D Ercegovac

Tomas Lang

Jean-Michel Muller

Arnaud Tisserand

Reciprocation, Square root, Inverse Square Root, and some Elementary Functions using Small Multipliers

Keywords: Division, Reciprocation, Square-root, Function evaluation, Computer arithmetic Division, Inverse, Racine Carr ee, Evaluation de fonctions, Arithm etique des ordinateurs 1

This paper deals with the computation of reciprocals, square roots, inverse square roots, and some elementary functions using small tables, small multipliers, and for some functions, a nal \large" (almost full-length) multiplication. We propose a method that allows fast evaluation of these functions in double precision arithmetic. The strength of this method is that the same scheme allows the computation of all these functions. Our method is mainly interesting for designing special purpose circuits, since it does not allow a simple implementation of the four rounding modes required by the IEEE-754 standard for oating-point arithmetic.

Introduction

For many y ears, only two classes of methods have been considered when implementing division and square root: digit-recurrence methods 9], and quadratically converging methods, such as Newton's method and Goldschmidt's iteration 1]. Concerning elementary functions, the methods that have mainly been used are shift-and-add, Cordic-like methods 14, 1 5] , a n d polynomial or rational approximations 5, 2]. A noticeable exception is a method suggested by F armwald 4], that already uses tables. The progress in VLSI technology now a l l o ws the use of large tables, that can be accessed quickly. As a consequence, many table-based methods have emerged during the last decade: high-radix digit-recurrence methods for division and square root 3], mix-up of table-lookup and polynomial approximation for the elementary functions 11, 12, 13], or even (for single precision) use of table-lookups and addition only 17, 6 , 10]. Recent o verviews on these issues can be found in references 8, 7].

For instance, Wong and Goto 17] recently suggested to evaluate the elementary functions, the reciprocals and the square-root using tables, without multiplications. Assume that the input number is A 1 z +A 2 z 2 +A 3 z 3 +A 4 z [START_REF] Ercegovac | Division and Square R oot: Digit-Recurrence A lgorithms and Implementations[END_REF] , where z = 2 ;k and the A 0 i s are integers less than 2 k . They compute f(A) using the following formula f(A) f(A 1 z + A 2 z 2) + z 2 2 ; f(A 1 z + (A 2 + A 3)z 2) ; f(A 1 z + (A 2 ; A 3)z 2) + z 3 2 ; f(A 1 z + (A 2 + A 4)z 2) ; f(A 1 z + (A 2 ; A 4)z 2) +z [START_REF] Ercegovac | Division and Square R oot: Digit-Recurrence A lgorithms and Implementations[END_REF] A 2 3 2 f (2) (A 1 z) ; A 3 3 6 f [START_REF] Cody | Software Manual for the Elementary Functions. P r e n tice-Hall[END_REF] (A 1 z) :

Roughly speaking, their method allows to evaluate a function with approximately n bits of accuracy by just performing look-ups in n 2 -bit address tables, and additions. This makes their method attractive for singleprecision calculations. In 16], Wong and Goto also suggest, for double precision calculations, the use of several look-ups in 10-bit address tables and some multiplications that require rectangular multipliers (typically, 1 6 56bit multipliers) only.

The methods suggested by F armwald 4], and Das Sarma and Matula 10] require the use of tables with approximately n=3 address bits to get an n-bit approximation of the function being evaluated. With current technology, this makes these methods impossible to implement for double-precision arithmetic.

In this paper, we propose a new class of algorithms that allows the evaluation of reciprocals, square roots, inverse square roots and some elementary functions, using one table access, a few \small" multiplications, and at most one \large" multiplication. To approximate a function with n-bit accuracy, we need tables with approximately n=4 address bits.

2 Reciprocal, Square Root, and Inverse Square Root

We w ant t o e v aluate reciprocals, square roots and inverse square roots for operands and results represented by a n n-bit signi cand. We do not consider the computation of the exponent since this is straightforwa r d . L e t u s c a l l the generic computation g(Y), where Y is the signi cand and, as in the IEEE standard, 1 Y < 2.

The method is based on the Taylor expansion of the function to compute, which c o n verges with few terms if the argument is close to 1. Consequently, the method consists of the following three steps: 1. Reduction. From Y we d e d u c e a n umber A such that ;2 ;k < A < +2 ;k . T o produce a simple implementation that achieves the required precision, we use k = n=4. For the functions considered, we obtain A as A = Y Ŷ ; 1 where Ŷ is a (k + 1)-bit approximation of 1=Y. Speci cally, d e n e Y (k) as Y truncated to the kth bit. Then

Y (k) Y < Y (k) + 2 ;k Hence 1 Y Y (k) < 1 + 2 ;k (1)
Using one lookup in a k-bit address table, one can nd the number Ŷ de ned as 1=Y (k) rounded down (i.e., truncated) to k + 1 bits. Then, ;2 ;k;1 < Ŷ ; 1 Y (k) 0

Therefore, since 1 Y (k) < 2, 1 ; 2 ;k < Ŷ Y (k) 1:

(2)

Using (1) and (2), we g e t 1 ; 2 ;k < Ŷ Y< 1 + 2 ;k

The reduced a r gument A is such that g(Y) can be easily obtained from a v alue f(A), that is computed during the next step 2. Evaluation. We compute an approximation of B = f(A) using the series expansion of f, as described below.

3. Post-processing. This is required because of the reduction step. Let us now consider the evaluation step.

Evaluation step

In the following, we assume that we w ant t o e v aluate B = f(A), with jAj < 2 ;k . The Taylor series expansion of F is f

(A) = C 0 + C 1 A + C 2 A 2 + C 3 A 3 + C 4 A 4 + : : : (4)
where the C 0 i s are bounded. Since ;2 ;k < A < 2 ;k , A has the form A = A 2 z 2 + A 3 z 3 + A 4 z 4

(5

)
where z = 2 ;k , k = n=4 a n d jA i j 2 k ; 1. Our goal is to compute an approximation of f(A), correct to approximately n = 4 k bits, using small multiplications. From the series (4) and the decomposition (5) we deduce f(A) = C 0 + C 1 (A 2 z2 + A 3 z 3 + A 4 z 4) + C 2 (A 2 z 2 + A 3 z 3 + A 4 z 4) 2 +C 3 (A 2 z 2 + A 3 z 3 + A 4 z 4) 3 + C 4 (A 2 z 2 + A 3 z 3 + A 4 z 4) 4 + : : :

After having expanded this series and dropped out all the terms of the form W z j that are less than or equal to 2 ;4k , w e get (see Appendix)

f(A) C 0 + C 1 A + C 2 A 2 2 z 4 + 2 C 2 A 2 A 3 z 5 + C 3 A 3 2 z 6 :
(7) We use this last expression to approximate reciprocals, square roots and inverse square roots. In practice, when computing (7), we make another approximation: after having computed A 2 2 , obtaining A 3 2 would require a 2k k multiplication. Instead of this, we t a k e only the k most-signi cant bits of A 2 2 and multiply them by A 2 .

In the Appendix, we prove the following result:

Theorem 1 f(A) can be a p p r oximated b y

C 0 + C 1 A + C 2 A 2 2 z 4 + 2 C 2 A 2 A 3 z 5 + C 3 A 3 2 z 6
(where we use the most k signi cants bits1 of A 2 2 only when computing A 3

2), with an error less than 2 ;4k C max 1 ; 2 ;k + 4 jC 2 j + 4 jC 3 j + 9 m a x fC 2 C 3 g 2 ;k with C max = m a x i 4 jC i j.

In particular, for k 7, and assuming jC i j 1 for any i (which is satis ed for the functions considered in this paper), this error is less than = 2 ;4k C max + 4 jC 2 j + 4 jC 3 j + 1 10 :

Now w e determine the coe cients and the error bound for the three functions. Since 1 1 + x = 1 ; x + x 2 ; x 3 + x 4 ; : : : p 1 + x = 1 + 1 2 x ; 1 8 x 2 + 1 16 x 3 ; 5 128 x 4 + : : :

1 p 1 + x = 1 ; 1 8 x + 3 8 x 2 ; 5 16 x 3 + 35 128 x 4 ; : : :

we get For reciprocal 1 1 + A 1 ; A 2 z 2 ; A 3 z 3 + (;A 4 + A 2 2) z 4 + 2 A 2 A 3 z 5 ; A 3 2 z 6 = (1 ; A) + A 2 2 z 4 + 2 A 2 A 3 z 5 ; A 3 2 z 6
(8) and the bound on the error is = 9 :1 2 ;4k For square root

p 1 + A 1 + A 2 + 1 8 A 2 2 z 4 ; 1 4 A 2 A 3 z 5 + 1 16 A 3 2 z 6 (9)
and the error bound is = 0 :9 2 ;4k

For inverse square root

1= p 1 + A 1 ; A 2 + 3 8 A 2 2 z 4 + 3 4 A 2 A 3 z 5 ; 5 16 A 3 2 z 6 (10)
and the error bound = 3 :12 2 ;4k 3 Implementation

Now, let us suggest some ways of implementing our method.

Reduction

Fig. 2 shows a functional representation of the reduction module. From Y , this module computes A and M. Di erent methods can be used to perform this computation, from direct table look-up to linear interpolation ...

Evaluation

The evaluation step computes expressions (8), (9), and (10). All three require the computation of A 2 2 , A 2 A 3 , and A 3 2 . As indicated before, for A 3 2 we use the approximation

A 3 2 (A 2 2) high A 2
Consequently, these terms can be computed by three k by k multiplications.

Moreover, the rst two can be performed in parallel.

Alternatively, it is possible to compute the terms by t wo m ultiplications as follows:

For reciprocal and for inverse square root 1.

B 1 = A 2 2 + 2 A 2 A 3 z = A 2 (A 2 + 2 A 3 z) 2. A 3 2 (B 1) high A 2
For square root 1.

B 1 = A 2 2 ; 2A 2 A 3 z = A 2 (A 2 ; 2A 2 A 3) 2. A 3 2 (B 1) high A 2
The rst of the two m ultiplications is of k by 2 k bits and the second is of k by k.

Then the terms (either the output of the three multiplications or of the two m ultiplications) are multiplied by the corresponding factors, which depend on the function as shown in Table 1. Note that for division and square root these factors correspond just to alignments, whereas for inverse square root multiplications by 3 and 5 are required2 . Finally the resulting terms are added to produce B. Fig. 3 shows the weights of these terms (in the case of the reciprocal function). After this addition, the result is rounded to the nearest multiple of 2 ;4k . A s s h o wn [START_REF] Cody | Software Manual for the Elementary Functions. P r e n tice-Hall[END_REF] in Figure 3, this give s a 3 k + 1 n umber B. Then B is equal to B + 1 . 3k + 1-bit result obtained after rounding Figure 3: Weights of the various terms that are added during the evaluation step for reciprocal. After the summation, the result is rounded to nearest, so that there are no longer terms of weights less than ;4k .

Post-Processing

The post-processing consists in multiplying B by M, where M = g(Ŷ)

depends on the function and is computed during the reduction step. Since B = 1 + B and B < 2 ;k+1 , to use a smaller multiplier it is better to compute g(Y) = M B = M + M B Note also that in the multiplication it su ces to use the bits of M of weight larger than or equal to 2 ;3k;g , where g is a small integer. Since the error due to this truncation is smaller than or equal to 2 ;4k+1;g , c hoosing g = 2 makes the error bounded by 0 :5 2 ;4k and allows the use of a (3k+1) (3k+ 2)-bit multiplier. From the error bounds given in Section 2 and taking into account the additional 0:5 2 ;4k error due to the use of a (3k + 1) (3k + 2) multiplier for the post-processing step, we suggest to choose n = 5 6 a n d k = 14 for a double-precision implementation.

Table 2 shows the operation that must be performed during the postprocessing step, and the value of M that must be used. 4 Comparison with other methods

High-radix digit-recurrence division

Assume we wish to compute X=Y . Radix-r digit-recurrence division 9] consists in performing the recurrence: X (j+1) = r X (j) ; q j+1 Y (11) where X (0) = X, X (j) is the j-th residual and q j+1 is the j + 1-st radix-r digit of the quotient. When performing a high-radix digit-recurrence division 3], Y is rst normalized (i.e., multiplied [START_REF] Ercegovac | Division and Square R oot: Digit-Recurrence A lgorithms and Implementations[END_REF] by a factor Ŷ so that Ŷ is). This allows a simple selection of q j+1 . Assume here that we perform a radix-2 k digit-recurrence division, where k = n=4. To get n-bit accuracy, w e will need to perform 4 iterations. If we assume that our goal is double-precision arithmetic, we will therefore need, after the normalization, four consecutive 1 4 52-bit multiplications. This is very similar to what is required by our method. Therefore, if the issue at stake i s reciprocation, our method and the high-radix recurrence method have close performances. On the other hand, if we w ant to perform divisions, the high-radix recurrence method is preferable, since it does not require a nal \large" multiplication.

1 Y Y 1 Y Y Y 1 M = M = M = Y B B B M M

Newton-Raphson and Goldschmidt iterations

The well known Newton-Raphson (NR) iteration for reciprocal

x n+1 = x n (2 ; Y x n) (12) converges quadratically [START_REF] Armwald | High Bandwidth Evaluation of Elementary Funct i o n s[END_REF] to 1=Y provided that x 0 is close enough to 1=Y. The usual way to implement this iteration is to rst look x 0 up in a table. Assume that we use a k-bit address table, and that we perform the intermediate calculations using an n-bit arithmetic. To compare with our method, we assume n 4k. The rst approximation x 0 of 1=Y is the number Ŷ of section 2. It is a k-bit approximation of 1=Y. T o g e t x 1 , one need to perform two k n-bit multiplications. Since x 1 is a 2k-bit approximation of 1=Y, it su ces to use its most 2k signi cant bits to perform the next iteration [START_REF] Hart | Computer Approximations[END_REF] .

After this, one needs to perform two 2 k n-bit multiplications to get x 2 , which i s a n n-bit approximation 7 of 1=Y. Assuming k = 1 4 a n d n = 56, the NR method requires: one lookup in a 14-bit address table two 1 4 56-bit multiplications two 2 8 56-bit multiplications. The multiplications that occur cannot be performed in parallel.

The NR iteration for reciprocal square-root 8

x n+1 = 1 2 x n ; 3 ; Y x 2 n (13) has convergence properties very similar to those of the NR iteration for division. Assuming (as previously) that we use a k-bit address table, and that we perform the intermediate calculations using an n-bit arithmetic, with k = 1 4 a n d n = 56, computing an inverse square-root using the NR iteration requires: one lookup in a 14-bit address table three 14 56-bit multiplications [START_REF] Armwald | High Bandwidth Evaluation of Elementary Funct i o n s[END_REF] That is, the number of common digits between xn+1 and 1=Y is approximately twice that between xn and 1=Y. [START_REF] Hart | Computer Approximations[END_REF] To our knowledge, this property i s o n l y u s e d i n m ultiple-precision implementations of the division. Using it in FPU's would require the design of several di erent size multipliers. [START_REF] Hassler | Function evaluation by T able Look-up and Addition[END_REF] Getting a correctly rounded result would require another iteration. [START_REF] Muller | Elementary Functions, Algorithms and Implementation[END_REF] The well known iteration for division xn+1 = 1 2 xn + Y xn cannot be used here, since it requires a division at each step. To compute p Y , i t i s m uch better to rst compute 1= p Y using (13), and to multiply the result by Y .

three 28 56-bit multiplications. Computing a square-root requires the same number of operations, and a nal \large" (56 56-bit) multiplication. This shows that, although only slightly more interesting than the NR iteration for computing reciprocals, our method becomes much m o r e i n teresting than the NR method when we need to compute square roots and inverse square roots. Goldschmidt's iteration 8] for computing X=Y :

N i+1 = N i R i D i+1 = D i R i R i+1 = 2 ; D i+1 (14)
with N 0 = X, D 0 = Y and R 0 = 1 ; Y , has a convergence rate similar to that of the NR iteration [START_REF] Oberman | Division algorithms and implementations[END_REF] . T o make the iteration faster, one must replace Y by a v alue Y Ŷ very close to 1, and therefore multiply the nal value by Ŷ . This is exactly what we do during the normalization and post-processing steps of our method. Assuming that Ŷ is read from a k-bit address table , Goldschmidt iteration requires the same number of steps as the NR iteration, but the two m ultiplications required at each step can be performed in parallel (or, merely, in pipeline). Thus, assuming k = 1 4 a n d n = 56, the iteration requires:

one look-up in a 14-bit address table to get Ŷ one 14 56-bit multiplication to get Y Ŷ four 56 56-bit multiplications to perform the iterations (but if two multipliers are available, the time required is that of two m ultiplications) one 14 56-bit multiplication to get X=Y .

Wong and Goto's method

The method presented by W ong and Goto in 17] requires tables with m=2 address bits, where m is the numb e r o f b i t s o f t h e m a n tissa of the oatingpoint arithmetic being used. This makes that method un-convenient for double-precision calculations. In 16], they suggest another method, that requires table-lookups and rectangular10 multipliers. Their method for computing reciprocals is as follows. Let us start from the input value Y = 1 :y 2 y 2 : : : y 10 . The rst 10 bits of Y are used address bits to get from a table r 0 = 1 1:y 1 y 2 : : : y 10 :

Then, they compute r 0 Y . This give s a n umber A of the form: A = 1 ; 0:000 : : : 0a 9 a 10 : : : a 18 : : : a 56

Then, using a rectangular multiplier, they compute: B = A (1 + 0:000 : : : 0a 9 a 10 : : : a 18) = 1 ; 0:000000 : : :

Wong and Goto's method for reciprocation therefore requires one lookup in a 10-bit address table, one look-up in a 9-bit address table, and six rectangular 10 56 multiplications. One can reasonably assume that their rectangular multiplication have approximately the same cost as our k n = 14 56 multiplications. Therefore their method requires more time than ours. To compute reciprocal square-roots, they need one look-up in a 11-bit address table, one look-up in a 9-bit address table, and nine rectangular multiplications, which i s m uch more than what is needed with our method.

Elementary functions

Using the same basic scheme, our method also allows computation of some of the elementary functions. We brie y describe this below. Implementation is not discussed: it is very similar to what we h a ve previously described for reciprocal, square root and inverse square root.

Computation of logarithms

In a similar fashion, we get:

ln(1 + A) A ; A 2 2 z 4 ; A 2 A 3 z 5 + 1 3 A 3 2
Again, we only need to compute A 2 2 , A 2 A 3 and A 3 2 . And yet, the 1=3 c o ecient in front o f A 3 2 may make this last approximation less interesting. The post-processing step reduces to an addition.

Computation of exponentials

Now, let us assume that we w ant t o e v aluate the exponential of an n-bit number Y = 1 + A 1 z + A 2 z 2 + A 3 z 3 + A 4 z 4 , w h e r e z = 2 ;k (k = n=4), and the A i 's are k-bit integers. We suggest to rst computing the exponential of A = A 2 z 2 + A 3 z 3 + A 4 z 4 using a Taylor expansion, and then to multiply it by the number M = exp(1 + A 1 z):

M will be obtained by looking up in a k-bit address table. The exponential of A can be approximated by:

1 + A + 1 2 A 2 z 4 + A 2 A 3 z 5 + A 3 2 z 6 (16)

Sine and Cosine functions

Using the same number A as for the exponential function, we use the approximations:

(cos(A) 1 ; A 2 2 z 4 ; A 2 A 3 z 5 sin(A)

A ;

(Y) = M 2 sin(A) + M 1 cos(A) cos(Y) = M 2 cos(A) ; M 1 sin(A)
Therefore, for the sine and cosine functions, the post-processing step is more complex.

Conclusion

We h a ve proposed a new method for computation of reciprocals, squareroots, inverse square-roots, logarithms, exponentials, sines and cosines. The strength of our method is that the same basic computations are performed for all these various functions. For reciprocation, our method will require a computational delay quite close to that of high-radix digit-recurrence or Newton-Raphson iteration. To get 52 + 1 bits (double precision), the proposed method requires the working precision of n = 56 for single precision result (23 + 1), n = 28. f(A) = C 0 + C 1 (A 2 z 2 + A 3 z 3 + A 4 z 4) + C 2 (A 2 z 2 + A 3 z 3 + A 4 z 4) 2 +C 3 (A 2 z 2 + A 3 z 3 + A 4 z 4) 3 + C 4 (A 2 z 2 + A 3 z 3 + A 4 z 4) 4 + : : : (18) Let us keep in mind that A = A 2 z 2 + A 3 z 3 + A 4 z 4 is obviously less than 2 ;k . I f w e drop out from the previous series the terms with coe cients C 4 , C 5 , C 6 , C 7 , : : : , the error will be: where C max = m a x i 4 jC i j.

Now, let us expand the expression obtained from (6) after having dis-

For

 Since reduction is performed by m ultiplication by Ŷ , w e obtain g(Y) from B = f(A) a s g(Y) = M B where M = h(Ŷ). The value of M depends on the function and is obtained by a similar method as Ŷ . Speci cally,

Fig. 1 Figure 2 :

 12 Figure 1: Functional representation of the general architecture

Figure 4 :

 4 Figure 4: Functional representation of the evaluation module (As told above, the computations of A 2 2 and A 2 A 3 can be regrouped in one rectangular multiplication).

Figure 5 :

 5 Figure 5: Functional representation of the post processing module

 00b 17 b 18 : : : b 26 : : : b 56 Again, using a rectangular multiplier, they compute: C = B (1 + 0 :000000 : : : 00b 17 b 18 : : : b 26) = 1 ; 0:00000000000 : : : 0000c 25 c 26 : : : c 56 After this (or, merely, during this), the bits b 27 b 18 : : : b 35 are used as address bits to get from a table the number constituted by the most 9 signi cant bits of (0:0000 : : : b 27 b 18 : : : b 35) 2 . The nal result is: 1 Y r 0 1:00000 : : : a 9 a 10 : : : a 18 1:000000 : : : 00b 17 b 18 : : : b 26 (1:000000000 : : : 000c 25 c 26 : : : c 56 +)

Table 1 :

 1 Factors to multiply terms

		Function Reciprocal Square root Inverse Square root 3/8 5/16 B 1 A 3 2 1 1 1/8 1/16	
	0	k	2k	3k	4k	5k
		1 ; A				
			A 2 2 z 4			
				2A 2 A 3 z 4		
				(A 2 2) high A 2 z 6	

Table 2 :

 2 Operation being performed during the post-processing step

Table 3 :

 3 Table sizes and number of various operations required by our method, depending on the function being computed. Here, we call \small"

	1 6 A 3 2 z 6	(17)

Table 4 :

 4 Table 3 gives the table sizes and numb e r o f v arious operations required by our method, depending on the function being computed, and Table 4 give the required table sizes assuming either n = 5 6 a n d k = 14 (double-precision), or n = 2 8 a n d k = 7 (single precision). Required table sizes assuming either n = 5 6 a n d k = 14 (doubleprecision), or n = 2 8 a n d k = 7 (single precision).

	function n = 56 and k = 1 4n = 2 8 a n d k = 7 (double-precision) (single-precision)
	reciprocal square-root inv. sqrt logarithm exponential sin/cos	30 Kbytes 145 Kbytes 145 Kbytes 145 Kbytes 114 Kbytes 229 Kbytes	128 bytes 576 bytes 576 bytes 576 bytes 448 bytes 896 bytes

7 Appendix: proof of Theorem 1 Let us start from the series (6):

It would be more accurate to say digits, since it is likely that in a practical implementation,

A 2 2 will be represented in a redundant (e.g., carry-save or borrow-save) representation.

Obviously, t h e s e \ m ultiplications" will be implemented as { possibly redundant { additions, since

= 2 + 1 and 5 =

+ 1.[START_REF] Cody | Software Manual for the Elementary Functions. P r e n tice-Hall[END_REF] In the case of the reciprocal function, but this is similar for the other ones.

This is exactly the same step as our reduction step.

This is not surprising:the same iteration is hidden behind both methods 8].

Depending on the function being computed, their rectangular multipliers are between 10 56 and 16 56-bit multipliers.

carded the terms of rank 4. We g e t :

In this rather complicated expression, let us discard all the terms of the form W z j such that the maximum possible value of W multiplied by z j = 2 ;kj is less than or equal to z [START_REF] Ercegovac | Division and Square R oot: Digit-Recurrence A lgorithms and Implementations[END_REF] . W e then get (7), that is:

To get a bound on the error obtained when approximating (20) by (7) , we replace the A i 's by their maximum value 2 k , and we replace the C i 's by their absolute value. This gives: 2 (4jC 2 j + 3 jC 3 j) 2 ;4k + (2jC 2 j + 6 jC 3 j)2 ;5k + 7 jC 3 j2 ;6k +6jC 3 j2 ;8k + jC 3 j2 ;9k ; 4jC 2 j + 3 jC 3 j + 9 maxfC 2 C 3 g 2 ;k 2 ;4k :

If we assume that 7 2 ;k +6 2 ;2k +2 ;3k < 1, which i s t r u e a s s o o n a s k 4. Therefore, 2 is bounded by a v alue that is very close to (4jC 2 j + 3 jC 3 j) 2 ;4k .

As explained in section 2, when computing (7), we will make another approximation: after having computed A 2 2 , the computation of A 3 2 would require a 2k k multiplication. Instead of this, we will take the most k signi cant b i t s o f A 2 2 only, and multiply them by A 2 . I f w e write: A 2 2 =

; A 2 2 low + 2 k ; A 2 2 high where (A 2 2) low and (A 2

2) high are k-bit numbers, the error committed is C 3 ; A 2 2 low A 2 z 6 whose absolute value is bounded by 3 = jC 3 j2 ;4k . By adding the three errors due to our having discarded terms, we g e t the bound given in Theorem 1.