Pascal Koiran 
email: koiran@lip.ens-lyon.fr
  
On the relations between dynamical systems and boolean circuits

Keywords: analog computation, non-uniform complexity, dynamical systems calcul analogique, complexit e non uniforme, syst emes dynamiques

We study the computational capabilities of dynamical systems dened by iterated functions on 0 1] n . The computations are performed with in nite precision on arbitrary real numbers, like in the model of analog computation recently proposed by H a va Siegelmann and Eduardo Sontag. We concentrate mainly on the low-dimensional case and on the relations with the Blum-Shub-Smale model of computation over the real numbers.

Introduction

A new model of analog computation was recently proposed by Siegelmann & Sontag 7]. In this model, computations are performed by recurrent neural networks with real weights, instead of rational weights in a previous work 8]. It is assumed that the computations are carried out with unbounded precision. Siegelmann & Sontag showed that arbitrary (even non-computable) functions can be computed in exponential time by their networks, and that the class of polynomial-time computable functions is the class P=poly of functions computable by polynomial-size boolean circuits. They also proved that using much more general networks (called generalized p r ocessor networks) does not result in any gain in computational capabilities.

In this paper, we c o n tinue the study of the computational capabilities of low-dimensional dynamical systems started in 3], and generalize some of the results of 7]. Our framework is very similar to Siegelmann & Sontag's: the dynamical systems considered are iterated functions on 0 1] n s o m e o f these functions can be described by a nite set of parameters which c a n t a k e arbitrary (even non-computable) real values.

It is shown in section 3 that iterated piecewise-linear functions on the interval can compute arbitrary functions in exponential time. This is an interesting di erence with the \rational weights" case, for which i t s e e m s that two dimensions are necessary in order to compute arbitrary recursive functions with iterated piecewise-linear functions 3]. In dimension two, the class of polynomial-time computable functions is exactly P=poly. We then show that using other types of functions or higher dimensions does not allow t o c o m p u t e a n ything else than P=poly in polynomial time. This result precisely holds for the class of iterated polynomial-time approximable functions, which should include most functions of practical interest (it does include piecewise-linear functions, as shown in section 2, as well as multivariate polynomials 7]).

In section 4, we consider on-line systems in which the input is fed to the system bit by bit, instead of being encoded entirely in the initial state. This is closer to the mode of operation of Siegelmann & Sontag's recurrent networks, and it can be shown that these systems are actually equivalent t o their generalized processor networks. However, we b e l i e v e that our model is simpler and more natural. It is shown that on-line systems are in fact a special case of the o -line systems of section 3. Hence the same limitation applies to their computational capabilities.

Finally, these models are compared to the BSS model of analog computation, recently proposed by B l u m , S h ub and Smale 2]. It is shown that their model is at least as powerful as our's. Whether it is actually more powerful is an interesting open problem, which could shed light on the P = NP problem in the BSS model.

Preliminaries

The de nitions and notations used throughout the paper are listed below. I is the unit interval 0 1]. e i (x) i s t h e i th component o f x 2 R d . F or x y 2 R d , jx ; yj = jjx ; yjj 1 = sup 1 i d jx i ; y i j.

L + is the set of nite non-empty w ords on the alphabet L.

We identify a natural number with its radix-2 expansion, so that N can be identi ed with f0 1g + . jxj is the length of x 2 f 0 1g or x 2 N (and not the absolute value). D is the set of \decimal" numbers in radix 2: x 2 D n i x = 0 :x 1 : : : x n with x i 2 f 0 1g, a n d D = n 1 D n .

We s a y that the digits x 1 : : : x n (x i 2 f 0 1g) are the rst n digits of x 2 I if y = 0 :x 1 : : : x n is such that jx;yj 2 ;n (there is of course no uniqueness). We n o t e y = T runc n (x). Similarly, w e de ne Trunc n (x) f o r x 2 I d by t a k i n g the rst n digits in each component. De nition 2 f : I d ! I d is in P d if there i s a T uring machine T such that 1. T receives as input an integer p specifying the precision required f o r the output f(x).

2. T computes the number m of input digits needed.

3. T queries an oracle to obtain Trunc m (x) (this step takes constant time by de nition).

4. T then computes the output Trunc p (f(x)).

5. There a r e c onstants a and k such that for any x 2 I d and p 2 N, t h e whole computation is performed i n t i m e a t m o s t ap k . Note that we can assume without loss of generality that m is polynomial in p, since a Turing machine cannot read more than a polynomial number of 2. T computes the output Trunc p ( (x)).

3. There a r e c onstants a and k such that for any x 2 I d and p 2 N, t h e whole computation is performed i n t i m e a t m o s t a(p + jxj) k . P d and PE d are in fact subsets of the class of polynomial-time computable functions from R m to R n 6].

The transition functions of our systems cannot be allowed to be arbitrary polynomial-time computable functions (in order to show that circuit families can simulate iterated functions, a Lipschitz property is necessary). We shall consider only the following subclass. There i s a T uring machine T that can compute Trunc n (f(x)) in polynomial time on an input x 2 D d n .

Proof. Assume that f is polynomial-time approximable. Given x 2 I d and n 2 N, w e need to compute y such that jy ; f(x)j 2 ;n . This can be done by taking y = T runc p (f(Trunc p (x)), for p large enough. The computation time is polynomial in p by h ypothesis. Since f is Lipschitz, jy ; f(x)j jTrunc p (f(Trunc p (x)) ; f(Trunc p (x))j + jf(Trunc p (x)) ; f(x)j 2 ;p + 2 k;p where 2 k (k 2 N) bounds the Lipschitz constant o f f. Hence p = k + n + 1 is su cient. The converse is obvious.

In order to deal with arbitrary real numbers, we need to consider the class C=poly for each c l a s s C de ned above. The functions in these classes are computed by T uring machines using polynomial advice funtions 1]. Contrary to oracles, the value of the advice function does not depend fully on the input of the Turing machine, but only on its length. For instance, f 2 PE d =poly if there is a function A : N ! f 0 1g + (the advice function) and a Turing machine T such that on the input (p x A(p + jxj)), T computes the rst p digits of f(x) in time O((p + jxj) k ). The length of the advice sequence A(p + jxj) m ust also be polynomial in p + jxj (this latter requirement i s i n fact redundant, since the portion of the tape that can be scanned by T in polynomial time is of polynomial size).

If C = P is the class of sets E f 0 1g + recognizable in polynomial time by T uring machines, we obtain the class P=poly. It will be shown that this is exactly the class of sets that can be recognized in polynomial time by iterated functions. A useful characterization of P=poly is the following.

f : f0 1g + ! f 0 1g is in P=poly if and only if it can be computed by boolean circuits of polynomial size 1], i.e., if there is a family of circuits (C n ) n 1 such that the size of C n is polynomial in n, and C n computes f jf0 1g n.

It can be easily seen that there are non-computable functions is P=poly, since the circuit family (C n ) n2N is not supposed to be recursive. Conversely, some computable functions are not in P=poly, since EXPTIME6 P=poly 1].

The next result is important because all the speci c examples of systems considered in this paper as well as in 7] are piecewise-linear.

Theorem 1 PL d LP d =poly.

Proof. f 2 PL d is clearly Lipschitz. Inside a given polyhedron P 2 P , e j (f(x)) = P d i=1 w ij x i + j . The Lipschitz constant o f f jP is L P = max j P d i=1 jw ij j. The Lipschitz constant o f f is max P2P L P .

In order to show that f 2 P d , w e rst show that f is a Lipschitz function of its parameters. We will now write f(W x ) in order to take them into account explicitly. Let us rst de ne a convention allowing to associate a unique vector of parameters W 2 R k to f. We can assume that P is a triangulation, i.e., each polygon P is a polytope (the convex hull of d + 1 points in general position). f is uniquely de ned by the list W of the vertices of the polytopes, together with the value of f at these vertices, enumerated in a xed order. We also assume without loss of generality that I d is in the interior of P2P P, so that f is de ned, continuous and piecewise-linear in a neighborhood of I d . Some vectors W R k are not associated to a triangulation of I d (this occurs when two polytopes intersect) others are associated to a triangulation that does not cover I d . These vectors are called invalid. T h e s e t o f v alid vectors is open: for any v alid vector W 0 , there is a parallepiped B(W 0 r ) o f v alid vectors. We will now w ork inside such a parallepiped, and consider for a given x 2 I d the function

g : B(W 0 r ) ;! R d W 7 ! f(W x )
This function is continuous, and piecewise-linear since the equations determining the polytope in which x is located are linear. Hence the analysis of x 7 ! f(W x ) made at the beginning of the proof can be applied to g: g is Lipschitz, and its Lipschitz constant is smaller than P d i=1 x i d.

We are now ready to show h o w to compute f(W 0 x ) in polynomial time.

According to lemma 1, we can assume that x 2 D d . An approximation of f(W 0 x ) can be obtained simply by computing f(Trunc q (W 0 ) x ) f o r q large enough (this makes sense because the set of valid vectors is open). Since g is Lipschitz, q = n + C is su cient to obtain n digits of f(W 0 x ), for some constant C. The computation clearly takes polynomial time, and the advice sequence is Trunc q (W 0 ).

O -line inputs

In this section we study a mode of computation in which the input to the system is encoded entirely in its initial state.

De nition 5 The decision function F : f0 1g + ! f 0 1g is o -line computable if it can be c omputed by an o -line system S = ( f a 0 b 0 ] a 1 b 1 ]).

: f0 1g + ! I d is an encoding function, a 0 b 0 ] and a 1 b 1 ] (a 1 > b 0 ) a r e two disjoint decision intervals, and f is a function on I d .

On an input u 2 f 0 1g + , the computation performed b y S is de ned b y the following sequence (x(t)) t2N :

x(0) = (u) x(t + 1 ) = f(x(t)) for t 0.

Let t(u) = m i n ft x 1 (t) 2 a 0 b 0 ] a 1 b 1 ]g (it is assumed t h a t t(u) exists).

The output is F(u) = 0 if x 1 (t(u)) 2 a 0 b 0 ], a n d F(u) = 1 otherwise.

The time complexity of this computation is the function T such that T(n) = max juj=n t(u).

Theorem 2 An arbitrary total function F : f0 1g + ! f 0 1g can be oline computed b y f 2 PL 1 in exponential time. Moreover, the encoding function is in PE 1 , and is independent of F. The decision intervals are also independent of F and are such that a 0 = b 0 2 Q and a 1 = b 1 2 Q.

Proof. It is clearly possible to replace I by the interval 0 2]. We shall work with radix-4 encodings, using the digits 1 and 3 only (these encodings were introduced in 8] and used subsequently in 7] and 3]). Hence it will be convenient to consider the function G such that G(N) = 1 i f F(N) = 0 , G(N) = 3 i f F(N) = 1, instead of F itself. Contrary to the convention used in the rest of the paper, all decimal expansions in this proof are radix 4.

Let (N) = 1 :1(10) N 3 +1 (N is now viewed as an integer rather than a word on the alphabet f0 1g). On 1:1 2], set f(x) = 2 ;(p+1) 2(x ; 1:1) + a] + q 0 with a = 0 :0G(0)0G(1) : : : 0G(n)0 : : :and q 0 = 0 :q 01 : : : q 0p the initial state of a pushdown automaton A described below. p is such that A has less than 2 p states. Therefore f( (N)) = 0:q 01 : : : q 0p 1G(0)1G(1) : : : 1G(N ; 1)3G(N)3G(N + 1)3 : : : : The job of A is just to pop the sequence of digits 1G(0)1G(1) : : : 1G(N ; 1)3G(N)3G(N + 1)3 : : :viewed as a downward in nite stack. This can be done by a f u n c t i o n o f PL 1 as explained in 3]. When A reads a 3 at an odd position in this sequence, it knows that the next digit is G(N). After reading G(N), it erases the stack, and enters one of the two halting states a 0 , a 1 . Finally, the \gap" 1 1:1] can be lled by an a ne function, so as to obtain a continuous piecewise-linear function on 0 2].

In order to compute the n th rst digit of (N), the main task is to compare n and 2N + 2, which can be done in time polynomial in log n and log N. Hence is in PE 1 .

A comparison with \rational weights" systems 8, 3] is in order. If the parameters de ning f 2 PL d are rational, the iterations of f can be computed exactly on a conventional computer (assuming that the initial state is rational) hence it is only possible to compute recursive functions in this model. It turns out that all recursive functions can be computed 8], but two d imensions seem to be necessary 3] (we h a ve p r o ved this using a somewhat restrictive de nition of what it means to to compute a recursive function). Theorem 2 shows that one dimension su ces in the \real weights" model. But according to theorem 3, two dimensions are (presumably) better if one is concerned with e ciency issues.

Theorem 3 Let C = ( C n ) n2N be a c i r cuit family such that the size S(n) of C n is a non-decreasing function of n. C can be simulated i n t i m e O(nS(n) k ) (for some xed k > 0) b y a n i t e r ated function f 2 PL 2 . M o r eover, the encoding function is in PE 2 , and is independent of C. The decision intervals are also independent of C and are such that a 0 = b 0 2 Q and a 1 = b 1 2 Q.

Proof. We f o l l o w Siegelmann & Sontag's method 7], and work with 0 2] 2 like in the previous proof. It will be convenient to consider that F is de ned on f1 3g + instead of f0 1g + . C o n trary to the convention used in the rest of the paper, all decimal expansions in this proof are to the radix 4. The encoding function is (x) = (x 1 : : : x n ) = ( 0 :x 1 : : : x n 1:1):

From this point, we m a k e a transition to f( (x)) = (0:q 01 : : : q 0p x 1 : : : x n c ) where q o1 : : : q 0p encodes the initial state of a Turing machine M to be dened below, and the digits of c 2 0 1] encode the sequence C = ( C n ) n2N .

From 3], we know that there will be a function of PL 2 simulating M in real time. With the initial tape xc, The job of M is simply to run C n on the input x 1 : : : x n . This is an instance of the Circuit Value Problem, which i s known to be in P 1]. The overall computation time is O(nS(n) k ) since the encoding of C n is at a distance O(nS(n) log S(n)) of the initial read-write head (a circuit of size S can be encoded in space O(S log S)).

Corollary 1 A function F : f0 1g + ! f 0 1g in P/poly can be o -line computed i n p olynomial time by f 2 PL 2 with an encoding function in PE 2 .

Proof. A function in P/poly has polynomial size circuits 1].

Since an arbitrary function has exponential size circuits (e.g., its disjunctive normal form for each input size), we could add to this corollary that arbitrary functions can be computed in exponential time, but this is already known from theorem 2. what is needed for theorems 2 and 3. The reason is that encoding functions in PE d =poly will be useful in the next section.

The proof of theorem 4 is similar to Siegelmann and Sontag's analysis of generalized processor networks. We rst need the following result.

Lemma 2 Let (f t ) t2N be a family of Lipschitz functions on I d having their Lipschitz constants uniformly bounded a b ove by C > 1, a n d > 0. Let (x(t)) t2N and (x(t)) t2N be two sequences de ned b y x(t + 1 ) = f t (x(t)) and x(t + 1 ) = f t (x(t)) + (t) with 8t 0 j (t)j and jx(0) ; x(0)j . T h e n 8t 0 jx(t) ; x(t)j C ; 1 (C t+1 ; 1):

Proof. By induction. The result is true for t = 0. Assume that it holds at time t. Then jx(t + 1 ) ; x(t + 1 ) j Cjx(t) ; x(t)j + C C ; 1 (C t+1 ; 1) + = C ; 1 (C t+2 ; 1):

In the next section, this lemma will be applied to a family of functions, but it will be now used with f t = f for all t.

Proof of theorem 4. In order to distinguish between output 0 (interval a 0 b 0 ]) and output 1 (interval a 1 b 1 ]), let us compute each v ector x(t) with the accuracy (a 1 ;b 0 )=3 for 0 t t(u) (recall that t(u) is the computation time on input u, and that n = juj). Starting from x(0) = Trunc q ( (u)), de ne x(t + 1 ) = T runc q (f(x(t)). Let C > 1 be an upper bound of the Lipschitz constant o f f. According to lemma 2, it is su cient t o h a ve = 2 ;q (a 1 ; b 0 )(C ; 1) 3(C T(n) ; 1) :

Hence we can take q = O(T(n

)) = O(n k ),
where k is a constant. Since f 2 P d , x(t + 1) can be computed from x(t) in polynomial time with a polynomial advice sequence. Since 2 PE d , x(0) can be computed in time polynomial in q + n with an advice sequence polynomial in q + n, hence polynomial in n.

On-line inputs

In this section, we study a mode of computation in which the input is fed to the system bit by bit starting from a xed initial state, instead of being encoded entirely in the initial state. It can be shown that these on-line systems are equivalent to Siegelmann & Sontag's generalized processor networks. We will not use their model, because we believe that our's is simpler and more natural.

De nition 6 The decision function F : f0 1g + ! f0 1g is online computable if it can be computed by an on-line system S = (f f 0 f 1 a 0 b 0 ] a 1 b 1 ]). f 0 f 1 : I d ! I d are encoding functions, a 0 b 0 ] and a 1 b 1 ] (a 1 > b 0 ) a r e two disjoint decision intervals, and f is a function on I d .

On an input u 2 f 0 1g + , the computation performed b y S is de ned b y the following sequence (x(t)) t2N :

x(0) = 0

x(t + 1 ) = f ut+1 (x(t)) for 0 t n ; 1.

x(t + 1 ) = f(x(t)) for t n.

Let t(u) = m i n ft x 1 (t) 2 a 0 b 0 ] a 1 b 1 ]g (it is assumed t h a t t(u) exists). The output is F(u) = 0 if x 1 (t(u)) 2 a 0 b 0 ], a n d F(u) = 1 otherwise.
The time complexity of this computation is the function T such that T(n) = max juj=n t(u).

Slightly di erent de nitions of on-line systems are conceivable. One might for instance consider that a system is de ned by only two functions f 0 and f 1 , and that the input is an in nite word u 2 f 0 1g ! with u i = 0 f o r i large enough (this is closer to Siegelmann & Sontag's neural networks). On-line systems are clearly a special case of the o -line systems discussed in section 3, with the encoding function (u 1 : : : u n ) = f un : : : f u2 f u1 (0):

(1) Theorem 5 If f 0 f 1 2 LP d =poly, the encoding function of equation ( 1) is in PE d =poly.

Proof. We s h o w h o w to compute (u) with accuracy 2 ;p in time O((p+n) k ), for u = u 1 : : : u n 2 f 0 1g + . Starting from x(0) = 0, compute x(t + 1 ) = Trunc q (f ut (x(t)), for q large enough and 0 t n ; 1. According to lemma 2, it is su cient t o h a ve = 2 ;q 2 ;p (C ; 1) C n+1 ; 1 where C bounds the Lipschtz constants of f 0 and f 1 (we can assume that C 2 without loss of generality). Hence we can take q = dp+(n+1)logCe.

Since f 0 and f 1 a r e i n P d =poly, x(t + 1) can be computed from x(t) i n polynomial time using an advice sequence polynomial in q.

The computation time is clearly polynomial in the input length s = n+p, with a polynomial advice sequence. However, this sequence must depend on s only. In order to insure this, just replace the value of q used up to now by the larger value q = dlog Ce(s + 1 ) .

It follows immediately that on-line systems are not more powerful than oline systems.

Corollary 2 If F : f0 1g + ! f 0 1g is on-line computable in polynomial time, F 2 P=poly.

Proof. Straightforward consequence of theorems 4 and 5.

The converse can also easily be proven: on-line systems are thus equivalent to o -line systems with respect to polynomial-time computations.

Theorem 6 An arbitrary function F 2 P=poly can be c omputed i n p olynomial time by an on-line system with f 0 , f 1 and f in PL 2 .

Proof. Recall that the encoding function of theorem 3 is (x) = (x 1 : : : x n ) = ( 0 :y 1 : : : y n 1:1) with x i 2 f 0 1g and y i = 2 x i + 1 2 f 1 3g. Here we will take (x) = (0:y n : : : y 1 1:1) (this is equivalent, since the content o f a s t a c k o f a t wo-stack pushdown automaton can be reversed in linear time. It is then possible to perform the computation using the same function f as in theorem 3). The two encoding functions below are clearly suitable:

f 0 (z 1 z 2 ) = ( 1 + z 1 4 1:1) f 1 (z 1 z 2 ) = ( 3 + z 1 4 1:1).
Both types of systems are also equivalent with respect to exponential time computations.

Theorem 7 An arbitrary function F : f0 1g + ! f 0 1g can be c omputed by an on-line system (f 0 f 1 f ) such that f 2 PL 1 and f 0 f 1 : R ! R are polynomials with rational coe cients.

Proof. Recall that the encoding function of theorem 2 is (N) = (u 1 : : : u n ) = 1 :1(10) N 3 +1 :

Here we use the encoding (N) = (0) ; (N), because the initial state of an on-line system is always 0. Once (N) is computed, it is clearly possible to compute (N) = (0) ; (N) and to apply the same method as in the proof of theorem 2, by iterating a function f 2 PL 1 .

We need to nd f 0 and f 1 such that f uk : : : f u1 (0) = (N k )

with N k = u 1 : : : u k . There are non-zero rational constants a and b such that

(N) = a(1;b N ). Since N k+1 = 2 N k +u k+1 , (N k+1 ) = a h 1 ; b uk+1 (b Nk ) 2 i . b Nk = 1 ; (N k )=a, hence f i (x) = a h 1 ; b i (1 ; x=a) 2 i .

The Blum, Shub & Smale model

This is a model of analog computation based on real RAM machines similar to the standard RAM machines studied in discrete complexity theory. The main di erence between discrete and real RAMs is that in the latter model a register can store an entire real number (with in nite precision), instead of an integer in the discrete case (see 2] and 4] for more details). The basic arithmetic and logical operations (+,-, ,/, ) can be performed in constant time.

The purpose of the Blum, Shub & Smale (BSS) model is to provide a formal model of computing on real-valued data. Nevertheless, we are free to consider the restriction of this model to discrete inputs and outputs, in In other words, g is the radix-2 expansion of h. I f w e t a k e a guess h 2 R p(n) , the task can be performed by a n e v en simpler program: for i:=1 to p(n) do if h i]>0 then g i]:=1 else g i]:=0

In order to prove this result, it is also possible to simulate an o -line system, by showing that a function of PL d can be computed in constant time, and the encoding functions of theorem 3 in polynomial time on-line systems and Siegelmann & Sontag's neural networks are other possible starting points.

Final remarks

In this paper and in 7], several related models of analog computing were investigated. It turned out that in spite of several signi cant di erences between these models, the class of polynomial-time computable functions is always P=poly. In light of this robustness property, it seems reasonable to claim that \e cient analog computing = P=poly" (compare with the invariance thesis of discrete complexity theory, which states that the class of polynomial-time computable functions should be the same in all \reasonable" models of computation 9]). Before a de nitive conclusion can be reached, it will probably be necessary to study other models of analog computing. One such model is the real RAM machine, which w as shown to be as least as powerful in section 5. We left open the important reciprocal problem of nding whether these machines can compute more than P=poly in polynomial time.

T h e r e i s y et another motivation for studying this problem: an answer to this question could shed light o n t h e \ P R = N P R " problem proposed by Blum, Shub & Smale.

As a matter of fact, if P R = N P R , this equality also holds for the BSS model restricted to discrete inputs and outputs: P RD = N P RD . If it turns out that P RD = P=poly, we can conclude like in 7]: since NP NP=poly, P R = N P R ) NP P=poly. However, the latter inclusion violates standard hypotheses of discrete complexity theory 1]. One could thus conclude that P R = N P R is very unlikely. This approach to the P R = N P R problem will be developed in a forthcoming paper.

Finally we note that several new problems were recently shown to be NP R -complete or NP R -hard 5]. These new developments add to the interest of the P R = N P R problem.

  De nition 1 PL d is the set of piecewise-linear continuous functions on I d . More p r ecisely, f : I d ! I d belongs to PL d if

	{ f is continuous
	{ t h e r e is a nite set P of convex closed p olyhedra (of non-empty inte-rior) such that f is a ne on each P 2 P , I d S P2P P and P \ Q= for P Q 2 P , P6 =Q.
	Let us recall the classical notion of polynomial-time computable real func-tion 6].

  Theorem 4 If F : f0 1g + ! f 0 1g can be o -line computed i n p olynomial time by f 2 LP d =poly with an encoding function 2 PE d =poly, then F 2 P=poly. This result shows that theorems 2 and 3 are in a sense optimal: polynomial time computation in higher dimensions is not more powerful than in dimension two, and the exponential computation time of theorem 2 cannot be reduced to polynomial time, even in higher dimensions. It is also useless to work with classes of functions more powerful than PL d . Finally, note that theorem 4 deals with encoding functions in PE d =poly, although PE d is all

bits in polynomial time. For encoding functions, we shall use the following notion of polynomial-time computability.De nition 3 A function : f0 1g + ! I d is in PE d if there i s a T uring machine T such that 1. T receives as input x 2 f 0 1g + and an integer p specifying the precision required for the output (x).

This work was partially supported by the Programme de Recherches Coordonn ees C 3 of the CNRS and the Minist ere de la Recherche et de la Technologie.

order to make a comparison with the models studied in the rest of the paper. Theorem 8 shows that the BSS model is at least as powerful.

A few notations: P R is the set of functions computable in polynomial time in the BSS model P RD is the restriction of P R to discrete inputs and outputs (i.e., P RD = P R \ f f : f0 1g + ! f 0 1gg). For non-deterministic machines, the classes NP R and NP RD are de ned similarly. Theorem 8 In the BSS model, an arbitrary function F : f0 1g + ! f 0 1g can be c omputed i n e x p onential time. For polynomial-time computation, P=poly P RD and NP=poly NP RD .

Proof. We adapt the ideas of the proofs of theorems 2 and 3.

In order to compute F : f0 1g + ! f 0 1g, w e consider again the real number c = 0 :F(0)F(1) : : : F (N) : : : . Since F(N) = b2 N+1 cc, F(N) can be computed by shifting c (N + 1) times to the left (multiplication by 2 ) a n d subtracting the leftmost digit (subtraction and comparison). This clearly takes exponential time in log N.

In order to compute F 2 P=poly, we s i m ulate a two-stack pushdown automaton, using one register for each stack. This can clearly be done like in theorem 3.

In order to compute F 2 NP=poly, we use directly the de nition of NP=poly in terms of advice sequences (this could also have been done in the proof of corollary 1 conversely, non-deterministic circuit families can be used here instead of advice sequences). We t h us consider a real number c whose decimals encode an advice sequence for F. G i v en an input u 2 f 0 1g n , the corresponding advice can be read (deterministically) in polynomial time by a BSS machine like in the proof of theorem 3. F can be computed in polynomial time by a deterministic Turing machine T , with the help of the advice and of a (non-deterministic) guess g 2 f 0 1g p(n) where p is a polynomial. We h a ve just seen that T c a n b e s i m ulated in linear time by a BSS machine. Hence it just remains to be shown how the guess can be computed by a non-deterministic BSS machine M. This is done by the following program (h 2 R is the guess of M). pow:=1 for i:=1 to p(n) do begin if h>=pow then g i]:=1 else g i]:=0 pow:=pow*2 end