D. Beauquier, M. Nivat, E. Remila, and J. M. Robson, Tiling figures of the plane with two bars, Computational Geometry: Theory and Applications, vol.5, pp.1-25, 1995.

J. K. Burton and C. L. Henley, A constrained Potts antiferromagnet model with an interface representation, J. Phys. A, vol.30, pp.8385-8413, 1997.

J. H. Conway and J. C. Lagarias, Tiling with Polyominoes and Combinatorial Group Theory, Journal of Combinatorial Theory A, vol.53, pp.183-208, 1990.

C. Kenyon and R. Kenyon, Tiling a polygon with rectangles, proceedings of the 33 rd IEEE conference on Foundations of Computer Science (FOCS, pp.610-619, 1992.

R. Kenyon, A note on tiling with integer-sided rectangles, Journal of Combinatorial Theory A, vol.74, pp.321-332, 1996.

J. C. Lagarias and D. S. Romano, A Polyomino Tiling of Thurston and its Configurational Entropy, Journal of Combinatorial Theory A, vol.63, pp.338-358, 1993.

W. Magnus, A. Karrass, and D. , Solitar Combinatorial Group Theory. Presentation of groups in terms of generators and relations, vol.2, 1976.

C. Moore, I. Rapaport, and E. Rémila, Tiling groups for Wang tiles, proceedings of the 13 th annual ACM-SIAM Symposium On Discrete Algorithms (SODA) SIAM eds, pp.402-411, 2002.

I. Pak, Ribbon Tile Invariants, Trans. Am. Math. Soc, vol.63, pp.5525-5561, 2000.

I. Pak, Ribbon Tile Invariants

J. G. Propp, A Pedestrian Approach to a Method of Conway, or, A Tale of Two Cities, Mathematics Magazine, vol.70, pp.327-340, 1997.

E. Rémila, Tiling groups : new applications in the triangular lattice, Discrete and Computational Geometry, vol.20, pp.189-204, 1998.

E. Rémila, An algebraic method to compute a shortest path of local flips between two tilings, proceedings of the 11 th annual ACM-SIAM Symposium On Discrete Algorithms (SODA) SIAM eds, pp.646-653, 2000.

E. Rémila, On the structure of some spaces of tilings

S. Sheffield, Ribbon tilings and multidimensional height function

W. P. Thurston, Conway's tiling groups, American Mathematical Monthly, vol.97, pp.757-773, 1990.