
HAL Id: hal-02101931
https://hal-lara.archives-ouvertes.fr/hal-02101931v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the relations between dynamical systems and
boolean circuits.

Pascal Koiran

To cite this version:
Pascal Koiran. On the relations between dynamical systems and boolean circuits.. [Research Report]
LIP RR-1993-01, Laboratoire de l’informatique du parallélisme. 1992, 2+13p. �hal-02101931�

https://hal-lara.archives-ouvertes.fr/hal-02101931v1
https://hal.archives-ouvertes.fr

LIP
Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Institut IMAG
Unité de recherche associée au CNRS n°1398

On the relations between dynamical

systems and boolean circuits

Pascal Koiran Janvier ��

No �����

Ecole Normale Supérieure de Lyon
46, Allée d’Italie, 69364 Lyon Cedex 07, France,

Téléphone : + 33 72 72 80 00; Télécopieur : + 33 72 72 80 80;
Adresses électroniques :

lip@frensl61.bitnet; lip@lip.ens−lyon.fr (uucp).

On the relations between dynamical systems and
boolean circuits

Pascal Koiran

Abstract

We study the computational capabilities of dynamical systems de�
�ned by iterated functions on ��� ��n� The computations are performed
with in�nite precision on arbitrary real numbers� like in the model of
analog computation recently proposed by Hava Siegelmann and Ed�
uardo Sontag� We concentrate mainly on the low�dimensional case
and on the relations with the Blum�Shub�Smale model of computation
over the real numbers�

Keywords� analog computation� non�uniform complexity� dynamical systems�

R�esum�e

Nous 	etudions la puissance de calcul de syst
emes dynamiques d	e��
nis par des it	erations de fonctions sur ��� ��n� Les calculs sont e�ectu	es
en pr	ecision in�nie sur des nombres r	eels quelquonques� comme dans le
mod
ele de calcul analogique r	ecemment propos	e par Hava Siegelmann
et Eduardo Sontag� Nous insistons surtout sur le cas des syst
emes en
petites dimensions et sur les relations avec le mod
ele de calcul sur les
nombres r	eels de Blum� Shub � Smale�

Mots�cl�es � calcul analogique� complexit	e non uniforme� syst
emes dynamiques�

On the relations between dynamical systems and

boolean circuits�

Pascal Koiran

LIP � IMAG

Unit�e de Recherche Associ�ee ���� du CNRS

Ecole Normale Sup�erieure de Lyon

�	
 All�ee d�Italie

	��	� Lyon Cedex ��

France

e�mail koiran�lip�ens�lyon�fr

January �
 ����

� Introduction

A new model of analog computation was recently proposed by Siegelmann �
Sontag ���� In this model� computations are performed by recurrent neural
networks with real weights� instead of rational weights in a previous work ����
It is assumed that the computations are carried out with unbounded pre�
cision� Siegelmann � Sontag showed that arbitrary �even non�computable	
functions can be computed in exponential time by their networks� and that
the class of polynomial�time computable functions is the class P�poly of
functions computable by polynomial�size boolean circuits� They also proved
that using much more general networks �called generalized processor net�
works	 does not result in any gain in computational capabilities�

In this paper� we continue the study of the computational capabilities
of low�dimensional dynamical systems started in �
�� and generalize some of
the results of ���� Our framework is very similar to Siegelmann � Sontag�s�
the dynamical systems considered are iterated functions on �� ��n� some of

�This work was partially supported by the Programme de Recherches Coordonn�ees C�

of the CNRS and the Minist�ere de la Recherche et de la Technologie�

�

these functions can be described by a �nite set of parameters which can take
arbitrary �even non�computable	 real values�

It is shown in section
 that iterated piecewise�linear functions on the
interval can compute arbitrary functions in exponential time� This is an
interesting di�erence with the �rational weights� case� for which it seems
that two dimensions are necessary in order to compute arbitrary recursive
functions with iterated piecewise�linear functions �
�� In dimension two�
the class of polynomial�time computable functions is exactly P�poly� We
then show that using other types of functions or higher dimensions does
not allow to compute anything else than P�poly in polynomial time� This
result precisely holds for the class of iterated polynomial�time approximable
functions� which should include most functions of practical interest �it does
include piecewise�linear functions� as shown in section �� as well as multi�
variate polynomials ���	�

In section �� we consider on�line systems in which the input is fed to
the system bit by bit� instead of being encoded entirely in the initial state�
This is closer to the mode of operation of Siegelmann � Sontag�s recurrent
networks� and it can be shown that these systems are actually equivalent to
their generalized processor networks� However� we believe that our model
is simpler and more natural� It is shown that on�line systems are in fact a
special case of the o��line systems of section
� Hence the same limitation
applies to their computational capabilities�

Finally� these models are compared to the BSS model of analog compu�
tation� recently proposed by Blum� Shub and Smale ���� It is shown that
their model is at least as powerful as our�s� Whether it is actually more pow�
erful is an interesting open problem� which could shed light on the P � NP
problem in the BSS model�

� Preliminaries

The de�nitions and notations used throughout the paper are listed below�
I is the unit interval �� ��� ei�x	 is the ith component of x � Rd� For

x� y � Rd� jx� yj � jjx� yjj� � sup��i�d jxi � yij�
L� is the set of �nite non�empty words on the alphabet L�
We identify a natural number with its radix�� expansion� so that N can

be identi�ed with f� �g�� jxj is the length of x � f� �g� or x � N �and not
the absolute value	�

D is the set of �decimal� numbers in radix �� x � Dn i� x � �x� � � � xn

�

with xi � f� �g� and D � �n��Dn�
We say that the digits x� � � �xn �xi � f� �g	 are the �rst n digits of x � I

if y � �x� � � �xn is such that jx�yj � ��n �there is of course no uniqueness	�
We note y � Truncn�x	� Similarly� we de�ne Truncn�x	 for x � Id by taking
the �rst n digits in each component�

De�nition � PLd is the set of piecewise�linear continuous functions on Id�
More precisely� f � Id � Id belongs to PLd if

� f is continuous�

� there is a �nite set P of convex closed polyhedra �of non�empty inte�

rior� such that f is a�ne on each P � P� Id �
S
P�P P and

�

P �
�

Q� �
for P�Q � P� P ��Q�

Let us recall the classical notion of polynomial�time computable real func�
tion ����

De�nition � f � Id � Id is in Pd if there is a Turing machine T such that

	� T receives as input an integer p specifying the precision required for
the output f�x	�

� T computes the number m of input digits needed�

�� T queries an oracle to obtain Truncm�x	 �this step takes constant time
by de�nition��

�� T then computes the output Truncp�f�x		�

� There are constants a and k such that for any x � Id and p � N � the
whole computation is performed in time at most apk�

Note that we can assume without loss of generality that m is polynomial
in p� since a Turing machine cannot read more than a polynomial number of
bits in polynomial time� For encoding functions� we shall use the following
notion of polynomial�time computability�

De�nition � A function � � f� �g� � Id is in PEd if there is a Turing
machine T such that

	� T receives as input x � f� �g� and an integer p specifying the precision
required for the output ��x	�

� T computes the output Truncp���x		�

�� There are constants a and k such that for any x � Id and p � N � the
whole computation is performed in time at most a�p� jxj	k�

Pd and PEd are in fact subsets of the class of polynomial�time computable
functions from Rm to Rn ����

The transition functions of our systems cannot be allowed to be arbitrary
polynomial�time computable functions �in order to show that circuit families
can simulate iterated functions� a Lipschitz property is necessary	� We shall
consider only the following subclass�

De�nition � f � Id � Id is in LP d if f � Pd and f is Lipschitz �i�e�� if
there is a constant C such that 	x� y � Id� jf�x	� f�y	j � Cjx� yj��

It can be easily seen that f � LPd i� it is polynomial�time approximable in
the sense of Siegelmann � Sontag ����

Lemma � f � Id � Id is in LP d i�

 f is Lipschitz�

 There is a Turing machine T that can compute Truncn�f�x		 in poly�
nomial time on an input x � Dd

n�

Proof� Assume that f is polynomial�time approximable� Given x � Id and
n � N � we need to compute y such that jy� f�x	j � ��n� This can be done
by taking y � Truncp�f�Truncp�x		� for p large enough� The computation
time is polynomial in p by hypothesis� Since f is Lipschitz�

jy � f�x	j � jTruncp�f�Truncp�x		� f�Truncp�x		j� jf�Truncp�x		� f�x	j
� ��p � �k�p

where �k �k � N	 bounds the Lipschitz constant of f � Hence p � k� n� �
is su�cient�

The converse is obvious� �

In order to deal with arbitrary real numbers� we need to consider the class
C�poly for each class C de�ned above� The functions in these classes are com�
puted by Turing machines using polynomial advice funtions ���� Contrary to
oracles� the value of the advice function does not depend fully on the input
of the Turing machine� but only on its length� For instance� f � PEd�poly

�

if there is a function A � N � f� �g� �the advice function	 and a Turing
machine T such that on the input �p� x� A�p� jxj		� T computes the �rst
p digits of f�x	 in time O��p � jxj	k	� The length of the advice sequence
A�p � jxj	 must also be polynomial in p � jxj �this latter requirement is in
fact redundant� since the portion of the tape that can be scanned by T in
polynomial time is of polynomial size	�

If C � P is the class of sets E � f� �g� recognizable in polynomial
time by Turing machines� we obtain the class P�poly� It will be shown that
this is exactly the class of sets that can be recognized in polynomial time
by iterated functions� A useful characterization of P�poly is the following�
f � f� �g� � f� �g is in P�poly if and only if it can be computed by boolean
circuits of polynomial size ���� i�e�� if there is a family of circuits �Cn	n�� such
that the size of Cn is polynomial in n� and Cn computes fjf���gn�

It can be easily seen that there are non�computable functions is P�poly�
since the circuit family �Cn	n�N is not supposed to be recursive� Conversely�
some computable functions are not in P�poly� since EXPTIME��P�poly ����

The next result is important because all the speci�c examples of systems
considered in this paper as well as in ��� are piecewise�linear�

Theorem � PLd � LP d�poly�

Proof� f � PLd is clearly Lipschitz� Inside a given polyhedron P � P �
ej�f�x		 �

Pd

i�� wijxi � �j � The Lipschitz constant of fjP is LP �
maxj

Pd

i�� jwijj� The Lipschitz constant of f is maxP�P LP �
In order to show that f � Pd� we �rst show that f is a Lipschitz function

of its parameters� We will now write f�W�x	 in order to take them into
account explicitly� Let us �rst de�ne a convention allowing to associate a
unique vector of parameters W � Rk to f � We can assume that P is a
triangulation� i�e�� each polygon P is a polytope �the convex hull of d � �
points in general position	� f is uniquely de�ned by the listW of the vertices
of the polytopes� together with the value of f at these vertices� enumerated
in a �xed order� We also assume without loss of generality that Id is in
the interior of �P�PP � so that f is de�ned� continuous and piecewise�linear
in a neighborhood of Id� Some vectors W � Rk are not associated to a
triangulation of Id �this occurs when two polytopes intersect	� others are
associated to a triangulation that does not cover Id� These vectors are
called invalid� The set of valid vectors is open� for any valid vector W��
there is a parallepiped B�W�� r	 of valid vectors� We will now work inside

�

such a parallepiped� and consider for a given x � Id the function

g � B�W�� r	 �� R
d

W �� f�W�x	

This function is continuous� and piecewise�linear since the equations deter�
mining the polytope in which x is located are linear� Hence the analysis of
x �� f�W�x	 made at the beginning of the proof can be applied to g� g is
Lipschitz� and its Lipschitz constant is smaller than

Pd

i�� xi � d�
We are now ready to show how to compute f�W�� x	 in polynomial time�

According to lemma �� we can assume that x � Dd� An approximation of
f�W�� x	 can be obtained simply by computing f�Truncq�W�	� x	 for q large
enough �this makes sense because the set of valid vectors is open	� Since g
is Lipschitz� q � n� C is su�cient to obtain n digits of f�W�� x	� for some
constant C� The computation clearly takes polynomial time� and the advice
sequence is Truncq�W�	� �

� O��line inputs

In this section we study a mode of computation in which the input to the
system is encoded entirely in its initial state�

De�nition � The decision function F � f� �g� � f� �g is o��line com�
putable if it can be computed by an o��line system S � �f� �� �a�� b��� �a�� b��	�
� � f� �g� � Id is an encoding function� �a�� b�� and �a�� b�� �a� � b�� are
two disjoint decision intervals� and f is a function on Id�

On an input u � f� �g�� the computation performed by S is de�ned by
the following sequence �x�t		t�N�

 x�	 � ��u	�

 x�t� �	 � f�x�t		 for t � �

Let t�u	 � minft� x��t	 � �a�� b�� � �a�� b��g �it is assumed that t�u	 exists��
The output is F �u	 � if x��t�u		 � �a�� b��� and F �u	 � � otherwise�

The time complexity of this computation is the function T such that
T �n	 � max

juj�n
t�u	�

Theorem � An arbitrary total function F � f� �g� � f� �g can be o��
line computed by f � PL� in exponential time� Moreover� the encoding
function is in PE�� and is independent of F � The decision intervals are
also independent of F and are such that a� � b� � Q and a� � b� � Q�

�

Proof� It is clearly possible to replace I by the interval �� ��� We shall work
with radix�� encodings� using the digits � and
 only �these encodings were
introduced in ��� and used subsequently in ��� and �
�	� Hence it will be
convenient to consider the function G such that G�N	 � � if F �N	 � �
G�N	 �
 if F �N	 � �� instead of F itself� Contrary to the convention used
in the rest of the paper� all decimal expansions in this proof are radix ��

Let ��N	 � �����	N
�� �N is now viewed as an integer rather than a
word on the alphabet f� �g	� On ����� ��� set

f�x	 � ���p������x� ���	� a� � q��

with a � �G�	G��	 � � �G�n	 � � � and q� � �q�� � � � q�p the initial state
of a pushdown automaton A described below� p is such that A has less than
�p states� Therefore

f���N		 � �q�� � � � q�p�G�	�G��	 � � ��G�N � �	
G�N	
G�N � �	
 � � ��

The job of A is just to pop the sequence of digits �G�	�G��	 � � ��G�N �
�	
G�N	
G�N � �	
 � � � viewed as a downward in�nite stack� This can be
done by a function of PL� as explained in �
�� When A reads a
 at an
odd position in this sequence� it knows that the next digit is G�N	� After
reading G�N	� it erases the stack� and enters one of the two halting states
a�� a�� Finally� the �gap� ��� ���� can be �lled by an a�ne function� so as to
obtain a continuous piecewise�linear function on �� ���

In order to compute the nth �rst digit of ��N	� the main task is to
compare n and �N � �� which can be done in time polynomial in logn and
logN � Hence � is in PE�� �

A comparison with �rational weights� systems ���
� is in order� If the pa�
rameters de�ning f � PLd are rational� the iterations of f can be computed
exactly on a conventional computer �assuming that the initial state is ratio�
nal	� hence it is only possible to compute recursive functions in this model�
It turns out that all recursive functions can be computed ���� but two di�
mensions seem to be necessary �
� �we have proved this using a somewhat
restrictive de�nition of what it means to to compute a recursive function	�
Theorem � shows that one dimension su�ces in the �real weights� model�
But according to theorem
� two dimensions are �presumably	 better if one
is concerned with e�ciency issues�

Theorem � Let C � �Cn	n�N be a circuit family such that the size S�n	 of
Cn is a non�decreasing function of n� C can be simulated in time O�nS�n	k	

�

�for some �xed k � � by an iterated function f � PL�� Moreover� the en�
coding function � is in PE�� and is independent of C� The decision intervals
are also independent of C and are such that a� � b� � Q and a� � b� � Q�

Proof� We follow Siegelmann � Sontag�s method ���� and work with �� ���

like in the previous proof� It will be convenient to consider that F is de�ned
on f��
g� instead of f� �g�� Contrary to the convention used in the rest
of the paper� all decimal expansions in this proof are to the radix �� The
encoding function is

��x	 � ��x� � � � xn	 � ��x� � � �xn� ���	�

From this point� we make a transition to

f���x		 � ��q�� � � � q�px� � � �xn� c	�

where qo� � � � q�p encodes the initial state of a Turing machine M to be de�
�ned below� and the digits of c � �� �� encode the sequence C � �Cn	n�N �
From �
�� we know that there will be a function of PL� simulating M in real
time� With the initial tape xc� The job of M is simply to run Cn on the
input x� � � � xn� This is an instance of the Circuit Value Problem� which is
known to be in P ���� The overall computation time is O�nS�n	k	 since the
encoding of Cn is at a distance O�nS�n	 logS�n		 of the initial read�write
head �a circuit of size S can be encoded in space O�S log S		� �

Corollary � A function F � f� �g� � f� �g in P�poly can be o��line
computed in polynomial time by f � PL� with an encoding function in PE��

Proof� A function in P�poly has polynomial size circuits ���� �

Since an arbitrary function has exponential size circuits �e�g�� its disjunctive
normal form for each input size	� we could add to this corollary that arbitrary
functions can be computed in exponential time� but this is already known
from theorem ��

Theorem � If F � f� �g� � f� �g can be o��line computed in polynomial
time by f � LP d�poly with an encoding function � � PEd�poly� then F �
P�poly�

This result shows that theorems � and
 are in a sense optimal� polynomial
time computation in higher dimensions is not more powerful than in dimen�
sion two� and the exponential computation time of theorem � cannot be

�

reduced to polynomial time� even in higher dimensions� It is also useless to
work with classes of functions more powerful than PLd� Finally� note that
theorem � deals with encoding functions in PEd�poly� although PEd is all
what is needed for theorems � and
� The reason is that encoding functions
in PEd�poly will be useful in the next section�

The proof of theorem � is similar to Siegelmann and Sontag�s analysis
of generalized processor networks� We �rst need the following result�

Lemma � Let �ft	t�N be a family of Lipschitz functions on Id having their
Lipschitz constants uniformly bounded above by C � �� and � � � Let
�x�t		t�N and �x�t		t�N be two sequences de�ned by x�t� �	 � ft�x�t		 and

x�t� �	 � ft�x�t		 � ��t	

with 	t � � j��t	j � � and jx�	� x�	j � �� Then

	t � � jx�t	� x�t	j �
�

C � �
�Ct�� � �	�

Proof� By induction� The result is true for t � � Assume that it holds at
time t� Then

jx�t� �	� x�t � �	j � Cjx�t	� x�t	j� �

�
C�

C � �
�Ct�� � �	 � � �

�

C � �
�Ct�� � �	�

�

In the next section� this lemma will be applied to a family of functions� but
it will be now used with ft � f for all t�

Proof of theorem �� In order to distinguish between output �interval
�a�� b��	 and output � �interval �a�� b��	� let us compute each vector x�t	 with
the accuracy �a��b�	�
 for � t � t�u	 �recall that t�u	 is the computation
time on input u� and that n � juj	� Starting from x�	 � Truncq���u		�
de�ne x�t � �	 � Truncq�f�x�t		� Let C � � be an upper bound of the
Lipschitz constant of f � According to lemma �� it is su�cient to have

� � ��q �
�a� � b�	�C � �	

�CT �n� � �	
�

Hence we can take q � O�T �n		 � O�nk	� where k is a constant� Since
f � Pd� x�t � �	 can be computed from x�t	 in polynomial time with a
polynomial advice sequence� Since � � PEd� x�	 can be computed in time
polynomial in q � n with an advice sequence polynomial in q � n� hence
polynomial in n� �

�

� On�line inputs

In this section� we study a mode of computation in which the input is fed
to the system bit by bit starting from a �xed initial state� instead of be�
ing encoded entirely in the initial state� It can be shown that these on�line
systems are equivalent to Siegelmann � Sontag�s generalized processor net�
works� We will not use their model� because we believe that our�s is simpler
and more natural�

De�nition � The decision function F � f� �g� � f� �g is on�
line computable if it can be computed by an on�line system S �
�f� f�� f�� �a�� b��� �a�� b��	� f�� f� � Id � Id are encoding functions� �a�� b��
and �a�� b�� �a� � b�� are two disjoint decision intervals� and f is a function
on Id�

On an input u � f� �g�� the computation performed by S is de�ned by
the following sequence �x�t		t�N�

 x�	 � �

 x�t� �	 � fut���x�t		 for � t � n� ��

 x�t� �	 � f�x�t		 for t � n�

Let t�u	 � minft� x��t	 � �a�� b�� � �a�� b��g �it is assumed that t�u	 exists��
The output is F �u	 � if x��t�u		 � �a�� b��� and F �u	 � � otherwise�

The time complexity of this computation is the function T such that
T �n	 � max

juj�n
t�u	�

Slightly di�erent de�nitions of on�line systems are conceivable� One might
for instance consider that a system is de�ned by only two functions f� and
f�� and that the input is an in�nite word u � f� �g� with ui � for i large
enough �this is closer to Siegelmann � Sontag�s neural networks	�

On�line systems are clearly a special case of the o��line systems discussed
in section
� with the encoding function

��u� � � � un	 � fun � � � fu� fu��	� ��	

Theorem � If f�� f� � LPd�poly� the encoding function of equation �	� is
in PEd�poly�

�

Proof� We show how to compute ��u	 with accuracy ��p in time O��p�n	k	�
for u � u� � � � un � f� �g�� Starting from x�	 � � compute x�t � �	 �
Truncq�fut�x�t		� for q large enough and � t � n � �� According to
lemma �� it is su�cient to have

� � ��q �
��p�C � �	

Cn�� � �
�

where C bounds the Lipschtz constants of f� and f� �we can assume that
C � � without loss of generality	� Hence we can take q � dp��n��	 logCe�
Since f� and f� are in Pd�poly� x�t � �	 can be computed from x�t	 in
polynomial time using an advice sequence polynomial in q�

The computation time is clearly polynomial in the input length s � n�p�
with a polynomial advice sequence� However� this sequence must depend
on s only� In order to insure this� just replace the value of q used up to now
by the larger value q � dlogCe�s� �	� �

It follows immediately that on�line systems are not more powerful than o��
line systems�

Corollary � If F � f� �g� � f� �g is on�line computable in polynomial
time� F � P�poly�

Proof� Straightforward consequence of theorems � and �� �

The converse can also easily be proven� on�line systems are thus equivalent
to o��line systems with respect to polynomial�time computations�

Theorem � An arbitrary function F � P�poly can be computed in polyno�
mial time by an on�line system with f�� f� and f in PL��

Proof� Recall that the encoding function of theorem
 is

��x	 � ��x� � � �xn	 � ��y� � � �yn� ���	�

with xi � f� �g and yi � �xi � � � f��
g� Here we will take ��x	 �
��yn � � �y�� ���	 �this is equivalent� since the content of a stack of a two�stack
pushdown automaton can be reversed in linear time� It is then possible to
perform the computation using the same function f as in theorem
	� The
two encoding functions below are clearly suitable�

 f��z�� z�	 � �
� � z�
�

� ���	�

��

 f��z�� z�	 � �

 � z�
�

� ���	�

�

Both types of systems are also equivalent with respect to exponential time
computations�

Theorem � An arbitrary function F � f� �g� � f� �g can be computed
by an on�line system �f�� f�� f	 such that f � PL� and f�� f� � R � R are
polynomials with rational coe�cients�

Proof� Recall that the encoding function of theorem � is

��N	 � ��u� � � � un	 � �����	N
���

Here we use the encoding ��N	 � ��	� ��N	� because the initial state of
an on�line system is always � Once ��N	 is computed� it is clearly possible
to compute ��N	 � ��	� ��N	 and to apply the same method as in the
proof of theorem �� by iterating a function f � PL��

We need to �nd f� and f� such that

fuk � � � fu��	 � ��Nk	

with Nk � u� � � �uk� There are non�zero rational constants a and b such that
��N	 � a���bN	� Since Nk�� � �Nk�uk��� ��Nk��	 � a

h
�� buk���bNk	

�
i
�

bNk � �� ��Nk	�a� hence fi�x	 � a
h
�� bi��� x�a	�

i
� �

� The Blum� Shub � Smale model

This is a model of analog computation based on real RAM machines similar
to the standard RAM machines studied in discrete complexity theory� The
main di�erence between discrete and real RAMs is that in the latter model
a register can store an entire real number �with in�nite precision	� instead
of an integer in the discrete case �see ��� and ��� for more details	� The basic
arithmetic and logical operations ����������	 can be performed in constant
time�

The purpose of the Blum� Shub � Smale �BSS	 model is to provide a
formal model of computing on real�valued data� Nevertheless� we are free
to consider the restriction of this model to discrete inputs and outputs� in

��

order to make a comparison with the models studied in the rest of the paper�
Theorem � shows that the BSS model is at least as powerful�

A few notations� PR is the set of functions computable in polynomial
time in the BSS model� PRD is the restriction of PR to discrete inputs and
outputs �i�e�� PRD � PR � ff � f� �g� � f� �gg	� For non�deterministic
machines� the classes NPR and NPRD are de�ned similarly�

Theorem � In the BSS model� an arbitrary function F � f� �g� � f� �g
can be computed in exponential time� For polynomial�time computation�
P�poly � PRD and NP�poly � NPRD�

Proof� We adapt the ideas of the proofs of theorems � and
�
In order to compute F � f� �g� � f� �g� we consider again the real

number c � �F �	F ��	 � � �F �N	 � � �� Since F �N	 � b�N��cc� F �N	 can be
computed by shifting c �N � �	 times to the left �multiplication by �	 and
subtracting the leftmost digit �subtraction and comparison	� This clearly
takes exponential time in logN �

In order to compute F � P�poly� we simulate a two�stack pushdown
automaton� using one register for each stack� This can clearly be done like
in theorem
�

In order to compute F � NP�poly� we use directly the de�nition of
NP�poly in terms of advice sequences �this could also have been done in
the proof of corollary �� conversely� non�deterministic circuit families can be
used here instead of advice sequences	� We thus consider a real number c
whose decimals encode an advice sequence for F � Given an input u � f� �gn�
the corresponding advice can be read �deterministically	 in polynomial time
by a BSS machine like in the proof of theorem
� F can be computed in
polynomial time by a deterministic Turing machine T � with the help of
the advice and of a �non�deterministic	 guess g � f� �gp�n� where p is a
polynomial� We have just seen that T can be simulated in linear time by
a BSS machine� Hence it just remains to be shown how the guess can be
computed by a non�deterministic BSS machine M� This is done by the
following program �h � R is the guess of M	�

pow����

for i��� to p�n� do

begin

if h��pow then g�i���� else g�i���	�

pow��pow
�

end

�

In other words� g is the radix�� expansion of h� If we take a guess h �Rp�n��
the task can be performed by an even simpler program�

for i��� to p�n� do

if h�i��	 then g�i���� else g�i���	

�

In order to prove this result� it is also possible to simulate an o��line system�
by showing that a function of PLd can be computed in constant time� and
the encoding functions of theorem
 in polynomial time� on�line systems and
Siegelmann � Sontag�s neural networks are other possible starting points�

	 Final remarks

In this paper and in ���� several related models of analog computing were
investigated� It turned out that in spite of several signi�cant di�erences
between these models� the class of polynomial�time computable functions
is always P�poly� In light of this robustness property� it seems reasonable
to claim that �e�cient analog computing � P�poly� �compare with the in�
variance thesis of discrete complexity theory� which states that the class
of polynomial�time computable functions should be the same in all �rea�
sonable� models of computation ���	� Before a de�nitive conclusion can be
reached� it will probably be necessary to study other models of analog com�
puting� One such model is the real RAM machine� which was shown to
be as least as powerful in section �� We left open the important reciprocal
problem of �nding whether these machines can compute more than P�poly
in polynomial time�

There is yet another motivation for studying this problem� an answer
to this question could shed light on the �PR � NPR� problem proposed by
Blum� Shub � Smale�

As a matter of fact� if PR � NPR� this equality also holds for the BSS
model restricted to discrete inputs and outputs� PRD � NPRD � If it turns
out that PRD � P�poly� we can conclude like in ���� since NP � NP�poly�
PR � NPR � NP � P�poly� However� the latter inclusion violates standard
hypotheses of discrete complexity theory ���� One could thus conclude that
PR � NPR is very unlikely� This approach to the PR � NPR problem will
be developed in a forthcoming paper�

Finally we note that several new problems were recently shown to be
NPR�complete or NPR�hard ���� These new developments add to the interest
of the PR � NPR problem�

��

References

��� J�L� Balc	azar� J� Di	az� and J� Gabarr	o� Structural Complexity I� EATCS Mono�
graphs on Theoretical Computer Science� Springer�Verlag� ����

��� L� Blum� M� Shub� and S� Smale� On a theory of computation and complexity
over the real numbers � NP�completeness� recursive functions and universal
machines� Bulletin of the American Mathematical Society� ����������� July
���

��� M� Cosnard� M� Garzon� and P� Koiran� Computability properties of low�
dimensional dynamical systems� In Proceedings of the Symposium on Theo�

retical Aspects of Computer Science� ��� To appear in the Lecture Notes in
Computer Science� Springer�Verlag�

��� M� Cosnard and P� Koiran� Relations between models of parallel abstract ma�
chines� In Proceedings of the Heinz Nixdorf seminar� Paderborn� November

����� to appear in the Lecture Notes in Computer Science� Springer�Verlag�

��� C� Cucker and F� Rosell	o� On the complexity of some problems for the Blum�
Shub � Smale model� In Proceedings of Latin���� number ��� in Lecture Notes
in Computer Science� pages ������� Springer�Verlag� ���

��� Ker�I Ko� Complexity Theory of Real Functions� Birkh�auser� ���

��� H� T� Siegelmann and E� D� Sontag� Neural networks with real weights� analog
computational complexity� SYCON Report ����� Rutgers University� Septem�
ber ���

��� H� T� Siegelmann and E� D� Sontag� On the computational power of neural
nets� In Proc� Fifth ACM Workshop on Computational Learning Theory� July
���

�� J� van Leeuwen� editor� Handbook of Theoretical Computer Science� volume A�
chapter �� Elsevier� ���

��

