
HAL Id: hal-02101940
https://hal-lara.archives-ouvertes.fr/hal-02101940v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reciprocation, Square root, Inverse Square Root, and
some Elementary Functions using Small Multipliers
Milos Ercegovac, Tomas Lang, Jean-Michel Muller, Arnaud Tisserand

To cite this version:
Milos Ercegovac, Tomas Lang, Jean-Michel Muller, Arnaud Tisserand. Reciprocation, Square root,
Inverse Square Root, and some Elementary Functions using Small Multipliers. [Research Report] LIP
RR-1997-47, Laboratoire de l’informatique du parallélisme. 1997, 2+22p. �hal-02101940�

https://hal-lara.archives-ouvertes.fr/hal-02101940v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

Reciprocation� Square root� Inverse

Square Root� and some Elementary

Functions using Small Multipliers

Milo�s D� Ercegovac

Tomas Lang

Jean�Michel Muller

Arnaud Tisserand

November ����

Research Report No �����

Ecole Normale Supérieure de Lyon

Adresse électronique : lip@lip.ens−lyon.fr
Téléphone : (+33) (0)4.72.72.80.00 Télécopieur : (+33) (0)4.72.72.80.80

46 Allée d’Italie, 69364 Lyon Cedex 07, France

Reciprocation� Square root� Inverse Square Root�

and some Elementary Functions using Small

Multipliers

Milo�s D� Ercegovac

Tomas Lang

Jean�Michel Muller

Arnaud Tisserand

November ����

Abstract

This paper deals with the computation of reciprocals� square
roots� inverse square roots� and some elementary functions us�
ing small tables� small multipliers� and for some functions� a
�nal �large� �almost full�length� multiplication� We propose a
method that allows fast evaluation of these functions in double
precision arithmetic� The strength of this method is that the
same scheme allows the computation of all these functions�

Our method is mainly interesting for designing special purpose
circuits� since it does not allow a simple implementation of the
four rounding modes required by the IEEE��	
 standard for
�oating�point arithmetic�

Keywords� Division� Reciprocation� Square�root� Function evaluation� Com�
puter arithmetic

R�esum�e

Ce rapport traite de l�
evaluation d�inverses� de racines carr
ees�
d�inverses de racines carr
ees� et de quelques fonctions
el
emen�
taires en utilisant de petites tables� de petits multiplieurs� et�
pour quelques fonctions� une �grande� �i�e�� portant sur des
nombres dont la taille est celle des op
erandes� multiplication
�nale� Nous proposons une m
ethode qui permet l�
evaluation de
ces fonctions en arithm
etique double pr
ecision� L�avantage de
cette m
ethode r
eside dans le fait que le m�eme sch
ema de calcul
�et donc� en pratique� la m�eme implantation� permet le calcul
de toutes ces fonctions�

Notre m
ethode est essentiellement int
eressante pour construire
des circuits d
edi
es �a une application� car elle ne permet pas
d�implanter de mani�ere simple les quatre modes d�arrondis exig
es
par le standard IEEE pour l�arithm
etique �ottante�

Mots�cl�es� Division� Inverse� Racine Carr
ee�
Evaluation de fonctions� Arith�
m
etique des ordinateurs

�

� Introduction

For many years� only two classes of methods have been considered when
implementing division and square root� digit�recurrence methods ���� and
quadratically converging methods� such as Newton�s method and Gold�
schmidt�s iteration ���� Concerning elementary functions� the methods that
have mainly been used are shift�and�add� Cordic�like methods ��
� �	�� and
polynomial or rational approximations �	� ��� A noticeable exception is a
method suggested by Farmwald �
�� that already uses tables� The progress
in VLSI technology now allows the use of large tables� that can be accessed
quickly� As a consequence� many table�based methods have emerged dur�
ing the last decade� high�radix digit�recurrence methods for division and
square root ���� mix�up of table�lookup and polynomial approximation for
the elementary functions ���� ��� ���� or even �for single precision� use of
table�lookups and addition only ���� �� ���� Recent overviews on these is�
sues can be found in references ��� ���

For instance� Wong and Goto ���� recently suggested to evaluate the ele�
mentary functions� the reciprocals and the square�root using tables� without
multiplications� Assume that the input number is A�z�A�z

��A�z
��A�z

��
where z � ��k and the A�is are integers less than �k� They compute f�A�
using the following formula

f�A� � f�A�z � A�z
��

�
z�

�

�
f�A�z � �A� � A��z

��� f�A�z � �A� �A��z
��
�

�
z�

�

�
f�A�z � �A� � A��z

��� f�A�z � �A� �A��z
��
�

�z�
�
A�

�

�
f ����A�z�� A�

�

�
f ����A�z�

�
�

Roughly speaking� their method allows to evaluate a function with ap�
proximately n bits of accuracy by just performing look�ups in n

�
�bit ad�

dress tables� and additions� This makes their method attractive for single�
precision calculations� In ����� Wong and Goto also suggest� for double pre�
cision calculations� the use of several look�ups in ���bit address tables and
some multiplications that require rectangular multipliers �typically� ���	��
bit multipliers� only�

The methods suggested by Farmwald �
�� and Das Sarma and Matula ����
require the use of tables with approximately n�� address bits to get an n�

�

bit approximation of the function being evaluated� With current technol�
ogy� this makes these methods impossible to implement for double�precision
arithmetic�

In this paper� we propose a new class of algorithms that allows the evalu�
ation of reciprocals� square roots� inverse square roots and some elementary
functions� using one table access� a few �small� multiplications� and at most
one �large� multiplication� To approximate a function with n�bit accuracy�
we need tables with approximately n�
 address bits�

� Reciprocal� Square Root� and Inverse Square

Root

We want to evaluate reciprocals� square roots and inverse square roots for
operands and results represented by an n�bit signi�cand� We do not consider
the computation of the exponent since this is straightforward� Let us call
the generic computation g�Y �� where Y is the signi�cand and� as in the
IEEE standard� � � Y � ��

The method is based on the Taylor expansion of the function to compute�
which converges with few terms if the argument is close to �� Consequently�
the method consists of the following three steps�

�� Reduction� From Y we deduce a number A such that ���k � A �
���k� To produce a simple implementation that achieves the required
precision� we use k � n�
� For the functions considered� we obtain A
as

A � Y � �Y � �

where �Y is a �k � ���bit approximation of ��Y � Speci�cally� de�ne
Y �k� as Y truncated to the kth bit� Then

Y �k� � Y � Y �k� � ��k

Hence

� � Y

Y �k�
� � � ��k ���

Using one lookup in a k�bit address table� one can �nd the number �Y
de�ned as ��Y �k� rounded down �i�e�� truncated� to k � � bits� Then�

���k�� � �Y � �

Y �k�
� �

�

Therefore� since � � Y �k� � ��

�� ��k � �Y Y �k� � �� ���

Using ��� and ���� we get

�� ��k � �Y Y � � � ��k ���

The reduced argument A is such that g�Y � can be easily obtained from
a value f�A�� that is computed during the next step�

�� Evaluation� We compute an approximation of B � f�A� using the
series expansion of f � as described below�

�� Post�processing� This is required because of the reduction step�
Since reduction is performed by multiplication by �Y � we obtain g�Y �
from B � f�A� as

g�Y � � M �B

where M � h� �Y �� The value of M depends on the function and is
obtained by a similar method as �Y � Speci�cally�

� For reciprocal M � �Y

� For square root M � ��
p

�Y

� For inverse square root M �
p

�Y

Let us now consider the evaluation step�

��� Evaluation step

In the following� we assume that we want to evaluate B � f�A�� with
jAj � ��k� The Taylor series expansion of F is

f�A� � C� � C�A� C�A
� � C�A

� � C�A
� � � � � � �
�

where the C�is are bounded�
Since ���k � A � ��k� A has the form

A � A�z
� �A�z

� �A�z
� �	�

where z � ��k� k � n�
 and jAij � �k � ��
Our goal is to compute an approximation of f�A�� correct to approxi�

mately n �
k bits� using small multiplications� From the series �
� and the
decomposition �	� we deduce

f�A� � C� � C� �A�z
� �A�z

� �A�z
�� � C� �A�z

� �A�z
� �A�z

��
�

�C� �A�z
� �A�z

� �A�z
��

�
� C� �A�z

� � A�z
� � A�z

��
�
� � � �

���

After having expanded this series and dropped out all the terms of the
form W � zj that are less than or equal to ���k� we get �see Appendix�

f�A� � C� � C�A� C�A
�
�z

� � �C�A�A�z
� � C�A

�
�z

�� ���

We use this last expression to approximate reciprocals� square roots and
inverse square roots� In practice� when computing ���� we make another
approximation� after having computed A�

�� obtaining A�
� would require a

�k � k multiplication� Instead of this� we take only the k most�signi�cant
bits of A�

� and multiply them by A��
In the Appendix� we prove the following result�

Theorem � f�A� can be approximated by

C� � C�A � C�A
�
�z

� � �C�A�A�z
� � C�A

�
�z

��

�where we use the most k signi�cants bits� of A�
� only when computing A�

���
with an error less than

���k
�

Cmax

�� ��k
�
jC�j�
jC�j� �maxfC�� C�g � ��k

�

with Cmax � maxi�� jCij�
In particular� for k � �� and assuming jCij � � for any i �which is

satis�ed for the functions considered in this paper�� this error is less than

� � ���k
�
Cmax �
jC�j�
jC�j� �

��

�
�

�It would be more accurate to say digits� since it is likely that in a practical im�
plementation� A�

� will be represented in a redundant �e�g�� carry�save or borrow�save�
representation�

	

Now we determine the coe�cients and the error bound for the three
functions� Since

�

� � x
� �� x� x� � x� � x� � � � �

p
� � x � � � �

�
x� �

	
x� � �

��
x� � �

��	
x� � � � �

�p
� � x

� �� �
	
x� �

	
x� � �

��
x� � ��

��	
x� � � � �

we get

� For reciprocal

�

� � A
� ��A�z

� �A�z
� � ��A� � A�

�� z
� � �A�A�z

� �A�
�z

�

� ���A� �A�
�z

� � �A�A�z
� � A�

�z
�

���
and the bound on the error is

� � ���� ���k

� For square root

p
� � A � � �

A

�
�

�

�
A�
�z

� � �

A�A�z

� �
�

��
A�
�z

� ���

and the error bound is
� � ���� ���k

� For inverse square root

��
p
� � A � �� A

�
�

�

�
A�
�z

� �
�

A�A�z

� � 	

��
A�
�z

� ����

and the error bound
� � ����� ���k

� Implementation

Now� let us suggest some ways of implementing our method� Fig� � presents
a functional representation of the general architecture�

�

AA4A3A2

reduction

evaluation

Y

B=f(A)

00...00

M

post processing

g(Y)

Figure �� Functional representation of the general architecture

�

YY1-2-k 1+2

2A

(k)

-k

4

Y

A

Y

3 A

Y

Y
k

4k
rb

k

00...00

3k

M

mux

3k+2

k+1 or 3k+2

ctb

k+1

ctb = correcting terme block

rb = reciprocal block

CTRL

Figure �� Functional representation of the reduction module �the value of
M depends on the function being computed��

��� Reduction

Fig� � shows a functional representation of the reduction module� From Y �
this module computes A and M � Di�erent methods can be used to perform
this computation� from direct table look�up to linear interpolation ���

��� Evaluation

The evaluation step computes expressions ���� ���� and ����� All three re�
quire the computation of A�

�� A�A�� and A�
�� As indicated before� for A�

� we
use the approximation

A�
� � �A�

��high �A�

Consequently� these terms can be computed by three k by k multiplications�
Moreover� the �rst two can be performed in parallel�

�

Alternatively� it is possible to compute the terms by two multiplications
as follows�

� For reciprocal and for inverse square root

��

B� � A�
� � �A�A�z � A� � �A� � �A�z�

��

A�
� � �B��high �A�

� For square root

��

B� � A�
� � �A�A�z � A� � �A� � �A�A��

��

A�
� � �B��high �A�

The �rst of the two multiplications is of k by �k bits and the second is of k
by k�

Then the terms �either the output of the three multiplications or of
the two multiplications� are multiplied by the corresponding factors� which
depend on the function as shown in Table �� Note that for division and
square root these factors correspond just to alignments� whereas for inverse
square root multiplications by � and 	 are required�� Finally the resulting
terms are added to produce B�

Fig� � shows the weights of these terms �in the case of the reciprocal
function�� After this addition� the result is rounded to the nearest multiple
of ���k� As shown� in Figure �� this gives a �k � � number �B� Then B is
equal to �B � ��

�Obviously� these �multiplications� will be implemented as � possibly redundant �
additions� since � 	
 � � and
 	 � � ��

�In the case of the reciprocal function� but this is similar for the other ones�

�

Table �� Factors to multiply terms

Function B� A�
�

Reciprocal � �
Square root ��� ����
Inverse Square root ��� 	���

� k �k �k
k 	k

��A

A�
�z

�

�A�A�z
�

�A�
��high �A�z

�

�k � ��bit result obtained after rounding

Figure �� Weights of the various terms that are added during the evaluation
step for reciprocal� After the summation� the result is rounded to nearest�
so that there are no longer terms of weights less than ���k�

��

A

2

A2 3
2A

2A()high

A

2

00...00 A4A3A2

A

B

^2

3

k

k

2

2k 2k

k

2k 2k

4k

asb

k

k MSD

CTRL

asb = adder and shift block

3k

Figure
� Functional representation of the evaluation module �As told above�
the computations of A�

� and A�A� can be regrouped in one rectangular mul�
tiplication��

��

function value of M size of M operation

��Y �Y k � � bits M � Bp
Y �� �Y n but �k � g bits only for mult� M � B

��
p
Y �Y n but �k � g bits only for mult� M � B

Table �� Operation being performed during the post�processing step

��� Post�Processing

The post�processing consists in multiplying B by M � where M � g� �Y �
depends on the function and is computed during the reduction step� Since
B � �� �B and �B � ��k
�� to use a smaller multiplier it is better to compute

g�Y � � M � B � M �M � �B

Note also that in the multiplication it su�ces to use the bits of M of
weight larger than or equal to ���k�g� where g is a small integer� Since the
error due to this truncation is smaller than or equal to ���k
��g� choosing g �
�makes the error bounded by ��	����k and allows the use of a ��k������k�
���bit multiplier� From the error bounds given in Section � and taking into
account the additional ��	����k error due to the use of a ��k���� ��k���
multiplier for the post�processing step� we suggest to choose n � 	� and
k � �
 for a double�precision implementation�

Table � shows the operation that must be performed during the post�
processing step� and the value of M that must be used�

� Comparison with other methods

��� High�radix digit�recurrence division

Assume we wish to compute X�Y � Radix�r digit�recurrence division ���
consists in performing the recurrence�

X �j
�� � r�X �j� � qj
�Y� ����

where X ��� � X � X �j� is the j�th residual and qj
� is the j � ��st radix�r
digit of the quotient� When performing a high�radix digit�recurrence divi�
sion ���� Y is �rst normalized �i�e�� multiplied� by a factor �Y so that �Y is

�This is exactly the same step as our reduction step�

��

1
Y

Y

1

Y

Y

Y
1M = M = M = Y

B BB M M

4k

4k 4k

k+1

Reciprocal Square root Inverse square root

3k+1 3k+1 3k+1

M

3k+2 3k+2

Figure 	� Functional representation of the post processing module

very close to ��� This allows a simple selection of qj
�� Assume here that we
perform a radix��k digit�recurrence division� where k � n�
� To get n�bit
accuracy� we will need to perform
 iterations� If we assume that our goal is
double�precision arithmetic� we will therefore need� after the normalization�
four consecutive �
� 	��bit multiplications� This is very similar to what is
required by our method� Therefore� if the issue at stake is reciprocation� our
method and the high�radix recurrence method have close performances� On
the other hand� if we want to perform divisions� the high�radix recurrence
method is preferable� since it does not require a �nal �large� multiplication�

��� Newton�Raphson and Goldschmidt iterations

The well known Newton�Raphson �NR� iteration for reciprocal

xn
� � xn � ��� Y xn� ����

��

converges quadratically� to ��Y provided that x� is close enough to ��Y �
The usual way to implement this iteration is to �rst look x� up in a table�
Assume that we use a k�bit address table� and that we perform the interme�
diate calculations using an n�bit arithmetic� To compare with our method�
we assume n �
k� The �rst approximation x� of ��Y is the number �Y of
section �� It is a k�bit approximation of ��Y � To get x�� one need to perform
two k � n�bit multiplications� Since x� is a �k�bit approximation of ��Y �
it su�ces to use its most �k signi�cant bits to perform the next iteration��
After this� one needs to perform two �k � n�bit multiplications to get x��
which is an n�bit approximation� of ��Y � Assuming k � �
 and n � 	�� the
NR method requires�

� one lookup in a �
�bit address table�

� two �
� 	��bit multiplications�

� two ��� 	��bit multiplications�

The multiplications that occur cannot be performed in parallel�
The NR iteration for reciprocal square�root	

xn
� �
�

�
xn
�
�� Y x�n

�
����

has convergence properties very similar to those of the NR iteration for
division� Assuming �as previously� that we use a k�bit address table� and
that we perform the intermediate calculations using an n�bit arithmetic�
with k � �
 and n � 	�� computing an inverse square�root using the NR
iteration requires�

� one lookup in a �
�bit address table�

� three �
� 	��bit multiplications�

�That is� the number of common digits between xn�� and ��Y is approximately twice
that between xn and ��Y �

�To our knowledge� this property is only used in multiple�precision implementations of
the division� Using it in FPU�s would require the design of several di�erent size multipliers�

�Getting a correctly rounded result would require another iteration�
�The well known iteration for division

xn�� 	
�

�
xn �

Y

xn

�
cannot be used here� since it requires a division at each step� To compute

p
Y � it is much

better to �rst compute ��
p
Y using ����� and to multiply the result by Y �

�

� three ��� 	��bit multiplications�

Computing a square�root requires the same number of operations� and
a �nal �large� �	�� 	��bit� multiplication� This shows that� although only
slightly more interesting than the NR iteration for computing reciprocals�
our method becomes much more interesting than the NR method when we
need to compute square roots and inverse square roots�

Goldschmidt�s iteration ��� for computing X�Y �

Ni
� � Ni �Ri

Di
� � Di �Ri

Ri
� � ��Di
�

��
�

with N� � X � D� � Y and R� � � � Y � has a convergence rate similar to
that of the NR iteration�� To make the iteration faster� one must replace
Y by a value Y �Y very close to �� and therefore multiply the �nal value by
�Y � This is exactly what we do during the normalization and post�processing
steps of our method� Assuming that �Y is read from a k�bit address table�
Goldschmidt iteration requires the same number of steps as the NR iteration�
but the twomultiplications required at each step can be performed in parallel
�or� merely� in pipeline�� Thus� assuming k � �
 and n � 	�� the iteration
requires�

� one look�up in a �
�bit address table to get �Y �

� one �
� 	��bit multiplication to get Y �Y �

� four 	� � 	��bit multiplications to perform the iterations �but if two
multipliers are available� the time required is that of two multiplica�
tions��

� one �
� 	��bit multiplication to get X�Y �

��� Wong and Goto�s method

The method presented by Wong and Goto in ���� requires tables with m��
address bits� where m is the number of bits of the mantissa of the �oating�
point arithmetic being used� This makes that method un�convenient for

	This is not surprising�the same iteration is hidden behind both methods ����

�	

double�precision calculations� In ����� they suggest another method� that
requires table�lookups and rectangular�� multipliers�

Their method for computing reciprocals is as follows� Let us start from
the input value Y � ��y�y� � � �y��� The �rst �� bits of Y are used address
bits to get from a table

r� �

�
�

��y�y� � � � y��

�
�

Then� they compute r� � Y � This gives a number A of the form�

A � �� ����� � � ��a�a�� � � � a�	 � � �a��

Then� using a rectangular multiplier� they compute�

B � A� �� � ����� � � ��a�a�� � � � a�	�
� �� �������� � � ���b��b�	 � � � b�� � � � b��

Again� using a rectangular multiplier� they compute�

C � B � �� � �������� � � ���b��b�	 � � � b���
� �� ������������� � � �����c��c�� � � � c��

After this �or� merely� during this�� the bits b��b�	 � � � b�� are used as address
bits to get from a table the number � constituted by the most � signi�cant
bits of ������� � � � b��b�	 � � � b���

�� The �nal result is�

�

Y
� r� � ������� � � �a�a�� � � � a�	

� �������� � � ���b��b�	 � � � b��
� ������������ � � ����c��c�� � � � c�� � ��

��	�

Wong and Goto�s method for reciprocation therefore requires one look�
up in a ���bit address table� one look�up in a ��bit address table� and six
rectangular ��� 	� multiplications� One can reasonably assume that their
rectangular multiplication have approximately the same cost as our k�n �
�
 � 	� multiplications� Therefore their method requires more time than
ours� To compute reciprocal square�roots� they need one look�up in a ���bit
address table� one look�up in a ��bit address table� and nine rectangular
multiplications� which is much more than what is needed with our method�

�
Depending on the function being computed� their rectangular multipliers are between
���
� and �� �
��bit multipliers�

��

� Elementary functions

Using the same basic scheme� our method also allows computation of some
of the elementary functions� We brie�y describe this below� Implementation
is not discussed� it is very similar to what we have previously described for
reciprocal� square root and inverse square root�

��� Computation of logarithms

In a similar fashion� we get�

ln�� �A� � A�A�
�z

� �A�A�z
� �

�

�
A�
�

Again� we only need to compute A�
�� A�A� and A�

�� And yet� the ��� coe��
cient in front of A�

� may make this last approximation less interesting� The
post�processing step reduces to an addition�

��� Computation of exponentials

Now� let us assume that we want to evaluate the exponential of an n�bit
number Y � � � A�z �A�z

� � A�z
� � A�z

�� where z � ��k �k � n�
�� and
the Ai�s are k�bit integers� We suggest to �rst computing the exponential of

A � A�z
� �A�z

� �A�z
�

using a Taylor expansion� and then to multiply it by the number

M � exp�� � A�z��

M will be obtained by looking up in a k�bit address table�
The exponential of A can be approximated by�

� � A�
�

�
A�z

� �A�A�z
� � A�

�z
� ����

��� Sine and Cosine functions

Using the same number A as for the exponential function� we use the ap�
proximations� �

cos�A� � ��A�
�z

� �A�A�z
�

sin�A� � A� �
�
A�
�z

� ����

��

Function table size �bits� �small� mult� �large� mult�

reciprocal �k � ��� �k 	 �� are done in parallel� �

square�root �k � � � n�� �k
 �� are done in parallel� �

inv� sqrt �k � � � n�� �k
 �� are done in parallel� �

logarithm �k � � � n�� �k
 �� are done in parallel� �

exponential n� �k � �� are done in parallel� �

sin�cos �n� �k � �� are done in parallel�

Table �� Table sizes and number of various operations required by our
method� depending on the function being computed� Here� we call �small�
multiplication a k � n or k � k multiplication� and �large� multiplication a
��k � ��� ��k � �� multiplication�

After this� if M� � sin�� � A�z� and M� � cos�� � A�z� are read from a
k�bit address table� we get

sin�Y � � M� sin�A� �M� cos�A�
cos�Y � � M� cos�A��M� sin�A�

Therefore� for the sine and cosine functions� the post�processing step is more
complex�

� Conclusion

We have proposed a new method for computation of reciprocals� square�
roots� inverse square�roots� logarithms� exponentials� sines and cosines� The
strength of our method is that the same basic computations are performed
for all these various functions� For reciprocation� our method will require
a computational delay quite close to that of high�radix digit�recurrence or
Newton�Raphson iteration� To get 	� � � bits �double precision�� the pro�
posed method requires the working precision of n � 	�� for single precision
result ��� � ��� n � ��� Table � gives the table sizes and number of various
operations required by our method� depending on the function being com�
puted� and Table
 give the required table sizes assuming either n � 	� and
k � �
 �double�precision�� or n � �� and k � � �single precision��

��

function n � 	� and k � �
 n � �� and k � �
�double�precision� �single�precision�

reciprocal �� Kbytes ��� bytes

square�root �
	 Kbytes 	�� bytes

inv� sqrt �
	 Kbytes 	�� bytes

logarithm �
	 Kbytes 	�� bytes

exponential ��
 Kbytes

� bytes

sin�cos ��� Kbytes ��� bytes

Table
� Required table sizes assuming either n � 	� and k � �
 �double�
precision�� or n � �� and k � � �single precision��

� Appendix� proof of Theorem �

Let us start from the series ����

f�A� � C� � C� �A�z
� � A�z

� � A�z
�� � C� �A�z

� � A�z
� � A�z

��
�

�C� �A�z
� � A�z

� � A�z
��

�
� C� �A�z

� � A�z
� � A�z

��
�
� � � �

����

Let us keep in mind that A � A�z
��A�z

��A�z
� is obviously less than

��k� If we drop out from the previous series the terms with coe�cients C��
C�� C�� C�� � � � � the error will be�					

�X
i
�

Ci

�
A�z

� � A�z
� � A�z

�
�i					 �

which is bounded by

�� � Cmax

�X
i
�

�
��k

�i
� Cmax

���k

�� ��k
����

where Cmax � maxi�� jCij�
Now� let us expand the expression obtained from ��� after having dis�

��

carded the terms of rank �
� We get�

f�A� � C� � C�A� C�A
�
�z

� � �C�A�A�z
�

� ��C�A�A� � C�A
�
� � C�A

�
�� z

� � ��C�A�A� � �C�A
�
�A�� z

�

� �C�A
�
� � �C�A

�
�A� � �C�A�A

�
�� z

	 � ��C�A�A�A� � C�A
�
�� z

�

� ��C�A�A
�
� � �C�A

�
�� z

�� � �C�A�A
�
�z

�� � C�A
�
�z

���

����

In this rather complicated expression� let us discard all the terms of the
form W � zj such that the maximum possible value of W multiplied by
zj � ��kj is less than or equal to z�� We then get ���� that is�

f�A� � C� � C�A� C�A
�
�z

� � �C�A�A�z
� � C�A

�
�z

��

To get a bound on the error � obtained when approximating ���� by ����
we replace the Ai�s by their maximum value �k� and we replace the Ci�s by
their absolute value� This gives�

�� � �
jC�j� �jC�j� ���k � ��jC�j� �jC�j����k � �jC�j���k
��jC�j��	k � jC�j���k
� �

jC�j� �jC�j� �maxfC�� C�g � ��k
�
���k�

If we assume that ����k������k����k � �� which is true as soon as k �
�
Therefore� �� is bounded by a value that is very close to �
jC�j� �jC�j� ���k�

As explained in section �� when computing ���� we will make another
approximation� after having computed A�

�� the computation of A�
� would

require a �k � k multiplication� Instead of this� we will take the most k
signi�cant bits of A�

� only� and multiply them by A�� If we write�

A�
� �

�
A�
�

�
low

� �k
�
A�
�

�
high

�

where �A�
��low and �A�

��high are k�bit numbers� the error committed is

C�

�
A�
�

�
low

A�z
��

whose absolute value is bounded by �� � jC�j���k�
By adding the three errors due to our having discarded terms� we get

the bound given in Theorem ��

��

References

��� S� F� Anderson� J� G� Earle� R� E� Goldschmidt� and D� M� Powers� The
IBM ������� model ��� �oating�point execution unit� IBM Journal of
Research and Development� January ����� Reprinted in E� E� Swart�
zlander� Computer Arithmetic� Vol� �� IEEE Computer Society Press
Tutorial� Los Alamitos� CA� �����

��� W� Cody and W� Waite� Software Manual for the Elementary Func�
tions� Prentice�Hall� Englewood Cli�s� NJ� �����

��� M� D� Ercegovac and T� Lang� Division and Square Root� Digit�
Recurrence Algorithms and Implementations� Kluwer Academic Pub�
lishers� Boston� ���
�

�
� P� M� Farmwald� High Bandwidth Evaluation of Elementary Func�
tions� In K� S� Trivedi and D� E� Atkins� editors� Proceedings of the �th
IEEE Symposium on Computer Arithmetic� pages ��� �
�� Ann Arbor�
Michigan� May ����� IEEE Computer Society Press� Los Alamitos� CA�

�	� J� F� Hart� E� W� Cheney� C� L� Lawson� H� J� Maehly� C� K� Mesztenyi�
J� R� Rice� H� G� Thacher� and C� Witzgall� Computer Approximations�
Wiley� New York� �����

��� H� Hassler and N� Takagi� Function evaluation by Table Look�up and
Addition� In S� Knowles and W� H� McAllister� editors� Proceedings of
the �	th IEEE Symposium on Computer Arithmetic� pages �� ��� Bath�
UK� July ���	� IEEE Computer Society Press� Los Alamitos� CA�

��� J� M� Muller� Elementary Functions� Algorithms and Implementation�
Birkhauser� Boston� �����

��� S� F� Oberman and M� J� Flynn� Division algorithms and implementa�
tions� IEEE Transactions on Computers�
����� Aug� �����

��� J� E� Robertson� A new class of digital division methods� IRE Trans�
actions on Electronic Computers� EC������ ���� ��	�� Reprinted in
E� E� Swartzlander� Computer Arithmetic� Vol� �� IEEE Computer So�
ciety Press Tutorial� Los Alamitos� CA� �����

���� D� Das Sarma and D�W� Matula� Faithful bipartite ROM reciprocal
tables� In S� Knowles and W� H� McAllister� editors� Proceedings of the

��

�	th IEEE Symposium on Computer Arithmetic� pages �� ��� Bath�
UK� July ���	� IEEE Computer Society Press� Los Alamitos� CA�

���� P� T� P� Tang� Table�driven implementation of the exponential function
in IEEE �oating�point arithmetic� ACM Transactions on Mathematical
Software� �	�����

 �	�� June �����

���� P� T� P� Tang� Table�driven implementation of the logarithm function
in IEEE �oating�point arithmetic� ACM Transactions on Mathematical
Software� ���
�����
��� December �����

���� P� T� P� Tang� Table lookup algorithms for elementary functions and
their error analysis� In P� Kornerup and D� W� Matula� editors� Pro�
ceedings of the �
th IEEE Symposium on Computer Arithmetic� pages
��� ���� Grenoble� France� June ����� IEEE Computer Society Press�
Los Alamitos� CA�

��
� J� Volder� The CORDIC computing technique� IRE Transactions
on Electronic Computers� EC��������� ��
� ��	�� Reprinted in E� E�
Swartzlander� Computer Arithmetic� Vol� �� IEEE Computer Society
Press Tutorial� Los Alamitos� CA� �����

��	� J� Walther� A uni�ed algorithm for elementary functions� In Joint Com�
puter Conference Proceedings� ����� Reprinted in E� E� Swartzlander�
Computer Arithmetic� Vol� �� IEEE Computer Society Press Tutorial�
Los Alamitos� CA������

���� W� F� Wong and E� Goto� Fast hardware�based algorithms for ele�
mentary function computations using rectangular multipliers� IEEE
Transactions on Computers�
�������� ��
� March ���
�

���� W� F� Wong and E� Goto� Fast evaluation of the elementary functions
in single precision� IEEE Transactions on Computers�

����
	�
	��
March ���	�

��

