J. K. Burton and C. L. Henley, A constrained Potts antiferromagnet model with an interface representation, J. Phys. A, vol.30, pp.8385-8413, 1997.

T. Chaboud, Domino tiling in planar graphs with regular and bipartite dual, Theoretical Computer Science, vol.159, pp.137-142, 1996.

J. H. Conway and J. C. Lagarias, Tiling with Polyominoes and Combinatorial Group Theory, Journal of Combinatorial Theory, A, vol.53, pp.183-208, 1990.

S. Desreux, An algorithm to generate exactly once every tiling with lozenges of a domain

P. A. Davey and H. A. Priestley, An introduction to lattices and orders, 1990.

M. Habib, R. Medina, L. Nourine, and G. Steiner, Efficient algorithms on distributive lattices, vol.110, pp.169-187, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01765516

T. Kashiwabara, S. Masuda, T. Nakajima, and . Fujisawa, Generation of maximum independent sets of a bipartite graph and maximum cliques of a circular-arc graph, Journal of Algorithms, vol.13, pp.161-174, 1992.

J. G. Propp, Lattice Structure for Orientations of Graphs

E. Rémila, On the lattice structure of the set of tilings of a simply connected figure with dominoes, Proceedings of the 3rd International Conference on Orders, Algorithms and Applications (ORDAL) (1999) LIP Research

W. P. Thurston, Conway's Tiling Groups, American Mathematical Monthly, vol.97, pp.757-773, 1990.