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Abstract

We show that P = PSPACE implies the collapse of the boolean polyno-
mial hierarchy over any structure which admits “efficient enumeration
of sign conditions”. This fairly rich class of structures contains in par-
ticular R and C.
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Résumé

Nous montrons que si P = PSPACE la hiérarchie polynomiale booléenne
s’effondre pour toute structure vérifiant la propriété d’énumération ef-
ficace des conditions de signes. Cette classe de structures assez riche
contient en particulier R et C.

Mots-clés: complexité algébrique, hiérarchie polynomiale, théorémes de
transfert, conditions de signe.
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1 Introduction

Algebraic versions of the “P = NP ?” problem for structures such as the real
numbers and the complex numbers were introduced in 1989 by Blum, Shub and
Smale [4]. The problem is still open for R and C, but precise answers could
be obtained for some other structures. In particular, it was shown that for the
reals with addition and order, the problem is equivalent to the (non-uniform)
P = NP problem from discrete complexity theory [9]. In the same paper we
obtained several transfer theorems for the reals with addition and equality,
showing for instance that its polynomial hierarchy collapses if and only if the
discrete polynomial hierarchy collapses (note however the unconditional result
that P # NP in that structure [16]). In this paper we obtain similar transfer
theorems for structures with “efficient enumeration of sign conditions”. This
is a fairly large class of structures which contains in particular R and C. One
caveat is that we can only deal with the boolean polynomial hierarchy: only
boolean elements are quantified, not elements from the structure. It turns out
that these two notions are equivalent for the reals with addition and equality
(as well as for the reals with addition and order [7]), which explains why we
could deal with the “full” polynomial hierarchy in [9]. Unfortunately, for R or
C it is not known whether the full polynomial hierarchy is equal to its boolean
counterpart.

The paper is organized as follows. In section 2 we recall some basic defi-
nitions from the theory of computation in algebraic structures, introduce the



notion of “efficient enumeration of sign conditions”, and give some examples.
The transfer theorem is obtained in section 3: if M has efficient enumeration of
sign conditions and P = PSPACE then the boolean polynomial hierarchy over
M collapses at its second level. We also point out some relations with Vapnik-
Chervonenkis dimension and with earlier work by Cucker and Grigoriev [6].

2 Circuits and Structures

2.1 Complexity Classes

Here we briefly describe the model of computation used throughout the paper.
More details can be found [3, 13, 17].

By “structure”, we mean a set M equipped with a finite set of functions
fi: M™ — M and relations r; C M™i. We always assume that M contains the
equality relation and two distinguished elements denoted 0 and 1.

There are several types of gates in a circuit over M:

1. For each function f; of M, gates of type f; apply this function to their n;
inputs.

2. For each relation r; of M, gates of type r; apply the characteristic function
of r; to their inputs.

3. Finally, selection gates compute a function s(x,y, z) of their three inputs
such that s(0,y,z) =y and s(1,y, z) = z. The behaviour of s on an input
(x,y,2z) with z¢{0,1} is not important. We shall assume that s(z,y, z)
is equal in this case to some fixed term ¢(z,y, z) of M.

By definition the number of gates in a circuit is its size. In the remainder of
this paper we only consider circuits with one output gate. Also since we are
only interested in decision problems we will assume without loss of generality
that this output gate is an equality gate, to make sure that the output is always
boolean.

Now that our basic computation model is defined, we can move on to com-
plexity classes. Recall that a problem is simply a subset of M> = (J,~; M™.
By definition, a problem X is in level B H%W of the polynomial hierarchy if there
exists a tuple @ = (aq,...,q) of parameters from M, two polynomials p and
g, and a sequence of circuits (Cy,)p>1 such that C, can be constructed in time
polynomial in n, and such that for any z € M™, x € X if and only if:

Vu € {0,137 Ju € {0,119 C,(z,u,v,0) = 1. (1)

The other levels of the boolean polynomial hierarchy are defined in a similar
way. For instance, if we take p(n) = 0 in (1) we obtain BX},, and if we
take p(n) = q(n) = 0 we obtain the class Py, of polynomial-time problems. A
problem in this hierarchy is said to be parameter-free if no parameters are used,
ie, k=01n (1). Note that 0 and 1 can still be used since they are constants
from the structure.



2.2 Sign Conditions

Let C(z1,..yZn,Y1,--.,Ym) be a circuit over M. A sign condition for C is a
system of equations of the form (C(z,y) = €),cf0,1}3» where ¢, € {0,1}. A
sign condition o can therefore be identified to a boolean vector of length 2™;
component y of o is denoted o(y). Of course, a sign condition is said to be
satisfiable if there exists an input z € M"™ which satisfies it. If o is satisfiable,
o(y) is nothing but C'(z,y) where z is any input satisfying o.

Definition 1 A structure M is said to have few sign conditions if there ex-
ists a polynomial p such that any circuit C(x1,...,Tp,Y1,--,Ym) has at most
op(mnsize(C) gqtisfiable sign conditions.

A standard argument shows that (R, 4, —, X, <) has few sign conditions:

Proposition 1 The set of real numbers with its structure of ordered field has
few sign conditions.

Proof. Let C(x1,...,Zn,Y1,--.,Ym) be a circuit of size s. We claim that there
exists a set P of M = 2m+5+1 polynomials of degree at most d = 2° such that
for any pair of inputs z, 2’ € M™, if sign(p(z)) = sign(p(z')) for all p € P then z
and z’ satisfy the same sign condition of C'. The proposition then follows from
the well-known (Md)°(™ bound on the number of satisfiable sign conditions for
a family of polynomials (see [2] for a sharper bound). The claim follows from
the fact that for any y € {0,1}™, C(.,y) can be simulated by a decision tree
T, of depth < s in which every node is labeled by a test of the form “p(z) >0
77 where deg(p) < 2°. The set P is the union for all y € {0,1}" of the sets of
polynomials tested at the nodes of T,. O

This property clearly holds in an arbitrary real-closed field (those are the or-
dered fields which satisfy the same first-order formula as R, see for instance [14])
and therefore in an arbitrary ordered field since there cannot be more sign con-
ditions in an ordered field than in its real closure. A very similar proof shows
that algebraically closed fields (of any characteristic) also have few sign condi-
tions. In this case we use the (1 + Md)™ bound on the number of satisfiable
sign conditions for a set of M polynomials of degree d in n variables ( [10],
Corollary 1). It follows again that an arbitrary field has few sign conditions.

We say that M has efficient enumeration of sign conditions if it has few sign
conditions and they can be enumerated in polynomial space:

Definition 2 A structure M is said to have efficient enumeration of sign con-
ditions if it has few sign conditions and there exists o PSPACE algorithm A
with the following property.

Let C(x1, ..., Tn,Y1,---,Ym) be a circuit with N satisfiable sign conditions.
There exists an enumeration o1,...,0n of these sign conditions such that when
A receives as input a triplet of the form (C,y,c) where y € {0,1}™ and ¢ > 1
1$ an integer:

(i) if ¢ < N, the algorithm outputs o.(y);



(ii) if ¢ > N, the input is rejected.

Proposition 2 The set of real numbers with its structure of ordered field has
efficient enumeration of sign conditions.

Proof. By the equivalence between space and parallel time, our main task is
the following: given C, construct the set C of all satisfiable sign conditions of
C' in parallel polynomial time (using exponentially many processors). We first
construct the set P of polynomials in the proof of Proposition 1. According to
Proposition 4.1 of [18], the set of satisfiable sign conditions for a family of M
polynomials of degree at most d in n variables can be constructed in parallel time
(log L)[nlog(Md)]°V), where L is the maximum bit length of the coefficients of
these polynomials. Since L is exponentially bounded for the polynomials of P,
the set C’ of all satisfiable sign conditions of P can be constructed in parallel
polynomial time. The construction of C from C’ is straightforward (note that
each sign condition of C’ determines uniquely a sign condition of C, but the
converse is not always true). It just remains to choose some arbitrary order on
the elements of C, and given (y, ¢), to output o.(y). O

The same property holds for algebraically closed fields (of any characteristic).
We just have to replace Renegar’s enumeration algorithm by the algorithm
from [8].

3 The Transfer Theorem

Before proving our main theorem it is worth pointing out the following property,
which was obtained by Cucker and Grigoriev [6] in the case M = R. Recall
that the boolean part of Py, is the set of problems in Pj; which are boolean,
i.e., contain only words.

Theorem 1 If M has efficient enumeration of sign conditions, the boolean part
of Py is included in PSPACE/poly.

Proof. Let Y be a boolean problem of Py;. There exist parameters ay, ..., qg
of M and a family of circuits (Cy)n>1 such that C, can be constructed in
time polynomial in n, and such that for any input y € {0,1}", y € Y if and
only if Cp(a,y) = 1. Let N be the number of satisfiable sign conditions of
Cn(z,y). Since M has few sign conditions, N has polynomial bit size. Let
01,-..,0N be the enumeration of these sign conditions given by the PSPACE
algorithm of Definition 2. Let o., be the sign condition satisfied by «. Since
Ch(a,y) = o, (y), Y can be solved in polynomial space using ¢, as advice for
inputs of size n. O

Theorem 2 Let M be a structure which has efficient enumeration of sign con-
ditions. If P = PSPACE then BY3, = BII4,.

Proof. Let X be a problem which is BH?V[ without parameters. There exists a
polynomial p and a sequence of parameter free circuits (Cy),>1 such that Cp,
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can be constructed in time polynomial in n, and such that for any z € M™,
z € X if and only if:

Vu € {0,1}P™ 3y € {0,1}*™) C, (2, u,v) = 1.

Let N be the number of satisfiable sign conditions of C),(z,y), where y is
the vector of boolean variables obtained by concatenation of u and v. Since
M has few sign conditions, N has polynomial bit size. Let oq,...,o0n be the
enumeration of these sign conditions given by the PSPACE algorithm of Defi-
nition 2. Observe that X N M™ is defined by the formula 3¢ Yu,v F(c,u,v,x)
where F'(c,u,v,z) stands for

(oc(u,v) = Cy(x,u,v)) Aaccept(c)

and accept(c) stands for Yu Jv o.(u,v) = 1. By hypothesis on M, o.(u,v)
and thus accept(c) can be computed in polynomial space. If P = PSPACE,
F(c,u,v,) can therefore be evaluated in polynomial time and X is BY3,.

In the general case, X is solved by a BH?V[ algorithm using k£ parameters
«@1,...,a. The conclusion follows from a routine argument: there exists a
parameter-free BIIZ, problem Y such that an input (z1,...,2,) is in X if and
only if (1,...,Zn,1,...,x) is in Y. We have just seen that Y € BX?2, if
P = PSPACE. Under this assumption, X is therefore BX%, as well. O

Note that the collapse at the second level obtained here is optimal since the
unconditional separation BX}, U BII}, # BY2 N BII%, holds for the structure
M = (R,+,—,=) of the reals with addition and equality [9], which admits
efficient enumeration of sign conditions.

For some structures one can give a partial converse to this transfer theorem.
In particular, it is known that the boolean part of P¢ is included in BPP (the
boolean part of Py for the structure M = (R, +, —, =) is included in BPP by
Theorem 9 of [12], and the proof for C is identical). Since BPP C P/poly [1]
the collapse BX2 = BII% would imply X2 /poly = I1?/poly. We conclude that
the separation BE(% # BH?C is most likely true, but extremely hard to prove.
The collapse BX2 = BH]%{ also seems highly unlikely, but we cannot point to
such a dramatic consequence as %2 /poly = I12 /poly.

It is possible to give good bounds on the number of sign conditions in even
richer structures than ordered fields. This is not surprising since, in light of
the following observation, any structure which admits “good” VC dimension
bounds has few sign conditions.

Remark 1 Given a circuit C(z1,...,Tn,Y1,---,Ym), denote by Fc the family
of functions {fy; * € M™} where f; : {0,1}"™ — {0,1} maps y to C(z,y). The
two following properties are equivalent.

(i) there exists a  polynomial q such that for any circuit
C(z1y- oy ZTnyYty---yYm) of size s, Fo has VC dimension at most
g(mns).

(1)) M has few sign conditions.



We recall that the Vapnik-Chervonenkis dimension of F¢ is the cardinality of
the largest set X C {0, 1}™ such that the restriction of F¢ to X has cardinality
21X1 (one says that X is shattered by F¢).

Proof. If C has < 2P(s"7) gatisfiable sign conditions, F¢ cannot shatter any set
of cardinality larger than p(smn). Conversely, if F has VC dimension bounded
by g(smn) then C has at most (€2 /q(smn))9™™) satisfiable sign conditions
by Sauer’s lemma (see for instance [5] and the references there). O

For instance, it follows from [11] that if we expand the ordered field of the real
numbers with the exponential function, or even with Pfaffian functions, the
resulting structure still has few sign conditions. It is however not known whether
these structures have efficient enumeration of sign conditions. If one wishes to
obtain sharp bounds on the number of sign conditions in a given structure,
Remark 1 should probably not be applied directly since VC dimension bounds
are usually obtained by bounding the number of satisfiable sign conditions!

Of course, there are also expansions of the real field which do not have few
sign conditions.

Proposition 3 The structure (R, 4, —, X, cos, <) does not have few sign con-
ditions.

Proof. It is a variation on Sontag’s proof that this structure does not admit
finite VC dimension bounds [19]. By “fast exponentiation”, there exists a cir-
cuit Cp(21,22,Y1,- -, Ym) of size O(m) such that Cp,(z1,z2,91,...,ym) =1 if
cos(z1.2y) > 0, and Cp,(z1,72,y1,...,Ym) = 0 otherwise. Here y denotes the
integer with binary representation y1ys ... Ym.

We claim that C,, has 22" satisfiable sign conditions. —Choose s
so that m and z9 are algebraically independent over Q. The 2™ +
1 real numbers 7T,1,$2,.’L‘%,...,$2m_1 are linearly independent over Q.
By Theorem 3.2 and Proposition 2.7 of ([15], chapter II), this im-
plies that the values of ($1,$1.$2,$1.$%,...,$1.$gm_1) modulo 27 are
dense in [0,27]*" as x; ranges over R. The vectors of the form
(cos(z1), cos(z1.22), cos(z1.23), . . . ,cos(x1.25 ') as x; ranges over R are
therefore dense in [—1,1]?". The claim and the proposition then follow im-
mediately. O
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