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On the relations between dynamical systems and
boolean circuits

Pascal Koiran

Abstract

We study the computational capabilities of dynamical systems de�
�ned by iterated functions on ��� ��n� The computations are performed
with in�nite precision on arbitrary real numbers� like in the model of
analog computation recently proposed by Hava Siegelmann and Ed�
uardo Sontag� We concentrate mainly on the low�dimensional case
and on the relations with the Blum�Shub�Smale model of computation
over the real numbers�

Keywords� analog computation� non�uniform complexity� dynamical systems�

R�esum�e

Nous 	etudions la puissance de calcul de syst
emes dynamiques d	e��
nis par des it	erations de fonctions sur ��� ��n� Les calculs sont e�ectu	es
en pr	ecision in�nie sur des nombres r	eels quelquonques� comme dans le
mod
ele de calcul analogique r	ecemment propos	e par Hava Siegelmann
et Eduardo Sontag� Nous insistons surtout sur le cas des syst
emes en
petites dimensions et sur les relations avec le mod
ele de calcul sur les
nombres r	eels de Blum� Shub � Smale�

Mots�cl�es � calcul analogique� complexit	e non uniforme� syst
emes dynamiques�
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� Introduction

A new model of analog computation was recently proposed by Siegelmann �
Sontag ���� In this model� computations are performed by recurrent neural
networks with real weights� instead of rational weights in a previous work ����
It is assumed that the computations are carried out with unbounded pre�
cision� Siegelmann � Sontag showed that arbitrary �even non�computable	
functions can be computed in exponential time by their networks� and that
the class of polynomial�time computable functions is the class P�poly of
functions computable by polynomial�size boolean circuits� They also proved
that using much more general networks �called generalized processor net�
works	 does not result in any gain in computational capabilities�

In this paper� we continue the study of the computational capabilities
of low�dimensional dynamical systems started in �
�� and generalize some of
the results of ���� Our framework is very similar to Siegelmann � Sontag�s�
the dynamical systems considered are iterated functions on �� ��n� some of
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these functions can be described by a �nite set of parameters which can take
arbitrary �even non�computable	 real values�

It is shown in section 
 that iterated piecewise�linear functions on the
interval can compute arbitrary functions in exponential time� This is an
interesting di�erence with the �rational weights� case� for which it seems
that two dimensions are necessary in order to compute arbitrary recursive
functions with iterated piecewise�linear functions �
�� In dimension two�
the class of polynomial�time computable functions is exactly P�poly� We
then show that using other types of functions or higher dimensions does
not allow to compute anything else than P�poly in polynomial time� This
result precisely holds for the class of iterated polynomial�time approximable
functions� which should include most functions of practical interest �it does
include piecewise�linear functions� as shown in section �� as well as multi�
variate polynomials ���	�

In section �� we consider on�line systems in which the input is fed to
the system bit by bit� instead of being encoded entirely in the initial state�
This is closer to the mode of operation of Siegelmann � Sontag�s recurrent
networks� and it can be shown that these systems are actually equivalent to
their generalized processor networks� However� we believe that our model
is simpler and more natural� It is shown that on�line systems are in fact a
special case of the o��line systems of section 
� Hence the same limitation
applies to their computational capabilities�

Finally� these models are compared to the BSS model of analog compu�
tation� recently proposed by Blum� Shub and Smale ���� It is shown that
their model is at least as powerful as our�s� Whether it is actually more pow�
erful is an interesting open problem� which could shed light on the P � NP
problem in the BSS model�

� Preliminaries

The de�nitions and notations used throughout the paper are listed below�
I is the unit interval �� ��� ei�x	 is the ith component of x � Rd� For

x� y � Rd� jx� yj � jjx� yjj� � sup��i�d jxi � yij�
L� is the set of �nite non�empty words on the alphabet L�
We identify a natural number with its radix�� expansion� so that N can

be identi�ed with f� �g�� jxj is the length of x � f� �g� or x � N �and not
the absolute value	�

D is the set of �decimal� numbers in radix �� x � Dn i� x � �x� � � � xn
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with xi � f� �g� and D � �n��Dn�
We say that the digits x� � � �xn �xi � f� �g	 are the �rst n digits of x � I

if y � �x� � � �xn is such that jx�yj � ��n �there is of course no uniqueness	�
We note y � Truncn�x	� Similarly� we de�ne Truncn�x	 for x � Id by taking
the �rst n digits in each component�

De�nition � PLd is the set of piecewise�linear continuous functions on Id�
More precisely� f � Id � Id belongs to PLd if

� f is continuous�

� there is a �nite set P of convex closed polyhedra �of non�empty inte�

rior� such that f is a�ne on each P � P� Id �
S
P�P P and

�

P �
�

Q� �
for P�Q � P� P ��Q�

Let us recall the classical notion of polynomial�time computable real func�
tion ����

De�nition � f � Id � Id is in Pd if there is a Turing machine T such that

	� T receives as input an integer p specifying the precision required for
the output f�x	�


� T computes the number m of input digits needed�

�� T queries an oracle to obtain Truncm�x	 �this step takes constant time
by de�nition��

�� T then computes the output Truncp�f�x		�

� There are constants a and k such that for any x � Id and p � N � the
whole computation is performed in time at most apk�

Note that we can assume without loss of generality that m is polynomial
in p� since a Turing machine cannot read more than a polynomial number of
bits in polynomial time� For encoding functions� we shall use the following
notion of polynomial�time computability�

De�nition � A function � � f� �g� � Id is in PEd if there is a Turing
machine T such that

	� T receives as input x � f� �g� and an integer p specifying the precision
required for the output ��x	�







� T computes the output Truncp���x		�

�� There are constants a and k such that for any x � Id and p � N � the
whole computation is performed in time at most a�p� jxj	k�

Pd and PEd are in fact subsets of the class of polynomial�time computable
functions from Rm to Rn ����

The transition functions of our systems cannot be allowed to be arbitrary
polynomial�time computable functions �in order to show that circuit families
can simulate iterated functions� a Lipschitz property is necessary	� We shall
consider only the following subclass�

De�nition � f � Id � Id is in LP d if f � Pd and f is Lipschitz �i�e�� if
there is a constant C such that 	x� y � Id� jf�x	� f�y	j � Cjx� yj��

It can be easily seen that f � LPd i� it is polynomial�time approximable in
the sense of Siegelmann � Sontag ����

Lemma � f � Id � Id is in LP d i�


 f is Lipschitz�


 There is a Turing machine T that can compute Truncn�f�x		 in poly�
nomial time on an input x � Dd

n�

Proof� Assume that f is polynomial�time approximable� Given x � Id and
n � N � we need to compute y such that jy� f�x	j � ��n� This can be done
by taking y � Truncp�f�Truncp�x		� for p large enough� The computation
time is polynomial in p by hypothesis� Since f is Lipschitz�

jy � f�x	j � jTruncp�f�Truncp�x		� f�Truncp�x		j� jf�Truncp�x		� f�x	j
� ��p � �k�p

where �k �k � N	 bounds the Lipschitz constant of f � Hence p � k� n� �
is su�cient�

The converse is obvious� �

In order to deal with arbitrary real numbers� we need to consider the class
C�poly for each class C de�ned above� The functions in these classes are com�
puted by Turing machines using polynomial advice funtions ���� Contrary to
oracles� the value of the advice function does not depend fully on the input
of the Turing machine� but only on its length� For instance� f � PEd�poly
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if there is a function A � N � f� �g� �the advice function	 and a Turing
machine T such that on the input �p� x� A�p� jxj		� T computes the �rst
p digits of f�x	 in time O��p � jxj	k	� The length of the advice sequence
A�p � jxj	 must also be polynomial in p � jxj �this latter requirement is in
fact redundant� since the portion of the tape that can be scanned by T in
polynomial time is of polynomial size	�

If C � P is the class of sets E � f� �g� recognizable in polynomial
time by Turing machines� we obtain the class P�poly� It will be shown that
this is exactly the class of sets that can be recognized in polynomial time
by iterated functions� A useful characterization of P�poly is the following�
f � f� �g� � f� �g is in P�poly if and only if it can be computed by boolean
circuits of polynomial size ���� i�e�� if there is a family of circuits �Cn	n�� such
that the size of Cn is polynomial in n� and Cn computes fjf���gn�

It can be easily seen that there are non�computable functions is P�poly�
since the circuit family �Cn	n�N is not supposed to be recursive� Conversely�
some computable functions are not in P�poly� since EXPTIME��P�poly ����

The next result is important because all the speci�c examples of systems
considered in this paper as well as in ��� are piecewise�linear�

Theorem � PLd � LP d�poly�

Proof� f � PLd is clearly Lipschitz� Inside a given polyhedron P � P �
ej�f�x		 �

Pd

i�� wijxi � �j � The Lipschitz constant of fjP is LP �
maxj

Pd

i�� jwijj� The Lipschitz constant of f is maxP�P LP �
In order to show that f � Pd� we �rst show that f is a Lipschitz function

of its parameters� We will now write f�W�x	 in order to take them into
account explicitly� Let us �rst de�ne a convention allowing to associate a
unique vector of parameters W � Rk to f � We can assume that P is a
triangulation� i�e�� each polygon P is a polytope �the convex hull of d � �
points in general position	� f is uniquely de�ned by the listW of the vertices
of the polytopes� together with the value of f at these vertices� enumerated
in a �xed order� We also assume without loss of generality that Id is in
the interior of �P�PP � so that f is de�ned� continuous and piecewise�linear
in a neighborhood of Id� Some vectors W � Rk are not associated to a
triangulation of Id �this occurs when two polytopes intersect	� others are
associated to a triangulation that does not cover Id� These vectors are
called invalid� The set of valid vectors is open� for any valid vector W��
there is a parallepiped B�W�� r	 of valid vectors� We will now work inside
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such a parallepiped� and consider for a given x � Id the function

g � B�W�� r	 �� R
d

W �� f�W�x	

This function is continuous� and piecewise�linear since the equations deter�
mining the polytope in which x is located are linear� Hence the analysis of
x �� f�W�x	 made at the beginning of the proof can be applied to g� g is
Lipschitz� and its Lipschitz constant is smaller than

Pd

i�� xi � d�
We are now ready to show how to compute f�W�� x	 in polynomial time�

According to lemma �� we can assume that x � Dd� An approximation of
f�W�� x	 can be obtained simply by computing f�Truncq�W�	� x	 for q large
enough �this makes sense because the set of valid vectors is open	� Since g
is Lipschitz� q � n� C is su�cient to obtain n digits of f�W�� x	� for some
constant C� The computation clearly takes polynomial time� and the advice
sequence is Truncq�W�	� �

� O��line inputs

In this section we study a mode of computation in which the input to the
system is encoded entirely in its initial state�

De�nition � The decision function F � f� �g� � f� �g is o��line com�
putable if it can be computed by an o��line system S � �f� �� �a�� b��� �a�� b��	�
� � f� �g� � Id is an encoding function� �a�� b�� and �a�� b�� �a� � b�� are
two disjoint decision intervals� and f is a function on Id�

On an input u � f� �g�� the computation performed by S is de�ned by
the following sequence �x�t		t�N�


 x�	 � ��u	�


 x�t� �	 � f�x�t		 for t � �

Let t�u	 � minft� x��t	 � �a�� b�� � �a�� b��g �it is assumed that t�u	 exists��
The output is F �u	 �  if x��t�u		 � �a�� b��� and F �u	 � � otherwise�

The time complexity of this computation is the function T such that
T �n	 � max

juj�n
t�u	�

Theorem � An arbitrary total function F � f� �g� � f� �g can be o��
line computed by f � PL� in exponential time� Moreover� the encoding
function is in PE�� and is independent of F � The decision intervals are
also independent of F and are such that a� � b� � Q and a� � b� � Q�
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Proof� It is clearly possible to replace I by the interval �� ��� We shall work
with radix�� encodings� using the digits � and 
 only �these encodings were
introduced in ��� and used subsequently in ��� and �
�	� Hence it will be
convenient to consider the function G such that G�N	 � � if F �N	 � �
G�N	 � 
 if F �N	 � �� instead of F itself� Contrary to the convention used
in the rest of the paper� all decimal expansions in this proof are radix ��

Let ��N	 � �����	N
�� �N is now viewed as an integer rather than a
word on the alphabet f� �g	� On ����� ��� set

f�x	 � ���p������x� ���	� a� � q��

with a � �G�	G��	 � � �G�n	 � � � and q� � �q�� � � � q�p the initial state
of a pushdown automaton A described below� p is such that A has less than
�p states� Therefore

f���N		 � �q�� � � � q�p�G�	�G��	 � � ��G�N � �	
G�N	
G�N � �	
 � � ��

The job of A is just to pop the sequence of digits �G�	�G��	 � � ��G�N �
�	
G�N	
G�N � �	
 � � � viewed as a downward in�nite stack� This can be
done by a function of PL� as explained in �
�� When A reads a 
 at an
odd position in this sequence� it knows that the next digit is G�N	� After
reading G�N	� it erases the stack� and enters one of the two halting states
a�� a�� Finally� the �gap� ��� ���� can be �lled by an a�ne function� so as to
obtain a continuous piecewise�linear function on �� ���

In order to compute the nth �rst digit of ��N	� the main task is to
compare n and �N � �� which can be done in time polynomial in logn and
logN � Hence � is in PE�� �

A comparison with �rational weights� systems ��� 
� is in order� If the pa�
rameters de�ning f � PLd are rational� the iterations of f can be computed
exactly on a conventional computer �assuming that the initial state is ratio�
nal	� hence it is only possible to compute recursive functions in this model�
It turns out that all recursive functions can be computed ���� but two di�
mensions seem to be necessary �
� �we have proved this using a somewhat
restrictive de�nition of what it means to to compute a recursive function	�
Theorem � shows that one dimension su�ces in the �real weights� model�
But according to theorem 
� two dimensions are �presumably	 better if one
is concerned with e�ciency issues�

Theorem � Let C � �Cn	n�N be a circuit family such that the size S�n	 of
Cn is a non�decreasing function of n� C can be simulated in time O�nS�n	k	
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�for some �xed k � � by an iterated function f � PL�� Moreover� the en�
coding function � is in PE�� and is independent of C� The decision intervals
are also independent of C and are such that a� � b� � Q and a� � b� � Q�

Proof� We follow Siegelmann � Sontag�s method ���� and work with �� ���

like in the previous proof� It will be convenient to consider that F is de�ned
on f�� 
g� instead of f� �g�� Contrary to the convention used in the rest
of the paper� all decimal expansions in this proof are to the radix �� The
encoding function is

��x	 � ��x� � � � xn	 � ��x� � � �xn� ���	�

From this point� we make a transition to

f���x		 � ��q�� � � � q�px� � � �xn� c	�

where qo� � � � q�p encodes the initial state of a Turing machine M to be de�
�ned below� and the digits of c � �� �� encode the sequence C � �Cn	n�N �
From �
�� we know that there will be a function of PL� simulating M in real
time� With the initial tape xc� The job of M is simply to run Cn on the
input x� � � � xn� This is an instance of the Circuit Value Problem� which is
known to be in P ���� The overall computation time is O�nS�n	k	 since the
encoding of Cn is at a distance O�nS�n	 logS�n		 of the initial read�write
head �a circuit of size S can be encoded in space O�S log S		� �

Corollary � A function F � f� �g� � f� �g in P�poly can be o��line
computed in polynomial time by f � PL� with an encoding function in PE��

Proof� A function in P�poly has polynomial size circuits ���� �

Since an arbitrary function has exponential size circuits �e�g�� its disjunctive
normal form for each input size	� we could add to this corollary that arbitrary
functions can be computed in exponential time� but this is already known
from theorem ��

Theorem � If F � f� �g� � f� �g can be o��line computed in polynomial
time by f � LP d�poly with an encoding function � � PEd�poly� then F �
P�poly�

This result shows that theorems � and 
 are in a sense optimal� polynomial
time computation in higher dimensions is not more powerful than in dimen�
sion two� and the exponential computation time of theorem � cannot be
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reduced to polynomial time� even in higher dimensions� It is also useless to
work with classes of functions more powerful than PLd� Finally� note that
theorem � deals with encoding functions in PEd�poly� although PEd is all
what is needed for theorems � and 
� The reason is that encoding functions
in PEd�poly will be useful in the next section�

The proof of theorem � is similar to Siegelmann and Sontag�s analysis
of generalized processor networks� We �rst need the following result�

Lemma � Let �ft	t�N be a family of Lipschitz functions on Id having their
Lipschitz constants uniformly bounded above by C � �� and � � � Let
�x�t		t�N and �x�t		t�N be two sequences de�ned by x�t� �	 � ft�x�t		 and

x�t� �	 � ft�x�t		 � ��t	

with 	t � � j��t	j � � and jx�	� x�	j � �� Then

	t � � jx�t	� x�t	j �
�

C � �
�Ct�� � �	�

Proof� By induction� The result is true for t � � Assume that it holds at
time t� Then

jx�t� �	� x�t � �	j � Cjx�t	� x�t	j� �

�
C�

C � �
�Ct�� � �	 � � �

�

C � �
�Ct�� � �	�

�

In the next section� this lemma will be applied to a family of functions� but
it will be now used with ft � f for all t�

Proof of theorem �� In order to distinguish between output  �interval
�a�� b��	 and output � �interval �a�� b��	� let us compute each vector x�t	 with
the accuracy �a��b�	�
 for  � t � t�u	 �recall that t�u	 is the computation
time on input u� and that n � juj	� Starting from x�	 � Truncq���u		�
de�ne x�t � �	 � Truncq�f�x�t		� Let C � � be an upper bound of the
Lipschitz constant of f � According to lemma �� it is su�cient to have

� � ��q �
�a� � b�	�C � �	


�CT �n� � �	
�

Hence we can take q � O�T �n		 � O�nk	� where k is a constant� Since
f � Pd� x�t � �	 can be computed from x�t	 in polynomial time with a
polynomial advice sequence� Since � � PEd� x�	 can be computed in time
polynomial in q � n with an advice sequence polynomial in q � n� hence
polynomial in n� �
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� On�line inputs

In this section� we study a mode of computation in which the input is fed
to the system bit by bit starting from a �xed initial state� instead of be�
ing encoded entirely in the initial state� It can be shown that these on�line
systems are equivalent to Siegelmann � Sontag�s generalized processor net�
works� We will not use their model� because we believe that our�s is simpler
and more natural�

De�nition � The decision function F � f� �g� � f� �g is on�
line computable if it can be computed by an on�line system S �
�f� f�� f�� �a�� b��� �a�� b��	� f�� f� � Id � Id are encoding functions� �a�� b��
and �a�� b�� �a� � b�� are two disjoint decision intervals� and f is a function
on Id�

On an input u � f� �g�� the computation performed by S is de�ned by
the following sequence �x�t		t�N�


 x�	 � �


 x�t� �	 � fut���x�t		 for  � t � n� ��


 x�t� �	 � f�x�t		 for t � n�

Let t�u	 � minft� x��t	 � �a�� b�� � �a�� b��g �it is assumed that t�u	 exists��
The output is F �u	 �  if x��t�u		 � �a�� b��� and F �u	 � � otherwise�

The time complexity of this computation is the function T such that
T �n	 � max

juj�n
t�u	�

Slightly di�erent de�nitions of on�line systems are conceivable� One might
for instance consider that a system is de�ned by only two functions f� and
f�� and that the input is an in�nite word u � f� �g� with ui �  for i large
enough �this is closer to Siegelmann � Sontag�s neural networks	�

On�line systems are clearly a special case of the o��line systems discussed
in section 
� with the encoding function

��u� � � � un	 � fun  � � � fu�  fu��	� ��	

Theorem � If f�� f� � LPd�poly� the encoding function of equation �	� is
in PEd�poly�
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Proof� We show how to compute ��u	 with accuracy ��p in time O��p�n	k	�
for u � u� � � � un � f� �g�� Starting from x�	 � � compute x�t � �	 �
Truncq�fut�x�t		� for q large enough and  � t � n � �� According to
lemma �� it is su�cient to have

� � ��q �
��p�C � �	

Cn�� � �
�

where C bounds the Lipschtz constants of f� and f� �we can assume that
C � � without loss of generality	� Hence we can take q � dp��n��	 logCe�
Since f� and f� are in Pd�poly� x�t � �	 can be computed from x�t	 in
polynomial time using an advice sequence polynomial in q�

The computation time is clearly polynomial in the input length s � n�p�
with a polynomial advice sequence� However� this sequence must depend
on s only� In order to insure this� just replace the value of q used up to now
by the larger value q � dlogCe�s� �	� �

It follows immediately that on�line systems are not more powerful than o��
line systems�

Corollary � If F � f� �g� � f� �g is on�line computable in polynomial
time� F � P�poly�

Proof� Straightforward consequence of theorems � and �� �

The converse can also easily be proven� on�line systems are thus equivalent
to o��line systems with respect to polynomial�time computations�

Theorem � An arbitrary function F � P�poly can be computed in polyno�
mial time by an on�line system with f�� f� and f in PL��

Proof� Recall that the encoding function of theorem 
 is

��x	 � ��x� � � �xn	 � ��y� � � �yn� ���	�

with xi � f� �g and yi � �xi � � � f�� 
g� Here we will take ��x	 �
��yn � � �y�� ���	 �this is equivalent� since the content of a stack of a two�stack
pushdown automaton can be reversed in linear time� It is then possible to
perform the computation using the same function f as in theorem 
	� The
two encoding functions below are clearly suitable�
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Both types of systems are also equivalent with respect to exponential time
computations�

Theorem � An arbitrary function F � f� �g� � f� �g can be computed
by an on�line system �f�� f�� f	 such that f � PL� and f�� f� � R � R are
polynomials with rational coe�cients�

Proof� Recall that the encoding function of theorem � is

��N	 � ��u� � � � un	 � �����	N
���

Here we use the encoding ��N	 � ��	� ��N	� because the initial state of
an on�line system is always � Once ��N	 is computed� it is clearly possible
to compute ��N	 � ��	� ��N	 and to apply the same method as in the
proof of theorem �� by iterating a function f � PL��

We need to �nd f� and f� such that

fuk  � � �  fu��	 � ��Nk	

with Nk � u� � � �uk� There are non�zero rational constants a and b such that
��N	 � a���bN	� Since Nk�� � �Nk�uk��� ��Nk��	 � a

h
�� buk���bNk	

�
i
�

bNk � �� ��Nk	�a� hence fi�x	 � a
h
�� bi��� x�a	�

i
� �

� The Blum� Shub � Smale model

This is a model of analog computation based on real RAM machines similar
to the standard RAM machines studied in discrete complexity theory� The
main di�erence between discrete and real RAMs is that in the latter model
a register can store an entire real number �with in�nite precision	� instead
of an integer in the discrete case �see ��� and ��� for more details	� The basic
arithmetic and logical operations ����������	 can be performed in constant
time�

The purpose of the Blum� Shub � Smale �BSS	 model is to provide a
formal model of computing on real�valued data� Nevertheless� we are free
to consider the restriction of this model to discrete inputs and outputs� in

��



order to make a comparison with the models studied in the rest of the paper�
Theorem � shows that the BSS model is at least as powerful�

A few notations� PR is the set of functions computable in polynomial
time in the BSS model� PRD is the restriction of PR to discrete inputs and
outputs �i�e�� PRD � PR � ff � f� �g� � f� �gg	� For non�deterministic
machines� the classes NPR and NPRD are de�ned similarly�

Theorem � In the BSS model� an arbitrary function F � f� �g� � f� �g
can be computed in exponential time� For polynomial�time computation�
P�poly � PRD and NP�poly � NPRD�

Proof� We adapt the ideas of the proofs of theorems � and 
�
In order to compute F � f� �g� � f� �g� we consider again the real

number c � �F �	F ��	 � � �F �N	 � � �� Since F �N	 � b�N��cc� F �N	 can be
computed by shifting c �N � �	 times to the left �multiplication by �	 and
subtracting the leftmost digit �subtraction and comparison	� This clearly
takes exponential time in logN �

In order to compute F � P�poly� we simulate a two�stack pushdown
automaton� using one register for each stack� This can clearly be done like
in theorem 
�

In order to compute F � NP�poly� we use directly the de�nition of
NP�poly in terms of advice sequences �this could also have been done in
the proof of corollary �� conversely� non�deterministic circuit families can be
used here instead of advice sequences	� We thus consider a real number c
whose decimals encode an advice sequence for F � Given an input u � f� �gn�
the corresponding advice can be read �deterministically	 in polynomial time
by a BSS machine like in the proof of theorem 
� F can be computed in
polynomial time by a deterministic Turing machine T � with the help of
the advice and of a �non�deterministic	 guess g � f� �gp�n� where p is a
polynomial� We have just seen that T can be simulated in linear time by
a BSS machine� Hence it just remains to be shown how the guess can be
computed by a non�deterministic BSS machine M� This is done by the
following program �h � R is the guess of M	�

pow����

for i��� to p�n� do

begin

if h��pow then g�i���� else g�i���	�

pow��pow
�

end

�




In other words� g is the radix�� expansion of h� If we take a guess h �Rp�n��
the task can be performed by an even simpler program�

for i��� to p�n� do

if h�i��	 then g�i���� else g�i���	

�

In order to prove this result� it is also possible to simulate an o��line system�
by showing that a function of PLd can be computed in constant time� and
the encoding functions of theorem 
 in polynomial time� on�line systems and
Siegelmann � Sontag�s neural networks are other possible starting points�

	 Final remarks

In this paper and in ���� several related models of analog computing were
investigated� It turned out that in spite of several signi�cant di�erences
between these models� the class of polynomial�time computable functions
is always P�poly� In light of this robustness property� it seems reasonable
to claim that �e�cient analog computing � P�poly� �compare with the in�
variance thesis of discrete complexity theory� which states that the class
of polynomial�time computable functions should be the same in all �rea�
sonable� models of computation ���	� Before a de�nitive conclusion can be
reached� it will probably be necessary to study other models of analog com�
puting� One such model is the real RAM machine� which was shown to
be as least as powerful in section �� We left open the important reciprocal
problem of �nding whether these machines can compute more than P�poly
in polynomial time�

There is yet another motivation for studying this problem� an answer
to this question could shed light on the �PR � NPR� problem proposed by
Blum� Shub � Smale�

As a matter of fact� if PR � NPR� this equality also holds for the BSS
model restricted to discrete inputs and outputs� PRD � NPRD � If it turns
out that PRD � P�poly� we can conclude like in ���� since NP � NP�poly�
PR � NPR � NP � P�poly� However� the latter inclusion violates standard
hypotheses of discrete complexity theory ���� One could thus conclude that
PR � NPR is very unlikely� This approach to the PR � NPR problem will
be developed in a forthcoming paper�

Finally we note that several new problems were recently shown to be
NPR�complete or NPR�hard ���� These new developments add to the interest
of the PR � NPR problem�

��
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