structure géométrique détectée, en utilisant
le théoreme des petites simplifications.

Mots-clés: Automates finis, Graphes hyperboliques

Hyperbolic Recognition by Cellular Automata

Christophe Papazian (Christophe.Papazian@ens-lyon.fr)
Eric Rémila (Eric.Remila@ens-lyon.fr)

Introduction

Graph automata were first introduced by P. Rosenstiehl [12], under the name of
intelligent graphs, surely because a network of finite automata is able to know
some properties about its own structure. Hence P. Rosenstiehl created some
algorithms that find Eulerian paths or Hamiltonian cycles in those graphs, with
the condition that every vertex has a fixed degree [13]. Those algorithms are
called "myopic” since each automaton has only the knowledge of the state of
its immediate neighborhood. This hypothesis seems to be absolutely essential
for the modelisation of the physical reality. A. Wu and A. Rosenfeld ([14] [15])
developed ideas of P. Rosenstiehl, using a simpler and more general formal-
ism : the d-graphs. For each of these authors, a graph automata is formed by
synchronous finite automata exchanging information according to an adjacent
graph.

A. Wu and A. Rosenfeld have been especially interested in the problem of
graph recognition. What is the power of knowledge of a parallel machine about
its own architecture 7 The motivation for this problem in parallelism is clear
(can we control the structure of a parallel computer just using this computer ?)
but this problem can also be interpreted in Biology or Physics as study of
dynamic systems with local rules, or as a theoretical model of computer or
mobile networks. In a general point of view, this is also a method to study the
local algorithms on regular structures.

There is a general difficulty of this task, due to the finite nature of the
automaton. As it has a finite memory, an arbitrary large number can not be
stored in such a memory or in the signals exchanged by automata, . Hence, for
example, coordinates can not be stored. Thus appropriate techniques have to
be used : we use time differences to compute coordinates, and we will define
signal flows to do comparisons between coordinates.

The first non-trivial result on this framework is due to A. Wu and A. Rosen-
feld, who gave a linear algorithm allowing a graph automata to know if its graph
is a rectangle or not. Then, E. Rémila [10] extended this result to other geo-
metrical structures, with a system of cutting along certain lines, by using some
methods of signal transmission in a fixed direction. In a recent paper [7], we gave
a very general method that allows to recognize a large class of finite subgraphs
of Z? (and a lot of subclasses like classes of convex figures, of cell compatible
figures ...) by putting orientations on edges and computing coordinates for each
vertex.

In the present paper, we are interested in the problem of recognition of finite
subgraphs of infinite regular hyperbolic networks. A new difficulty arises, due
to the hyperbolic structure which is not intuitive, in our opinion : working in a
hyperbolic plane is not as natural a working in Z2. Thus, we limit ourselves to
networks constructed from Dehn groups (i. e. fundamental groups of compact
orientable 2-manifolds, see [1], [2]), which are natural hyperbolic generalizations
of the planar grid. Thus, the group structure can be used. Moreover, these
groups are said automatic (in the sense of [6]), and the automatic structure
gives us a powerful tool for our study.

The main results are a linear time (linear with the size of the studied graph)
algorithm of recognition for a very large and natural class of finite subgraphs of
hyperbolic regular networks and a quadratic time algorithm for the most general
case.

1 Definitions

Notation : We will use a, b, c for constant on letters, u, v, w for words (and e
for the empty word), and z, y, z for variables on letters. We will use d, i, j, k for
integers, e, f for edges, and u, v for vertices.

1.1 d-graph

A graph is a set G = (V, E) with V a finite set of vertices, and E a subset of
V2, whose elements are called “edges”. We will only consider graphs without
loops (no (v,v) edges) and symmetric (if (u,v) isin E, so is (v, u)). A vertex p
is a neighbor of another vertex v if (v,) is in E. The degree of a vertex is the
number of its neighbors; the degree of the graph is the maximum degree among
its vertices. A vertex of degree d is called a d-vertex. A path of G from v to
w is a finite sequence (vg,v1,...,vp) (With v = vy and v, = p) such that two
consecutive vertices of the sequence are neighbors. A cycle is a path such that
u = v. We say that G is connected if for each pair (v, u) of V2, there exists a
path of G from v to . We will only consider connected graphs.

A cyclic conjugate of a word w = x1...x, is a word w; = x;...x, 1 ...2;—1 for
all 1 <i<n (see [2]).

A labelling X is a mapping from E to a finite alphabet X. Given any path
of G, the labelling of this path is the word built from the sequence of labels of
successive edges of the path. Given any cycle of G, a word w is a contour word
of this cycle iff w or w™! is a cyclic conjugate of the labelling of this cycle.

Let d be a fixed integer such that d > 2. A d-graph is a 3-tuple (G, vy, b),
where G = (V, E) is a symmetric connected graph with only two kinds of ver-
tices : vertices of degree 1 (which are called #-vertices by Rosenfeld) and vertices
of degree d, vy is a d-vertex of G (which is called the leader, or the general), h is
a mapping from E to {1,2,...,d} such that, for each d-vertex v of V, the partial
mapping h(v, .) is bijective (injective if we do not consider the #-vertices). The
subgraph G' of G induced by the set of d-vertices is called the underlying graph
of G (see figure 1).

From any graph G’ of degree at most d, we can construct a d-graph (G, vo,)
whose underlying graph is G’ : we add some #-vertices until the degree of each
(non #) vertex is d, arbitrarily choose a leader and, for each vertex, build an
order on its neighbors.

For each vertex, we call an up-edge, an edge that links this vertex to another
vertex that is closer to the leader than itself. We call down-edge in the opposite
case.

Figure 1: A graph and its associated 4-graph

1.2 Graph automata
1.2.1 Definition

A finite d-automaton is a pair (@, d) such that @) is a finite set of states with #
in @, and ¢ is a function from Q x (Z4)? x Q? to @ such that, for each element
Y of Q x (Zg)? x Q?, 5(T) = # if and only if the first component of T is #.

A graph automaton is a set M = (G4, A) with G4 a d-graph, and A a finite
d-automaton (@, 9).

A configuration C' of M is a mapping from the set of vertices of G4 to the
set of states), such that C(v) = # iff v is a #-vertex.

We define, for each vertex v, the neighborhood vector H(v) € Z4% in the
following way : for each integer ¢ of {1,2,...,d}, let u; denote the vertex such
that b(v, p;) = i. The i*" component of H(v) is h(u;,v).

We compute a new configuration from a previous one by applying the tran-
sition function ¢ simultaneously to each vertex of G4, computing a new state for
each (non-#) vertex by reading its state and the states of its neighbors, using
the vector of neighborhood :

Crew(v) = 0(C(v), H(v),C(m), ---C(pa))

(#-vertices always stay in the # state). Hence, we have a synchronous model,
with local finite memory. The use of the neighborhood vector is necessary for
this computation (see [11] for details).

There is a special state gy in @) that we call the quiescent state. If a vertex
v and all its (non-#) neighbors are in this state, v will stay in this same state
in the next configuration.

The initial configuration (the one from which we will begin the computation)
is a configuration where all vertices are in the state qo, except the leader, which
is in a state qingt-

We say that a configuration C of G4 can be reached in M if C is obtained
from the initial configuration after a finite number of steps of computations
described above.

1.2.2 Similarity with a network

To simplify our explanations, we will consider that each automaton sends and
receives signals to/from its neighbors at each step of computation, instead of
looking at their entire states. It is easily possible, considering their states as
sets of d + 1 memory registers, one for keeping tracks about its own charac-
teristics, and d others that contain messages for the neighbors, one register for
each neighbor. Hence, at each step of computation, a vertex only looks at the
messages computed for itself in the state of its neighbors.

To allow simultaneous exchanges, we consider a message as a set of signals.

1.3 The problem of recognition

Now, we will only use automata with two particular states : the accepting state
and the reject state.

Definition 1 The class of accepted graphs for one d-automaton A is the class
of d-graphs G4 such that there is a configuration, where the leader is in the
accepting state, that can be reached in (Gg, A).

In the same way, we can define the class of rejected graphs.

Definition 2 A recognizer is an automaton that rejects all d-graphs that it does
not accept.

In fact, we have a decision problem : As input, we have graphs, and for each
automaton, we can compute if the graph is accepted or rejected. This natural
problem has been formalized by A. Wu and A. Rosenfeld.

So the aim of the recognition of d-graphs is to build a recognizer for a given
class of d-graphs.

1.4 Hyperbolic regular network

We call a cell, a cycle of a graph such that it is not possible to extract a shorter
cycle of the graph from the cycle (“no vertex nor edges inside”).Two different
cells are said adjacent if they share one edge. A finite subgraph G = (V, E) is
said cell compatible if E is a union of cells. If, moreover, for each pair (C,C")
of cells included in E with a common vertex v, either C' and C' are adjacent,
or there exists cells (C' = Cyp,C1,...,C; = C')(i < d) included in E, such that
each C; contains the vertex v and C; is adjacent to C;41, then we say that G is
locally cell connected.

Definition 3 The cell-neighborhood of a vertex v of a d-graph G = (V, E) of
[(k,d) is the sub-graph of G composed by the cells containing the vertezx v.

<«

\ ‘////
=N

W

=
= ' =
= ’ ' ‘\:\

‘

4

Figure 2: T'(3,7) and I'(8,3). I'(8,8) are not easily representable, due to a too
large curvature.

A free group G =< S >=< S;0 > (with S a finite set) is the set of finite
words of ¥* with the natural reduction zz~' = ¢, where ¥ = SUS~!. A group
G =< S; R >, is the quotient group < S > /d(< R >), with d(< R >), the
group generated by the set of words zrz~! (x € S, r € R). Informally, G is
the quotient group of < S > where all words of R (and the symmetric words
of words of R and the cyclic permutations of words of R) are equal to €, the
empty word. So we can have two different words of ¥* that will represent a
same element of < S; R > (for example any element of R* is equal to €).

We will now consider, for g > 2, the alphabet £, = {a1, ..., asg, ait, .., az,_gl},
the fundamental group (of the orientable compact 2-manifold of genus g) G, =<
Yy wy = alag...aggaflagl...a;gl > and the Cayley graph associated to such a
group. Remember that a Cayley graph G = (V, E) of a given group G =< S, R >
is a graph such that V is the set of elements of G and (v,w) € E if and only if
there is a generator a € SU S~ ! such that va and w are the same element of G.
The symmetric unlabeled graph induced by the Cayley graph of G, is I'(4g, 49)
defined as follows :

Definition 4 A network I'(k,d) is the unique undirected planar graph, such that
every cell has k edges, every vertex has d neighbors, and T'(k,d) can be drawn
in such a way that each bounded region contains a finite number of vertices. It
corresponds to the reqular tessellations of Euclidean or hyperbolic planes.

So, I'(4,4) is the infinite grid isomorphic to Z?2, and I'(4g,4g) is a natural
extension in hyperbolic geometries.

Hence, the cycles of length 4¢g of I'(4g,4g) are cells. A canonical labelling of
I'(4g,4g) is a labelling A from the set of edges to X, such that the cells admit
w, as a contour word, and for all edges (v,u) and (v,pu’) we have (A(v,u) =
A, 1)) = (= '), and we have A(v, 1) = A(j1,) .

A finite graph G is called a manifold on G, if we have a valid labelling
Aon G to ¥, such that every cell of G admits w, as a contour word, every
vertex does not have two outgoing edges with the same label, and we have
A, 1) = Ap,v) 1

As we can see from figure 3, the definition of locally cell connected graph
forces the local structure of the cell-neighborhood of each vertex, and, conversely,

Tk

Figure 3: One possible structure of local cell-neighborhood for I'(8,8) on the
left. On the right, a cell-neighborhood not allowed in locally cell connected
manifold.

each connected subgraph of I'(4g,4g), such that the cell-neighborhood of each
vertex is like the figure 3 (on the left), is locally cell connected.

Note that two isomorphic locally cell connected subgraphs of I'(4g,4g) also
are isometric (from an Hyperbolic point of view). This is not true for all cell
compatible subgraphs of I'(4g,4g). There are some kneecap effects around ver-
tices that induce several possible local labellings (see figure 4).

/’\

SSeRiees

Figure 4: Two possible labellings of the same graph, due to the kneecap effect.

X1
= X,

Each subgraph of I'(4g, 4g) obviously admits a valid labelling, but some other
graphs (for example : tori, cylinders, spheres ...) also do. Informally, we can
say that each graph accepting a valid labeling can be locally mapped to the
graph I'(4g,4g) and, moreover, all the local mappings have a kind of weak local
coherence.

Moreover, a labelling of a locally cell connected subgraph of I'(4g, 4g) is com-
pletely determined by the labels of the edges outgoing from a fixed vertex. This
is not true for (non-locally) connected cell compatible subgraphs of I'(4¢g,4g).
This fact is important for the determination of a possible isomorphism from a
given graph to a subgraph of I'(4g,4g). It is the reason why we limit ourselves
in studying the recognition of the class of 4g-graphs whose underlying graph is
isomorphic to a locally cell connected subgraph.

Finally, we say that a manifold G = (V, E) (with a labelling A) is mappable if
a morphism ¢ exists from V onto the vertices of I'(4g,4g) such that the labelling
is unchanged : A(p(v), (p(u)) = M(v,). Note that if ¢ is injective, then G is
isomorphic to a subgraph of I'(4g, 4g).

2 The Automaton

Now, we will construct a 4g-automaton A4, that recognizes the class of 4g-
graphs whose underlying graph is a cell locally connected figure of I'(4g,4g).
The process of recognition is divided into three steps :

First, each automaton tries to put coherent labellings on its edges. By doing
this process, we recognize the locally cell connected manifolds of G,.

Afterwards, it (informally) puts words of the finite group G, on its vertices,
that must be coherent with the previously chosen labelling. Hence, we have an
injection from the vertices of the graph to the elements of the group. By doing
this second process, we recognize the mappable locally cell connected manifolds
of G,.

Finally, automata do some processing on the border to detect the possi-
ble contradictions. By doing this last process, we recognize the subgraphs of
['(4g,49).

We will often say that a vertexr sends a signal or computes a result to mean
that the copy of the automaton on this vertexr does such a task.

2.1 First Step : Labelling of edges

The process of labelling edges consists in exploring the potential 2g-neighborhood
of each 4g-vertex of the underlying graph and giving labels to its edges. Of
course, the labelling built by this process is a valid labelling.

The process is done by successive 4g + 1 time steps stages. During the first
stage, indexes are given to the edges of the leader vertex. At the it" stage,
indexes are given to the edges of the it” vertex. We first build a (depth) search
tree in the graph, to have a natural order on the different vertices. Such a tree
can easily be constructed by a graph automaton, see [14] and [15] for details.

Each stage is computed in 49 + 1 time steps using signals exploring the
2g-neighborhoods of vertices.

t = 0, Beginning

The vertex v sends a signal A} with 1 <i < 4g through each of its edges e;

(we use h(v,.) to enumerate the edges of v).

1 <t < 2¢ Transmission

Each time a vertex receives a signal A¥ (k < 2g) through one of its edge, it
sends a signal Af“ through all of its other edges.
t = 2g Identification of cells .

When a vertex receives two signals A?g by the edge e and A?J by the edge
f, it sends back a signal B; ; through e and B;; through f.
2g < t < 49 Back transmission

When a vertex receives a signal B; j, it sends it back through the edge from
it previously received a signal A¥.
t = 49, Final computation

The vertex v must receive one or two signal B;; (and B;j) through its
edge e;. Informally, it allows to know that a cell of the 2g-neighborhood exists
between the edges e; and e; (and e; and e}). As we know the neighbor edges

of any given edge, we can put labels on all the edges of v, knowing at least one
label previously given in a precedent stage.
t =49+ 1, Next step

We send a signal to the next vertex v/, to indicate that v’ must begin the
labelling process and to give the label of the edge (v',v).

Figure 5: Exploration of the 2g-neighborhood

Remark 1 During this process, each vertex can moreover store, in its own
state, the mumber of its border edges, i. e. edges which belong to only one
(potential) cell. Each vertex has 0 or 2 border edges issued from itself due to
local cell connectivity. Hence, the set of (undirected) border edges is a set of
cycles.

This first step recognizes the locally cell connected manifold of G, in O(g|V'|+
) time steps and build a valid labelling for the manifolds recognized.

2.2 Second Step : Coordinates of vertices

It is the main part of the work that must be done by the recognizer.

Now, as all edges are labeled, we would like to place coordinates from G
on each vertex. Each finite automaton has a fixed memory, thus words of X7
of arbitrarily large length cannot be stored in such an automaton. So we will
encode those coordinates into the time-space diagram of the automata, using a
particular process.

In the Euclidean networks, we used coordinates of the form a™b™, in fact as
words of {ab}*, to represent the elements of the group < a,b | aba='b~! >=
Z2. In the hyperbolic problem, we will use coordinates of ¥} to represent the
elements of I'(4g, 4g)

The coordinates (the words) have to be consistent with the labelling of edges.
If we assign the word w; to the vertex vy and the word ws to the neighbor vertex
v2, and the label of (v1,v2) is a, then wia = ws in G. As we need to know if

the words we put on vertices are coherent with the labelling, we have to solve
the word problem : given any two words w and w’, are they equal ?

The word problem on hyperbolic groups : Building of a
Tree

We explain here a new method to solve the word problem on hyperbolic Cayley
graph, using finite automata. Remember that we could easily solve the word
problem on Euclidean groups, by using Euclidean coordinates (that is the con-
sequence of the Abelian properties of these groups). This is not the case for
hyperbolic groups.

To solve the word problem on G, =< ¥ ,w; >~ I'(4g,4g), we build a
sublanguage Ly (a set of words) of S* in bijection with G, such that any words
w of S* could be easily transformed into the word of Lz that represents the
same element of G. To compare two given words consists now to transform them
into the corresponding words of Ly and verify they are the same word.

Now, we explain how to build 7', the graph of Ly. Given a I'(4¢g,4¢) and a
given vertex ® (the origin) in this network, we can remark that every cell has
one vertex that is closest to ® (distance n) and one vertex that is farthest from
® (distance n + 2g). To each cell C, we can associate a unique word w¢ that is
a cyclic conjugate of w; = a1a2...a2gaf1...a2_g1 and w¢ describes the successive
labels of the edges in a contour word of the cell beginning at the closest vertex
to © .

As we only take cyclic conjugates of wg, and not words obtained by order re-
versing, words w¢ induce an orientation of cells which gives a global orientation
of ', as we can see on the figure 6.

Hence, for each cell C, the word we = 1 25...244 implies a natural numbering
of the edges of the cell, from the first edge that is labelled with x; to the 4"
edge that is labelled with z4,. The first edge and the last edge are connected
to the vertex of the cell C' that is the closest to ®. The edges labelled with x4
and #2441 are connected to the farthest (from ®) vertex of C.

Theorem 1 If we consider the graph I'(4g,4g) and the given vertex ®, and, for
each cell, we remove the 2g + 1*" edge, we transform the graph into a tree T,
without changing the distance (from ®) on the network.

Proof The proof is easy by induction. Consider the cells that contain ®.
By removing one of the farthest edge of each of this cell, we do not change the
distance between a vertex of these cells and ®. So, the theorem holds for vertex
at distance 1 from ©.

Suppose, by induction hypothesis, that this is true for all vertices at distance
n from ®. All vertices at distance n + 1 was connected to vertex at distance n.
If we do not removed an edge from a vertex, its distance is not changed. But
if we remove one edge, it means that this vertex was connected to two distinct
vertices at distance n (from ®). Now, it is connected to only one of this two
vertex. So we do not change the distance (from ®) for all these vertices : the
induction hypothetis is verified for n + 1.

Figure 6: A part of I'(8,8), with labelling on the left, and the tree that we
obtained on the right.

And the subnetwork obtained is a tree, as we can see that, for each vertex
v, there is only one neighbor of v that is closer to ® than v. It is a consequence
of the fact that, in any infinite ['(k,d), given two separate geodesics (they do
not share any edge) from v to ®, the first edge of the first geodesic is on the
same cell that the first edge of the second one : the cell where v is the farthest
vertex (from ®). But in 7', we remove one of these two edges, so we can not
have such a configuration : there is only one path from any v to ® (see [8] for
structural details on I'(k,d)). O

Using the Tree to compute coordinates words

So, the tree T that we build implies a language Lt of geodesic words. We will
use this language to compute the geodesic words that we will use as coordinates.

If we have a word u of Ly and consider the word ub (b € £,), the word ub is
in Ly except if this is the obvious case u = vb~! (that implies ub = v € L) or
if b corresponds to a forbidden (removed in T') edge. In this case, the subword
composed by the 2g last letters of ub correspond to a half cell of the form
T1T2...T2g = WendT2g Such that wenqz2, is a subword of a cyclic conjugate of
w, = 029...a201a2_g1...a1_1. We have to change it into into the other half of the
same cell corresponding to the word Z2g2g—1...21 = T2gWenqd-

By this substitution, we transform ug = ub = u'wepq®2, into the word
U1 = U/ T2gWeng = U bWenq. A new subword wpqy, of length 2g, corresponding to
another forbidden half-cell, can be created in u'@2,Wenq , but the only possibility
is that the last letter of wpaip is x24 = b, since x;12; cannot be a subword of
a cyclic conjugate of w, . This enforces : Whaip = WendTay.

So if we can state u' = u"wenq, then we transform w; = u'z2,Wenq into
us = u" T2y (Wena)®.

Repeating this process until there is no possible substitution, a word u,s: =
u”’xgg(m)j of Ly is obtained, in O(length of w) , such that ub and w,s
represent the same element of G|.

Hence, we have a linear time algorithm 6 such that given a word w of Ly
and a letter b € ¥, computes the word v = ub (in G,) such that v € L.

If we consider a word v = y; ...y, of X, to find the corresponding word u into
Ly, just apply this algorithm on each prefix of v : up = € and u; = 0(u;—1y;)-

10

Hence u = u,,.

Hence, we have an algorithm to compute the geodesics in quadratic time on
one automaton. It will be linear on graph automata, due to the fact we have as
many automata as the size of the words we need to transform.

The algorithm of coordinates on graph automata

Now, we will use the properties on L7 to compute coordinates for each vertex.
These coordinates will be encoded in the space time of each vertex, using a
sequence of signals L,, that represents the sequence of letters a; that will be a
word of Ly corresponding to a particular element of G,. The sequence of signals
is finished by a signal E (for “End”).

Initialization So the leader vertex sends signals L, to each of its neighbors,
where x € S, is the label of the edge trough which the signal L is sent. The
next time step, it sends a signal E to each of its neighbors.

Main process Intuitively, each vertex will receive one or two words as
a sequence of signals L,,. If the vertex receives only one word, there is no
problem. If it receives several words, the vertex has to verify that the words are
the same after a possible transformation. If the two words are not equal, there
is a rejection.

When a vertex receives a word, letters of the word are stacked on a buffer
of size 2g.

But at any time, the vertex verifies if the buffer can be simplified, simulating
the algorithm of computing geodesics of 7. Hence, the words received by next
vertices are always in T except the last letter. 2¢g time steps after receiving the
first letter (signal L), and one time step before sending the first letter of the
word to a particular neighbor, the considered vertex sends a signal L, where x
is the label of the edge that leads to this neighbor, to complete the word.

To finalize this process, each time a vertex does not have down-edges and
is assigned one single element G by this process, it will send a “Final” signal
through its up-edges. When a vertex received the “Final” signal through all
its down-edges, it will send this signal through its up-edges. It is obvious that
when the leader received this signal from all its edges, the process of coordinates
succeeded.

This second step recognizes the localy cell connected mappable (for the la-
belling built by the first step) manifold of G, in O(g.r) time steps, by building
a morphism ¢ from the manifold to G,.

2.3 Final step : non-overlap verification

A mappable manifold is a subset of I'(4g,4g) if and only if there are no two
vertices with the same coordinates. So we have to verify the injectivity of .
This is the last problem of the overlaps.

11

The general case of locally cell connected subgraphs of
I'(4g,49)

We have to compare the coordinates of each vertex to the coordinates of other
vertices. The method is easy. We just build a search tree and for each vertex v
on the tree, we make the process of puting coordinates on other vertices, as if
v were the leader. If another vertex receives the empty word (in L), we know
there is an overlap.

This process takes O(g.|V|.r) time steps. So, it is quadratic in the worst
case. As we have to compare O(|V|?) different coordinates of size O(r) with
a space of size O(|V]), the time needed is at least O(|V|.r), using this method
of resolution. We obtained O(r.In(r)) for Euclidean networks, using the same
arguments. Note that we can limit the verification to border vertices, but it
does not actually change the complexity.

Theorem 2 The class of locally cell connected subgraphs of T'(4g,4g) can be
recognized in quadratic time O(g.|V|.r).

Linear time for the large subclass of convex figures

Now, we can carry out different processes on the border to find geometrical
properties using linear time , especially the convexity property.

Definition 5 A cell compatible subgraph, a mappable graph or a manifold G
(of T'(4g,4g), g > 1) is convex iff there is only one single border cycle (the set
of vertices of degree less than 4g defined a single connected cycle) and for any
path p of 2g + 1 consecutive vertices on the border such that p is a subsequence
of a cell ¢, ¢ is in G.

This definition of convexity could be seen as a local convezity property. In
fact, this definition of convexity that we give here is directly linked to the
theorem of small cancellations ([4], for more details about this important the-
orem in hyperbolic groups). Due to this theorem (and more accurately, due to
inherent property of hyperbolic networks), this local convexity implies strong
consequences on graphs.

Theorem 3 (Theorem of small cancellations) (Dehn 1911)

For any G, =< S, R >, if w is a word of S* that is equal to € (null word) in G,
then there exists a word y, subword of w, with |y| < 2g + 1, such that y can be
reduced to y' =y with |y'| < |y|.

Theorem 4 The class of convez cell connected subgraphs of T'(4g,4g) can be
recognized in linear time.

In fact, it is very easy to verify such a property of convexity.To begin any
process on the border, the leader begins a depth first search in the graph ([14]),
until it finds a border vertex. Then, this vertex becomes a local leader on its
border cycle. When the process on this cycle is finished, the depth first search
resumes until it finds another border vertex on a cycle not yet reached or it

12

explored all the graph. Hence, the complexity of border algorithm is based on
the number of vertices of the underlying graph. Then, just send a word trough
the border cycle, like in the precedent part, and verify that the last 2g+1 letters
do not define a single cell. And if it is the case, verify that the cell is in the
graph by looking at the other (non border) edges of the border vertices. Hence,
we have a linear time algorithm to decide if a graph is convex.

And from the theorem of small cancellations, we can directly deduce the
following lemma :

Lemma 1 When a mappable graph is convex, there is no possible overlap : a
mappable convex graph is a subgraph of T'(4g,4g)

3 Extensions

The algorithm proposed here can be extended in many different ways. But we
can see that we do not need any property of planarity in our algorithm, nor
compass.

We give a solution for I'(4g,4g), but this result is true for all I'(k, d) with k
and d enough large to have the property of hyperbolicity.

The locally cell connected property is not necessary for linear time com-
plexity : we can use a global cell connected property, with more state in the
automaton. We must finally note that there is a trivial algorithm for non-cell
connected graphs in exponential time.

References

[1] W. S. Massey, Algebraic Topology, An introduction, Springer, (1967)
[2] R. C. Lyndon, P. E. Schupp, Combinatorial Group Theory, Springer, (1977)

[3] M. Gromov, Hyperbolic groups, in S.M. Gersten (ed.), Essays in Group Theory,
Mathematical Sciences Research Institute Publications 8, Springer Verlag, Berlin
(1987), 75-263

[4] E. Ghys, P. de la Harpe Sur les Groupes Hyperboliques d’aprés Mikhael Gromov
Progress in Mathematics, Birkh&user, (1990)

[6] J.M Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig, M. Mihalik, M. Shapiro
and H. Short, Notes on word hyperbolic groups, in E. Ghys, A. Haefliger and
A. Verjosky (eds.) Group Theory from a Geometric Viewpoint, World Scientific,
Singapore (1991), 3-63

[6] David B. A. Epstein Word Processing in Groups Jones and Bartlett Publishers,
(1992)

[7] C. Papazian, E. Rémila Linear time recognizer for subsets of Z> Proceedings of
Fondamentals of Computation Theory (FCT), (2001), LNCS 2138, 400-403

[8] C.Papazian, E. Rémila Some Properties of Hyperbolic Networks Proceeding of Dis-
crete Geometry for Computer Imagery (DGCI), (2000), LNCS 1953, 149-158

[9] J. Mazoyer, C. Nichitiu, E. Rémila, Compass permits leader election, Proceedings
of Symposium on Discrete Algorithms (SODA), SIAM Editor (1999), 948-949

13

[10] E. Rémila, Recognition of graphs by automata, Theoretical Computer Science 136,
(1994), 291-332

[11] E. Rémila, An introduction to automata on graphs, Cellular Automata, M. De-
lorme and J. Mazoyer (eds.), Kluwer Academic Publishers, Mathematics and Its
Applications 460, (1999), 345-352

[12] P. Rosenstiehl, Fzistence d’automnates finis capables de s’accorder bien qu’arbi-
trairement connectés et nombreus, Internat. Comp. Centre 5 (1966), 245-261

[13] P. Rosensthiel, J.R Fiksel and A. Holliger, Intelligent graphs: Networks of fi-
nite automata capable of solving graph problems , R. C. Reed, Graph Theory and
computing, Academic Press, New-York, (1973), 210-265

[14] A. Wu, A. Rosenfeld, Cellular graph automata I, Information and Control 42
(1979) 305-329

[15] A. Wu, A. Rosenfeld, Cellular graph automata II, Information and Control 42
(1979) 330-353

14

