
Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

Reciprocation� Square root� Inverse

Square Root� and some Elementary

Functions using Small Multipliers

Milo�s D� Ercegovac

Tomas Lang

Jean�Michel Muller

Arnaud Tisserand

November ����

Research Report No �����

Ecole Normale Supérieure de Lyon

Adresse électronique : lip@lip.ens−lyon.fr
Téléphone : (+33) (0)4.72.72.80.00 Télécopieur : (+33) (0)4.72.72.80.80

46 Allée d’Italie, 69364 Lyon Cedex 07, France

Reciprocation� Square root� Inverse Square Root�

and some Elementary Functions using Small

Multipliers

Milo�s D� Ercegovac

Tomas Lang

Jean�Michel Muller

Arnaud Tisserand

November ����

Abstract

This paper deals with the computation of reciprocals� square
roots� inverse square roots� and some elementary functions us�
ing small tables� small multipliers� and for some functions� a
�nal �large� �almost full�length� multiplication� We propose a
method that allows fast evaluation of these functions in double
precision arithmetic� The strength of this method is that the
same scheme allows the computation of all these functions�

Our method is mainly interesting for designing special purpose
circuits� since it does not allow a simple implementation of the
four rounding modes required by the IEEE��	
 standard for
�oating�point arithmetic�

Keywords� Division� Reciprocation� Square�root� Function evaluation� Com�
puter arithmetic

R�esum�e

Ce rapport traite de l�evaluation d�inverses� de racines carrees�
d�inverses de racines carrees� et de quelques fonctions elemen�
taires en utilisant de petites tables� de petits multiplieurs� et�
pour quelques fonctions� une �grande� �i�e�� portant sur des
nombres dont la taille est celle des operandes� multiplication
�nale� Nous proposons une methode qui permet l�evaluation de
ces fonctions en arithmetique double precision� L�avantage de
cette methode reside dans le fait que le m�eme schema de calcul
�et donc� en pratique� la m�eme implantation� permet le calcul
de toutes ces fonctions�

Notre methode est essentiellement interessante pour construire
des circuits dedies �a une application� car elle ne permet pas
d�implanter de mani�ere simple les quatre modes d�arrondis exiges
par le standard IEEE pour l�arithmetique �ottante�

Mots�cl�es� Division� Inverse� Racine Carree� Evaluation de fonctions� Arith�
metique des ordinateurs

�

� Introduction

For many years� only two classes of methods have been considered when
implementing division and square root� digit�recurrence methods ���� and
quadratically converging methods� such as Newton�s method and Gold�
schmidt�s iteration ���� Concerning elementary functions� the methods that
have mainly been used are shift�and�add� Cordic�like methods ��
� �	�� and
polynomial or rational approximations �	� ��� A noticeable exception is a
method suggested by Farmwald �
�� that already uses tables� The progress
in VLSI technology now allows the use of large tables� that can be accessed
quickly� As a consequence� many table�based methods have emerged dur�
ing the last decade� high�radix digit�recurrence methods for division and
square root ���� mix�up of table�lookup and polynomial approximation for
the elementary functions ���� ��� ���� or even �for single precision� use of
table�lookups and addition only ���� �� ���� Recent overviews on these is�
sues can be found in references ��� ���

For instance� Wong and Goto ���� recently suggested to evaluate the ele�
mentary functions� the reciprocals and the square�root using tables� without
multiplications� Assume that the input number is A�z�A�z

��A�z
��A�z

��
where z � ��k and the A�is are integers less than �k� They compute f�A�
using the following formula

f�A� � f�A�z � A�z
��

�
z�

�

�
f�A�z � �A� � A��z

��� f�A�z � �A� �A��z
��
�

�
z�

�

�
f�A�z � �A� � A��z

��� f�A�z � �A� �A��z
��
�

�z�
�
A�

�

�
f ����A�z�� A�

�

�
f ����A�z�

�
�

Roughly speaking� their method allows to evaluate a function with ap�
proximately n bits of accuracy by just performing look�ups in n

�
�bit ad�

dress tables� and additions� This makes their method attractive for single�
precision calculations� In ����� Wong and Goto also suggest� for double pre�
cision calculations� the use of several look�ups in ���bit address tables and
some multiplications that require rectangular multipliers �typically� ���	��
bit multipliers� only�

The methods suggested by Farmwald �
�� and Das Sarma and Matula ����
require the use of tables with approximately n�� address bits to get an n�

�

bit approximation of the function being evaluated� With current technol�
ogy� this makes these methods impossible to implement for double�precision
arithmetic�

In this paper� we propose a new class of algorithms that allows the evalu�
ation of reciprocals� square roots� inverse square roots and some elementary
functions� using one table access� a few �small� multiplications� and at most
one �large� multiplication� To approximate a function with n�bit accuracy�
we need tables with approximately n�
 address bits�

� Reciprocal� Square Root� and Inverse Square

Root

We want to evaluate reciprocals� square roots and inverse square roots for
operands and results represented by an n�bit signi�cand� We do not consider
the computation of the exponent since this is straightforward� Let us call
the generic computation g�Y �� where Y is the signi�cand and� as in the
IEEE standard� � � Y � ��

The method is based on the Taylor expansion of the function to compute�
which converges with few terms if the argument is close to �� Consequently�
the method consists of the following three steps�

�� Reduction� From Y we deduce a number A such that ���k � A �
���k� To produce a simple implementation that achieves the required
precision� we use k � n�
� For the functions considered� we obtain A
as

A � Y � �Y � �

where �Y is a �k � ���bit approximation of ��Y � Speci�cally� de�ne
Y �k� as Y truncated to the kth bit� Then

Y �k� � Y � Y �k� � ��k

Hence

� � Y

Y �k�
� � � ��k ���

Using one lookup in a k�bit address table� one can �nd the number �Y
de�ned as ��Y �k� rounded down �i�e�� truncated� to k � � bits� Then�

���k�� � �Y � �

Y �k�
� �

�

Therefore� since � � Y �k� � ��

�� ��k � �Y Y �k� � �� ���

Using ��� and ���� we get

�� ��k � �Y Y � � � ��k ���

The reduced argument A is such that g�Y � can be easily obtained from
a value f�A�� that is computed during the next step�

�� Evaluation� We compute an approximation of B � f�A� using the
series expansion of f � as described below�

�� Post�processing� This is required because of the reduction step�
Since reduction is performed by multiplication by �Y � we obtain g�Y �
from B � f�A� as

g�Y � � M �B

where M � h� �Y �� The value of M depends on the function and is
obtained by a similar method as �Y � Speci�cally�

� For reciprocal M � �Y

� For square root M � ��
p

�Y

� For inverse square root M �
p

�Y

Let us now consider the evaluation step�

��� Evaluation step

In the following� we assume that we want to evaluate B � f�A�� with
jAj � ��k� The Taylor series expansion of F is

f�A� � C� � C�A� C�A
� � C�A

� � C�A
� � � � � � �
�

where the C�is are bounded�
Since ���k � A � ��k� A has the form

A � A�z
� �A�z

� �A�z
� �	�

where z � ��k� k � n�
 and jAij � �k � ��
Our goal is to compute an approximation of f�A�� correct to approxi�

mately n �
k bits� using small multiplications� From the series �
� and the
decomposition �	� we deduce

f�A� � C� � C� �A�z
� �A�z

� �A�z
�� � C� �A�z

� �A�z
� �A�z

��
�

�C� �A�z
� �A�z

� �A�z
��

�
� C� �A�z

� � A�z
� � A�z

��
�
� � � �

���

After having expanded this series and dropped out all the terms of the
form W � zj that are less than or equal to ���k� we get �see Appendix�

f�A� � C� � C�A� C�A
�
�z

� � �C�A�A�z
� � C�A

�
�z

�� ���

We use this last expression to approximate reciprocals� square roots and
inverse square roots� In practice� when computing ���� we make another
approximation� after having computed A�

�� obtaining A�
� would require a

�k � k multiplication� Instead of this� we take only the k most�signi�cant
bits of A�

� and multiply them by A��
In the Appendix� we prove the following result�

Theorem � f�A� can be approximated by

C� � C�A � C�A
�
�z

� � �C�A�A�z
� � C�A

�
�z

��

�where we use the most k signi�cants bits� of A�
� only when computing A�

���
with an error less than

���k
�

Cmax

�� ��k
�
jC�j�
jC�j� �maxfC�� C�g � ��k

�

with Cmax � maxi�� jCij�
In particular� for k � �� and assuming jCij � � for any i �which is

satis�ed for the functions considered in this paper�� this error is less than

� � ���k
�
Cmax �
jC�j�
jC�j� �

��

�
�

�It would be more accurate to say digits� since it is likely that in a practical im�
plementation� A�

� will be represented in a redundant �e�g�� carry�save or borrow�save�
representation�

	

Now we determine the coe�cients and the error bound for the three
functions� Since

�

� � x
� �� x� x� � x� � x� � � � �

p
� � x � � � �

�
x� �

	
x� � �

��
x� � �

��	
x� � � � �

�p
� � x

� �� �
	
x� �

	
x� � �

��
x� � ��

��	
x� � � � �

we get

� For reciprocal

�

� � A
� ��A�z

� �A�z
� � ��A� � A�

�� z
� � �A�A�z

� �A�
�z

�

� ���A� �A�
�z

� � �A�A�z
� � A�

�z
�

���
and the bound on the error is

� � ���� ���k

� For square root

p
� � A � � �

A

�
�

�

�
A�
�z

� � �

A�A�z

� �
�

��
A�
�z

� ���

and the error bound is
� � ���� ���k

� For inverse square root

��
p
� � A � �� A

�
�

�

�
A�
�z

� �
�

A�A�z

� � 	

��
A�
�z

� ����

and the error bound
� � ����� ���k

� Implementation

Now� let us suggest some ways of implementing our method� Fig� � presents
a functional representation of the general architecture�

�

AA4A3A2

reduction

evaluation

Y

B=f(A)

00...00

M

post processing

g(Y)

Figure �� Functional representation of the general architecture

�

YY1-2-k 1+2

2A

(k)

-k

4

Y

A

Y

3 A

Y

Y
k

4k
rb

k

00...00

3k

M

mux

3k+2

k+1 or 3k+2

ctb

k+1

ctb = correcting terme block

rb = reciprocal block

CTRL

Figure �� Functional representation of the reduction module �the value of
M depends on the function being computed��

��� Reduction

Fig� � shows a functional representation of the reduction module� From Y �
this module computes A and M � Di�erent methods can be used to perform
this computation� from direct table look�up to linear interpolation ���

��� Evaluation

The evaluation step computes expressions ���� ���� and ����� All three re�
quire the computation of A�

�� A�A�� and A�
�� As indicated before� for A�

� we
use the approximation

A�
� � �A�

��high �A�

Consequently� these terms can be computed by three k by k multiplications�
Moreover� the �rst two can be performed in parallel�

�

Alternatively� it is possible to compute the terms by two multiplications
as follows�

� For reciprocal and for inverse square root

��

B� � A�
� � �A�A�z � A� � �A� � �A�z�

��

A�
� � �B��high �A�

� For square root

��

B� � A�
� � �A�A�z � A� � �A� � �A�A��

��

A�
� � �B��high �A�

The �rst of the two multiplications is of k by �k bits and the second is of k
by k�

Then the terms �either the output of the three multiplications or of
the two multiplications� are multiplied by the corresponding factors� which
depend on the function as shown in Table �� Note that for division and
square root these factors correspond just to alignments� whereas for inverse
square root multiplications by � and 	 are required�� Finally the resulting
terms are added to produce B�

Fig� � shows the weights of these terms �in the case of the reciprocal
function�� After this addition� the result is rounded to the nearest multiple
of ���k� As shown� in Figure �� this gives a �k � � number �B� Then B is
equal to �B � ��

�Obviously� these �multiplications� will be implemented as � possibly redundant �
additions� since � 	
 � � and 	 � � ��

�In the case of the reciprocal function� but this is similar for the other ones�

�

Table �� Factors to multiply terms

Function B� A�
�

Reciprocal � �
Square root ��� ����
Inverse Square root ��� 	���

� k �k �k
k 	k

��A

A�
�z

�

�A�A�z
�

�A�
��high �A�z

�

�k � ��bit result obtained after rounding

Figure �� Weights of the various terms that are added during the evaluation
step for reciprocal� After the summation� the result is rounded to nearest�
so that there are no longer terms of weights less than ���k�

��

A

2

A2 3
2A

2A()high

A

2

00...00 A4A3A2

A

B

^2

3

k

k

2

2k 2k

k

2k 2k

4k

asb

k

k MSD

CTRL

asb = adder and shift block

3k

Figure
� Functional representation of the evaluation module �As told above�
the computations of A�

� and A�A� can be regrouped in one rectangular mul�
tiplication��

��

function value of M size of M operation

��Y �Y k � � bits M � Bp
Y �� �Y n but �k � g bits only for mult� M � B

��
p
Y �Y n but �k � g bits only for mult� M � B

Table �� Operation being performed during the post�processing step

��� Post�Processing

The post�processing consists in multiplying B by M � where M � g� �Y �
depends on the function and is computed during the reduction step� Since
B � �� �B and �B � ��k
�� to use a smaller multiplier it is better to compute

g�Y � � M � B � M �M � �B

Note also that in the multiplication it su�ces to use the bits of M of
weight larger than or equal to ���k�g� where g is a small integer� Since the
error due to this truncation is smaller than or equal to ���k
��g� choosing g �
�makes the error bounded by ��	����k and allows the use of a ��k������k�
���bit multiplier� From the error bounds given in Section � and taking into
account the additional ��	����k error due to the use of a ��k���� ��k���
multiplier for the post�processing step� we suggest to choose n � 	� and
k � �
 for a double�precision implementation�

Table � shows the operation that must be performed during the post�
processing step� and the value of M that must be used�

� Comparison with other methods

��� High�radix digit�recurrence division

Assume we wish to compute X�Y � Radix�r digit�recurrence division ���
consists in performing the recurrence�

X �j
�� � r�X �j� � qj
�Y� ����

where X ��� � X � X �j� is the j�th residual and qj
� is the j � ��st radix�r
digit of the quotient� When performing a high�radix digit�recurrence divi�
sion ���� Y is �rst normalized �i�e�� multiplied� by a factor �Y so that �Y is

�This is exactly the same step as our reduction step�

��

1
Y

Y

1

Y

Y

Y
1M = M = M = Y

B BB M M

4k

4k 4k

k+1

Reciprocal Square root Inverse square root

3k+1 3k+1 3k+1

M

3k+2 3k+2

Figure 	� Functional representation of the post processing module

very close to ��� This allows a simple selection of qj
�� Assume here that we
perform a radix��k digit�recurrence division� where k � n�
� To get n�bit
accuracy� we will need to perform
 iterations� If we assume that our goal is
double�precision arithmetic� we will therefore need� after the normalization�
four consecutive �
� 	��bit multiplications� This is very similar to what is
required by our method� Therefore� if the issue at stake is reciprocation� our
method and the high�radix recurrence method have close performances� On
the other hand� if we want to perform divisions� the high�radix recurrence
method is preferable� since it does not require a �nal �large� multiplication�

��� Newton�Raphson and Goldschmidt iterations

The well known Newton�Raphson �NR� iteration for reciprocal

xn
� � xn � ��� Y xn� ����

��

converges quadratically� to ��Y provided that x� is close enough to ��Y �
The usual way to implement this iteration is to �rst look x� up in a table�
Assume that we use a k�bit address table� and that we perform the interme�
diate calculations using an n�bit arithmetic� To compare with our method�
we assume n �
k� The �rst approximation x� of ��Y is the number �Y of
section �� It is a k�bit approximation of ��Y � To get x�� one need to perform
two k � n�bit multiplications� Since x� is a �k�bit approximation of ��Y �
it su�ces to use its most �k signi�cant bits to perform the next iteration��
After this� one needs to perform two �k � n�bit multiplications to get x��
which is an n�bit approximation� of ��Y � Assuming k � �
 and n � 	�� the
NR method requires�

� one lookup in a �
�bit address table�

� two �
� 	��bit multiplications�

� two ��� 	��bit multiplications�

The multiplications that occur cannot be performed in parallel�
The NR iteration for reciprocal square�root	

xn
� �
�

�
xn
�
�� Y x�n

�
����

has convergence properties very similar to those of the NR iteration for
division� Assuming �as previously� that we use a k�bit address table� and
that we perform the intermediate calculations using an n�bit arithmetic�
with k � �
 and n � 	�� computing an inverse square�root using the NR
iteration requires�

� one lookup in a �
�bit address table�

� three �
� 	��bit multiplications�

�That is� the number of common digits between xn�� and ��Y is approximately twice
that between xn and ��Y �

�To our knowledge� this property is only used in multiple�precision implementations of
the division� Using it in FPU�s would require the design of several di�erent size multipliers�

�Getting a correctly rounded result would require another iteration�
�The well known iteration for division

xn�� 	
�

�
xn �

Y

xn

�
cannot be used here� since it requires a division at each step� To compute

p
Y � it is much

better to �rst compute ��
p
Y using ����� and to multiply the result by Y �

�

� three ��� 	��bit multiplications�

Computing a square�root requires the same number of operations� and
a �nal �large� �	�� 	��bit� multiplication� This shows that� although only
slightly more interesting than the NR iteration for computing reciprocals�
our method becomes much more interesting than the NR method when we
need to compute square roots and inverse square roots�

Goldschmidt�s iteration ��� for computing X�Y �

Ni
� � Ni �Ri

Di
� � Di �Ri

Ri
� � ��Di
�

��
�

with N� � X � D� � Y and R� � � � Y � has a convergence rate similar to
that of the NR iteration�� To make the iteration faster� one must replace
Y by a value Y �Y very close to �� and therefore multiply the �nal value by
�Y � This is exactly what we do during the normalization and post�processing
steps of our method� Assuming that �Y is read from a k�bit address table�
Goldschmidt iteration requires the same number of steps as the NR iteration�
but the twomultiplications required at each step can be performed in parallel
�or� merely� in pipeline�� Thus� assuming k � �
 and n � 	�� the iteration
requires�

� one look�up in a �
�bit address table to get �Y �

� one �
� 	��bit multiplication to get Y �Y �

� four 	� � 	��bit multiplications to perform the iterations �but if two
multipliers are available� the time required is that of two multiplica�
tions��

� one �
� 	��bit multiplication to get X�Y �

��� Wong and Goto�s method

The method presented by Wong and Goto in ���� requires tables with m��
address bits� where m is the number of bits of the mantissa of the �oating�
point arithmetic being used� This makes that method un�convenient for

	This is not surprising�the same iteration is hidden behind both methods ����

�	

double�precision calculations� In ����� they suggest another method� that
requires table�lookups and rectangular�� multipliers�

Their method for computing reciprocals is as follows� Let us start from
the input value Y � ��y�y� � � �y��� The �rst �� bits of Y are used address
bits to get from a table

r� �

�
�

��y�y� � � � y��

�
�

Then� they compute r� � Y � This gives a number A of the form�

A � �� ����� � � ��a�a�� � � � a�	 � � �a��

Then� using a rectangular multiplier� they compute�

B � A� �� � ����� � � ��a�a�� � � � a�	�
� �� �������� � � ���b��b�	 � � � b�� � � � b��

Again� using a rectangular multiplier� they compute�

C � B � �� � �������� � � ���b��b�	 � � � b���
� �� ������������� � � �����c��c�� � � � c��

After this �or� merely� during this�� the bits b��b�	 � � � b�� are used as address
bits to get from a table the number � constituted by the most � signi�cant
bits of ������� � � � b��b�	 � � � b���

�� The �nal result is�

�

Y
� r� � ������� � � �a�a�� � � � a�	

� �������� � � ���b��b�	 � � � b��
� ������������ � � ����c��c�� � � � c�� � ��

��	�

Wong and Goto�s method for reciprocation therefore requires one look�
up in a ���bit address table� one look�up in a ��bit address table� and six
rectangular ��� 	� multiplications� One can reasonably assume that their
rectangular multiplication have approximately the same cost as our k�n �
�
 � 	� multiplications� Therefore their method requires more time than
ours� To compute reciprocal square�roots� they need one look�up in a ���bit
address table� one look�up in a ��bit address table� and nine rectangular
multiplications� which is much more than what is needed with our method�

�
Depending on the function being computed� their rectangular multipliers are between
��� � and �� � ��bit multipliers�

��

� Elementary functions

Using the same basic scheme� our method also allows computation of some
of the elementary functions� We brie�y describe this below� Implementation
is not discussed� it is very similar to what we have previously described for
reciprocal� square root and inverse square root�

��� Computation of logarithms

In a similar fashion� we get�

ln�� �A� � A�A�
�z

� �A�A�z
� �

�

�
A�
�

Again� we only need to compute A�
�� A�A� and A�

�� And yet� the ��� coe��
cient in front of A�

� may make this last approximation less interesting� The
post�processing step reduces to an addition�

��� Computation of exponentials

Now� let us assume that we want to evaluate the exponential of an n�bit
number Y � � � A�z �A�z

� � A�z
� � A�z

�� where z � ��k �k � n�
�� and
the Ai�s are k�bit integers� We suggest to �rst computing the exponential of

A � A�z
� �A�z

� �A�z
�

using a Taylor expansion� and then to multiply it by the number

M � exp�� � A�z��

M will be obtained by looking up in a k�bit address table�
The exponential of A can be approximated by�

� � A�
�

�
A�z

� �A�A�z
� � A�

�z
� ����

��� Sine and Cosine functions

Using the same number A as for the exponential function� we use the ap�
proximations� �

cos�A� � ��A�
�z

� �A�A�z
�

sin�A� � A� �
�
A�
�z

� ����

��

Function table size �bits� �small� mult� �large� mult�

reciprocal �k � ��� �k 	 �� are done in parallel� �

square�root �k � � � n�� �k
 �� are done in parallel� �

inv� sqrt �k � � � n�� �k
 �� are done in parallel� �

logarithm �k � � � n�� �k
 �� are done in parallel� �

exponential n� �k � �� are done in parallel� �

sin�cos �n� �k � �� are done in parallel�

Table �� Table sizes and number of various operations required by our
method� depending on the function being computed� Here� we call �small�
multiplication a k � n or k � k multiplication� and �large� multiplication a
��k � ��� ��k � �� multiplication�

After this� if M� � sin�� � A�z� and M� � cos�� � A�z� are read from a
k�bit address table� we get

sin�Y � � M� sin�A� �M� cos�A�
cos�Y � � M� cos�A��M� sin�A�

Therefore� for the sine and cosine functions� the post�processing step is more
complex�

� Conclusion

We have proposed a new method for computation of reciprocals� square�
roots� inverse square�roots� logarithms� exponentials� sines and cosines� The
strength of our method is that the same basic computations are performed
for all these various functions� For reciprocation� our method will require
a computational delay quite close to that of high�radix digit�recurrence or
Newton�Raphson iteration� To get 	� � � bits �double precision�� the pro�
posed method requires the working precision of n � 	�� for single precision
result ��� � ��� n � ��� Table � gives the table sizes and number of various
operations required by our method� depending on the function being com�
puted� and Table
 give the required table sizes assuming either n � 	� and
k � �
 �double�precision�� or n � �� and k � � �single precision��

��

function n � 	� and k � �
 n � �� and k � �
�double�precision� �single�precision�

reciprocal �� Kbytes ��� bytes

square�root �
	 Kbytes 	�� bytes

inv� sqrt �
	 Kbytes 	�� bytes

logarithm �
	 Kbytes 	�� bytes

exponential ��
 Kbytes

� bytes

sin�cos ��� Kbytes ��� bytes

Table
� Required table sizes assuming either n � 	� and k � �
 �double�
precision�� or n � �� and k � � �single precision��

� Appendix� proof of Theorem �

Let us start from the series ����

f�A� � C� � C� �A�z
� � A�z

� � A�z
�� � C� �A�z

� � A�z
� � A�z

��
�

�C� �A�z
� � A�z

� � A�z
��

�
� C� �A�z

� � A�z
� � A�z

��
�
� � � �

����

Let us keep in mind that A � A�z
��A�z

��A�z
� is obviously less than

��k� If we drop out from the previous series the terms with coe�cients C��
C�� C�� C�� � � � � the error will be�					

�X
i�

Ci

�
A�z

� � A�z
� � A�z

�
�i					 �

which is bounded by

�� � Cmax

�X
i�

�
��k

�i
� Cmax

���k

�� ��k
����

where Cmax � maxi�� jCij�
Now� let us expand the expression obtained from ��� after having dis�

��

carded the terms of rank �
� We get�

f�A� � C� � C�A� C�A
�
�z

� � �C�A�A�z
�

� ��C�A�A� � C�A
�
� � C�A

�
�� z

� � ��C�A�A� � �C�A
�
�A�� z

�

� �C�A
�
� � �C�A

�
�A� � �C�A�A

�
�� z

	 � ��C�A�A�A� � C�A
�
�� z

�

� ��C�A�A
�
� � �C�A

�
�� z

�� � �C�A�A
�
�z

�� � C�A
�
�z

���

����

In this rather complicated expression� let us discard all the terms of the
form W � zj such that the maximum possible value of W multiplied by
zj � ��kj is less than or equal to z�� We then get ���� that is�

f�A� � C� � C�A� C�A
�
�z

� � �C�A�A�z
� � C�A

�
�z

��

To get a bound on the error � obtained when approximating ���� by ����
we replace the Ai�s by their maximum value �k� and we replace the Ci�s by
their absolute value� This gives�

�� � �
jC�j� �jC�j� ���k � ��jC�j� �jC�j����k � �jC�j���k
��jC�j��	k � jC�j���k
� �

jC�j� �jC�j� �maxfC�� C�g � ��k
�
���k�

If we assume that ����k������k����k � �� which is true as soon as k �
�
Therefore� �� is bounded by a value that is very close to �
jC�j� �jC�j� ���k�

As explained in section �� when computing ���� we will make another
approximation� after having computed A�

�� the computation of A�
� would

require a �k � k multiplication� Instead of this� we will take the most k
signi�cant bits of A�

� only� and multiply them by A�� If we write�

A�
� �

�
A�
�

�
low

� �k
�
A�
�

�
high

�

where �A�
��low and �A�

��high are k�bit numbers� the error committed is

C�

�
A�
�

�
low

A�z
��

whose absolute value is bounded by �� � jC�j���k�
By adding the three errors due to our having discarded terms� we get

the bound given in Theorem ��

��

References

��� S� F� Anderson� J� G� Earle� R� E� Goldschmidt� and D� M� Powers� The
IBM ������� model ��� �oating�point execution unit� IBM Journal of
Research and Development� January ����� Reprinted in E� E� Swart�
zlander� Computer Arithmetic� Vol� �� IEEE Computer Society Press
Tutorial� Los Alamitos� CA� �����

��� W� Cody and W� Waite� Software Manual for the Elementary Func�
tions� Prentice�Hall� Englewood Cli�s� NJ� �����

��� M� D� Ercegovac and T� Lang� Division and Square Root� Digit�
Recurrence Algorithms and Implementations� Kluwer Academic Pub�
lishers� Boston� ���
�

�
� P� M� Farmwald� High Bandwidth Evaluation of Elementary Func�
tions� In K� S� Trivedi and D� E� Atkins� editors� Proceedings of the �th
IEEE Symposium on Computer Arithmetic� pages ��� �
�� Ann Arbor�
Michigan� May ����� IEEE Computer Society Press� Los Alamitos� CA�

�	� J� F� Hart� E� W� Cheney� C� L� Lawson� H� J� Maehly� C� K� Mesztenyi�
J� R� Rice� H� G� Thacher� and C� Witzgall� Computer Approximations�
Wiley� New York� �����

��� H� Hassler and N� Takagi� Function evaluation by Table Look�up and
Addition� In S� Knowles and W� H� McAllister� editors� Proceedings of
the �	th IEEE Symposium on Computer Arithmetic� pages �� ��� Bath�
UK� July ���	� IEEE Computer Society Press� Los Alamitos� CA�

��� J� M� Muller� Elementary Functions� Algorithms and Implementation�
Birkhauser� Boston� �����

��� S� F� Oberman and M� J� Flynn� Division algorithms and implementa�
tions� IEEE Transactions on Computers�
����� Aug� �����

��� J� E� Robertson� A new class of digital division methods� IRE Trans�
actions on Electronic Computers� EC������ ���� ��	�� Reprinted in
E� E� Swartzlander� Computer Arithmetic� Vol� �� IEEE Computer So�
ciety Press Tutorial� Los Alamitos� CA� �����

���� D� Das Sarma and D�W� Matula� Faithful bipartite ROM reciprocal
tables� In S� Knowles and W� H� McAllister� editors� Proceedings of the

��

�	th IEEE Symposium on Computer Arithmetic� pages �� ��� Bath�
UK� July ���	� IEEE Computer Society Press� Los Alamitos� CA�

���� P� T� P� Tang� Table�driven implementation of the exponential function
in IEEE �oating�point arithmetic� ACM Transactions on Mathematical
Software� �	�����

 �	�� June �����

���� P� T� P� Tang� Table�driven implementation of the logarithm function
in IEEE �oating�point arithmetic� ACM Transactions on Mathematical
Software� ���
�����
��� December �����

���� P� T� P� Tang� Table lookup algorithms for elementary functions and
their error analysis� In P� Kornerup and D� W� Matula� editors� Pro�
ceedings of the �
th IEEE Symposium on Computer Arithmetic� pages
��� ���� Grenoble� France� June ����� IEEE Computer Society Press�
Los Alamitos� CA�

��
� J� Volder� The CORDIC computing technique� IRE Transactions
on Electronic Computers� EC��������� ��
� ��	�� Reprinted in E� E�
Swartzlander� Computer Arithmetic� Vol� �� IEEE Computer Society
Press Tutorial� Los Alamitos� CA� �����

��	� J� Walther� A uni�ed algorithm for elementary functions� In Joint Com�
puter Conference Proceedings� ����� Reprinted in E� E� Swartzlander�
Computer Arithmetic� Vol� �� IEEE Computer Society Press Tutorial�
Los Alamitos� CA������

���� W� F� Wong and E� Goto� Fast hardware�based algorithms for ele�
mentary function computations using rectangular multipliers� IEEE
Transactions on Computers�
�������� ��
� March ���
�

���� W� F� Wong and E� Goto� Fast evaluation of the elementary functions
in single precision� IEEE Transactions on Computers�

����
	�
	��
March ���	�

��

