N

N

Leader Election without Compass in Some Hyperbolic
and Euclidean Cellular Automata
Codrin Nichitiu, Christophe Papazian, Eric Remila

» To cite this version:

Codrin Nichitiu, Christophe Papazian, Eric Remila. Leader Election without Compass in Some
Hyperbolic and Euclidean Cellular Automata. [Research Report] LIP RR-~2001-08, Laboratoire de
Iinformatique du parallélisme. 2001, 2+12p. hal-02101930

HAL Id: hal-02101930
https://hal-lara.archives-ouvertes.fr /hal-02101930
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal-lara.archives-ouvertes.fr/hal-02101930
https://hal.archives-ouvertes.fr

DN

Laboratoire de I’ nformatique du Par-
allélisme

Ecole Normale Supérieure de Lyon % CENTRE RATIONAL
Unité Mixte de Recherche CNRS-INRIA-ENS LYON rf 8512 SCIENTIRQUE

HSPI
Ll
EEEEN

Leader Election without Compass in Some
Hyperbolic and Euclidean Cellular
Automata

Codrin Nichitiu
Christophe Papazian February 2001
Eric Rémila

Research Report N° 2001-08

Ecole Normale Supérieure de
Lyon

46 Allée d' Italie, 69364 L Cedex 07, F
il éedtic 69964 Lyon Cot 07, France 71/ INRIA

Télécopieur : +33(0)4.72.72.80.80
Adresse électronique : 1ip@ens-1lyon.fr

Leader Election without Compass in Some
Hyperbolic and Euclidean Cellular Automata

Codrin Nichitiu
Christophe Papazian
Eric Rémila

February 2001

Abstract

We present a linear time algorithm for the networking and distributed com-
puting problem of leader election (LE). Given a graph, its vertices represent
processors (here finite state machines), and its edges communication lines (here
synchronous). The LE problem consists in finding a protocol for a family of
graphs such that after iterating it, a vertex, edge or cycle be distinguished by a
special state called leader. Here the graphs are only required to be connected,
and without holes. We describe the algorithm in full detail on a special class of
planar graphs, prove its correctness and show how it extends to other classes.

Keywords: Distributed Algorithms, Graph Automata, Leader Election, Euclidean
Cellular Automata, Hyperbolic Cellular Automata

Résumé

Nous présentons un algorithme en temps linéaire, pour résoudre le probleme
de ’élection d’un chef sur un graphe dont chaque sommet est un automate fini
(un ordinateur) et chaque aréte, un lien de communication (modele synchrone).
Le probleme de ’élection consiste a trouver un algorithme pour une famille de
graphe qui, aprés un nombre fini de calcul, distingue un sommet, une aréte ou un
cycle particulier dans un état de “chef”. Ici les graphes considérés doivent étre
connexes et sans trous. Nous décrivons l'algorithme en détail sur une classe de
graphes particuliere, prouvons son exactitude et montrons comment il s’étend
aux autres classes.

Mots-clés: Algorithmes distribués, Graphes d’automates, Election, Automate
Cellulaire Euclidien, Automate Cellulaire Hyperbolique

Leader Election without Compass in Some
Hyperbolic and Euclidean Cellular Automata

Codrin Nichitiu*, Christophe Papazian, and Eric Rémila

*EURISE, Fac. Sci. Tech., Univ. Jean-Monnet, 23, rue du Dr. Paul Michelon, 42023 ST
ETIENNE, France
LIP, Ecole Normale Supérieure de Lyon, 46, allée d’'Italie, 69364 LYON Cedex 07, France
e-mail: Codrin.Nichitiu@Quniv-st-etienne.fr,
Christophe.Papazian@ens-lyon.fr,
Eric.Remila@ens-lyon.fr
Fax : +33 4 72 72 80 80

Abstract We present a linear time algorithm for the networking and dis-
tributed computing problem of leader election (LE). Given a graph, its vertices
represent processors (here finite state machines), and its edges communication
lines (here synchronous). The LE problem consists in finding a protocol for a
family of graphs such that after iterating it, a vertex, edge or cycle be distin-
guished by a special state called leader. Here the graphs are only required to
be connected, and without holes. We describe the algorithm in full detail on a
special class of planar graphs, prove its correctness and show how it extends
to other classes.

Keywords: Distributed Algorithms, Graph Automata, Leader Election, Eu-
clidean Cellular Automata, Hyperbolic Cellular Automata

1 Introduction

The problem we are here interested in is the leader election problem, well known from
the network and distributed computing research. This problem consist in finding,
through a local process, a vertex which can be distinguished for further (synchronized)
computations. The process has to be local and fundamentally the same for a whole
family of graphs describing the network.

Here the leader election is studied on CA (i.e. the evolution has synchronous
time steps, and the size of the memory of each node is bounded), with a planar
architecture, called Graph Automata. Several algorithms have already been devised
for this framework (as in [4], [1], [7]), but these authors only work on subgraphs of
Z?, and also assume that each node can use a compass (i.e. can determine the North,
South, West and East directions, using thus implicitly the coordinate system).

In this paper, we present an efficient algorithm which does not use a compass: we
only assume that each node can recognize its left side from its right side. In terms
of global information, the left-right condition is weaker than the compass condition.
In this way, election can also be achieved in architectures constructed of hyperbolic
tessellations of the plane. However, we also have to indicate a drawback: the algorithm
requires the absence of holes. To the opposite, for example, the algorithm in [4] also
works for graphs with holes.

In Section 2 we give the necessary definitions, and we precisely state the result;
in Section 3 we describe the algorithm, in Section 4 we outline its correctness proof,
and in Section 6 we explain its extensions to multi-cardinality-face planar graphs and
higher dimensions.

2 Definitions and result

2.1 Regular planar tiling graphs, dual graphs

A (finite) graph G is a set G = (V, E) with V a (finite) set of vertices, and E a subset
of V2, whose elements are called “edges”. We will only consider graphs without loops
(no (v,v) edges) and symmetric (if (v,w) is in E, so is (w,v)). A vertex w is a
neighbor of another vertex v if (v,w) is in E. The degree of a vertex is the number of
its neighbors; the degree of the graph is the maximum degree among its vertices. A
graph is connected when for any x,y € V there exists a — y path, i.e. the vertices
21,29, -, 2n € V with (x,21), (24, 2i41), (2n,y) € E, where 1 < i < n. If x =y, the
x—y path is called a cycle, and if ¢ # z; # z; for ¢ # j, then the cycle is elementary. A
chord is an edge linking two non-consecutive vertices of a cycle (in its enumeration).
A chordless elementary cycle of at least three vertices is called a face.

A planar graph is, informally speaking, a graph which can be drawn on a plane
(Euclidean or not) without any crossing of its arcs. A subgraph G' = (V',E') of a
graph G = (V,E) has V' C V,and E' C En (V' x V'). G’ is a FCWHS (finite,
connected and without holes) when it is connected, it is such that its complement
(with respect to G) is connected and has |V'| finite. A non-connected graph G is a
union of components, each being a maximal connected subgraph.

We denote by I'[k,d] a locally finite connected planar graph, uniquely defined by
the couple (k, d), regular of degree d, with all its faces of length k. These graphs can be
seen as finite regular tessellations (see [2]) of the spherical plane, for 1/k+1/d > 1/2,
or as infinite regular tessellations of the Euclidean plane, for 1/k + 1/d = 1/2, and
of the hyperbolic plane, for 1/k 4+ 1/d < 1/2, the later being the only set having an
infinite number of different graphs.

Given a planar representation of a planar graph G = (V, E), let the interior dual
G* be the graph (V*, E*) such that V* is the set of faces of G (minus the exterior
face if G is finite) and that for any two elements f, f' of V* faces f and f’ share an
edge in G if and only if (f, f') € E*. Hence, (I'[k,d])* = I'[d, k].

We thus prevent the interior dual from including the “border” face (that has
infinite “surface”, when it exist), having in turn the possibility that this interior dual
is not always connected, even when G is connected.

For a graph G = (X4, E4), we also define the superposition graph Ge where G*
is its interior dual G* = (X¢g~, Eg~).

Ge = (X =XqgUXg+,E=FEgU Eg- UD(G,G*))
where D(G,G*) is the set of possible mixed edges linking a vertex and its dual:

D(G,G*) ={(v, f)|lv e Xq, f € Xg+ and v is a vertex of the face f}.

2.2 Graph automata

Let d be a fixed integer such that d > 2. A d-graph is a couple (G, g), where G =
(V,E) is a symmetric connected graph with only two kinds of vertices : vertices of
degree 1 (which are called #-vertices by Rosenfeld) and vertices of degree d. g is
a mapping from E to {1,2,...,d} such that, for each d-vertex v of V, the partial
mapping ¢(v,.) is injective. Let g(v,i) = x when g(v,z) = i. For planar graphs, we
also require g(v,.) to be homogeneous, that is when drawing the graph, the circularly
consecutive edges around each vertex have consecutively increasing labels (modulo d)
counterclockwise. This actually amounts to the notion of “left”-“right” recognition
from local information.

A finite d-automaton is a pair (@), d) such that @ is a finite set of states with #
in , and 0 is a function from Q x (Z4)? x Q? to @ such that, for each element 7" of
Q x (Zq)? x Q4, 6(T) = # if and only if the first component of T is #.

A graph automaton is a couple M = (G4, A) with G4 a d-graph, and A a finite au-
tomaton (@, ¢). A cellular automaton is a graph automaton over Z" or a Cayley graph.
A configuration C' of M is a mapping from the set of vertices of G4 to the set of states
@, such that C(v) = # iff v is a #-vertex. We compute a new configuration from a pre-
vious one by applying the transition function ¢ simultaneously to each vertex of Gy,
computing a new state for each (non-#) vertex by reading its state and the states of its
neighbors, using the vector of neighborhood H (v) = (9(g(v, 1),v),...,9(g(v,d),v)):

Chew (U) = (5(0(’0), H(’U), C(g(vv 1))) cee C(/g\(v) d)))

face of the graph

(#£-vertices always stay in the # state).
Hence, we have a synchronous model,
with local and finite memory.

Remark 1. The labeling functions are
also needed because the flow of infor-
mation between the vertices needs to
be directed, that is the vertices have
to distinguish their neighbors, by know-
ing how they are labeled by their very

neighbors. They have been introduced new homogeneous labeling
by Wu and Rosenfeld in [8], and proven
to be necessary in [3]. Figurel. Adding dual vertices of the faces,

able to communicate with their neighbors
and with the vertices of their dual faces.

2.3 Election problem

Given a class of d graphs, the problem is to find a finite set of states () and a transition
function such that starting with the configuration having all vertices in the same
state (or in a state from a special subset) called a start state, after a finite number of
iteration steps depending on the graph, the final configuration is such that

— one vertex is in a special state called leader
— all the other vertices are in special states called soldiers

We extend this definition by allowing two or k vertices (forming an edge, respec-
tively a face) to be elected, since in some graphs, for symmetry reasons, we cannot
always isolate one last vertex locally (see Subsection 3.1). Thus we can say that at
the end of the process a vertex, an edge or a face must be elected. This does not cause
fundamental problems, since the vertices are neighbors and synchronously elected,
thus “aware” of the “power-sharing” situation.

2.4 Results

We give here an automaton for the election on FCWHS of I'[k,d], for any k and d
(such that I'[k,d] is infinite), homogeneously labeled (see subsection 2.2). In order
to ease the presentation, we explain it on the superposition graph Ge; this is a mere
technical artifact, as it is explained in Section 5 (also see [6] and [5]). This algorithm
can easily be extended as it is explained in Subsection 6.

3 Algorithm

Before detailing the general election algorithm, we need to explain a very simple one,
that is the election on trees.

3.1 Tree election All the d(z) neighbors are soldiers

The idea is to start from the leaves, —leaf
and to iteratively say that o daéwi Eal leader
1. all leaves are soldiers neighbors o neighbor is

are soldiers

potential
soldier

This has to be slightly changed yet, v

to deal with parity problems. Thus a neighbor is start

an intermediate state is introduced,

giving the finite automaton in the Figure2. Transitions of the finite state automa-

figure 2. Nf)te that either a vertex ¢ placed in the vertex z, of degree d(z), of the
or an edge is elected. tree.

2. any soldier is no longer part of
the tree
3. an isolated vertex is the leader.

a potential soldier

3.2 Election on the superposition G + G*
Overview

Now, we can try to make use of the previous algorithm through what might be seen
as the “skeleton” graph of the initial tiling graph. Each subgraph only composed of
faces, linked to other such subgraphs through one-vertex-large paths, is iteratively

shrinked until it becames a vertex. Then, that part of the graph becomes isomorphic
to a tree, and thus the tree-election algorithm can be applied (see figure 5).

The dual G* is used to simplify the shrinking process. At the beginning, the active
vertices (those which initiate the election process) form a sort of “tree of cycles”. We
have to say

how the tree of cycles is created at the beginning
how the cycles are shrinking

what happens when they collapse to one point

Ll o e

how the active vertices always form a connected graph

Initialization

For a border vertex there are several possible cases, because it vertex can belong to
faces or not, and it also can have or not all its neighbors in start state.

The initialization takes k time steps: each vertex explores the k-vertex faces to
which it belongs, and decides according to their answer.

Remember the labeling is homogeneous. All start-state vertices launch signals
which should go round each face to which they belong, all in the same way (say
clockwise). This is very easy to implement, through for example a “label stack signal”,
popped each time it reaches a vertex, and directed through the top label to the
subsequent vertex on the cycle. The # vertices simply stop these signals, keeping
the - mark on their edges. When such a signal makes a complete tour, it comes back
to the sender through a consecutive edge, and the sending vertex “knows” that there
is an active face (see figure 3).

C
A—# A—# # A—#
exploration signal trajectory of the four signals exploring
issued by the vertex A the four possibly available faces around A

Figure3. k = 4 initialization steps.

(=2}

After the exploration, if all signals which were
sent by a vertex come back to it, then it changes
to passive state.

Otherwise, it changes to active state, and

— for the sequences of circularly consecutive de-
tected faces, it marks C' on the first and the
last edge, and - for the others.

— for the edges which do not belong to faces
(neither left- nor rightwards), it marks N in
the table.

The following rules apply to active vertices.

The algorithm

As we see, the algorithm uses a sequence of sub-
graphs of the initial graph G. We call active ver-
tices and note with A the vertices of the current
subgraph, for a given iteration. The vertices which
have been active are noted with $, and the other
vertices, waiting to take part in the algorithm, are
called passive and noted with P. There is also a
leaf state noted L, and two leader state, noted B,
and B.

The active vertices are linked by edges of two

types:

— the ones belonging to cycles (at start time
being the borders of the components), noted
with C, and

— the ones linking these components (through
vertices), noted by N (see figure 6).

An iteration step occurs when the C-linked active
vertices “wake up” dual vertices, towards the zone
of passive vertices. The vertices which are (also)
linked by N edges stay active, and new mixed
edges can appear, linking a vertex to its dual ver-
tex (see figure 6).

E e
]

(P)

active state (A)

S_S_# S S #
Lle [k
A—# S A
£ c I l;N
—S—# Tps—#

Figured.

Some examples for

the start rule, for the central

vertex

Figure5.
building the skeleton tree.

o

Algorithm

9]* zZoom

P__ P $
el
| e}
 —1

A
\

AN A

NE
A4

A_$
sl
—P

Figure6. Labels of one
region of the graph.

Each vertex of G + G* has a table of 2d (respectively 2k) elements of values from
{C,N,-}. The symbol - means the edge is not active, and will not be drawn in the
figures. The cardinality of the table is due to the possible presence of mixed edges
between a vertex and its dual, in addition to the normal d edges.

The shrinking process

The active vertices without N-marked edges and having exactly two C-marked edges
change to $ state. The dual vertices of faces having at least one active vertex become
active, and update their tables by copying the corresponding values from the active
vertices which “woke” them “up” (see figure 7).

If, among the vertices “waking up” the dual ones, there r "

are some which remain active (because the have N-marked i jc

edges, and/or more than two C-marked edges), then mixed p——p s

edges are created between these active vertices and the duals | .15 7

“woken up”, and marked with N. 7 Ve N

C to N switch — cycle splitting This rule slightly # ¢ A ¢ A N 4

modifies the previous one : whenever a dual edge (z*,y*) i P\ : +

has to be C-marked because two vertices x and y “woke)(L

up” z* and y*, and the edge (z,y) crosses the dual edge P—— s

(x*,y*), then this last one is marked with N. The labeling SN

allows the local detection of the crossing, because the label i C$ NA N
N

of (z,y) is of value between the values of the labels of (z, z*)
and (z,y*). The same also holds for y. This rule locally stops
the shrinking of a cycle, splitting it in two (or more) cycles,
linked by elementary chain(s) (see figure 8).

Figure7. An ex-
ample for the dual
switch

¢ C

P A o A e AP P
>
N~N | NAC

P A —— A? A m— A — P
C: y o]
O ' transformation of the mar O
C into the mark N
A A —

Figure8. An example for the shrinking.

Leafs If a vertex has only one active neighbor, and all the other neighbors in # or
$ state, it changes to L state. From this state, at the next step, if no neighbor is in L
state, then the vertex changes to $ state.

Election If an L-marked vertex has an L-marked neighbor, then both change to B
and become leaders. If an active vertex has all its neighbors marked with L, then it
changes to B, becoming unique leader. Also, if a vertex is “woken up” by a face, of
k active vertices linked with C-marked edges, then it changes to B, becoming unique
leader.

4 Analysis

In order to prove the correctness of the algorithm, we need to show certain properties
of the subgraph induced by the active vertices, which is evolving in time.

We thus consider the sequence of subgraphs G; = (X}, E;) where ¢t € IN represents
time, with X; C X and F; C E. X; is defined as the set of all active vertices at time ¢
of Ae, and FE; is the set of C, respectively N-marked edges of Ae at time ¢. Of course,
E; C X; x X;. By cycle, from now on, we understand an elementary cycle.

Proposition 1. At any moment t:

— any cycle of Gy is only made of C'-marked edges, and any C-marked edge belongs
to one and only one cycle of G.

— all passive vertices of Ae are inside the cycles of G, and these ones only contain

passive vertices

all $- and #-marked vertices of Ae are outside the cycles of Gy.

— G4 is a connected graph.

Remark 2. The N-marked edges of G belong to no cycle, but they link them. This
induces a structure of “tree of cycles”, as suggested in the presentation of this algo-
rithm.

Proposition 2. If the total number of passive vertices of Ae is strictly positive at
time t, then it is also strictly greater than the total number of passive vertices of Ae
at time t + 1.

If G¢ is a tree with more than two wvertices, then Gyy1 has strictly less vertices
than Gy.

It is very easy to prove these statements by induction, by making use of the local
rules exposed in the previous section. Since at the beginning there is a finite number of
passive vertices, and since and each iteration a non zero number of them irreversibly
change to $ state, G; finally becomes a tree, which retracts itself until it has one or
two vertices.

This gives us the temporal complexity as well, bounded by a sum of two terms.
The first term is given by the shrinking of the cycles, which lasts for at most half of
the longest of the diameters of the cycles of Gy. We call here diameter of a cycle the
longest of the shortest paths in Ae from a vertex of a cycle to another vertex of the
cycle.

The second term is the length of the longest path of a tree G, length which is
bounded by the diameter of the initial graph Ae which contains it. Here the diameter
of the graph is defined as the longest of the shortest paths in Ae from a vertex of the
graph to another one.

Therefore, the algorithm elects a leader in O(w), where w is the diameter of the
graph Ae. This complexity is the same for the initial model, because the distance
w'(z,y) between two vertices z and y in the initial graph bounds from above the one
in the auxiliary model, namely w(x,y). For k the number of vertices of each face, we
have w(z,y) < w'(z,y)k/2, because any path in the initial graph can be shortcut by
passing through the dual vertex of each face of which part of the contour is used by
the considered path (at most k/2 edges of the face). We thus can state the theorem.

Theorem 1. Let k and d two integers. There exists an algorithm for the leader elec-
tion problem for the finite subgraphs class of I'[k,d] without holes, in time O(w),
where w is the diameter of the considered subgraph.

4.1 Finalization and optimization of the algorithm

The proposed algorithm leads to different possible final configurations: the configu-
ration where there is only one leader, which is the configuration we want to reach, or
a configuration with several leaders (edge or face). We shortly explain here how to
avoid multi-leader final configurations, when possible.

Some cases are trivial, like a two leaders final configuration with one vertex of the
initial graph and one vertex of the dual graph. The automaton just has to choose the
vertex of the initial graph. But there are some non trivial cases.

It is obvious that final configurations with several leaders cannot be avoided when
there is a perfect symmetry in the graph. An axial symmetry can lead to a leader-edge
configuration and a central symmetry can even lead to leader face configuration. But
in every other cases, we can reach an “only one leader” configuration. We describe
now the algorithm, and mention that in the case starting from a k-leader face, it is k
times slower, to allow the information exchange.

We associate to each vertex v an element s, of {0;1}¢, where the i-th component,
equal to 0 means the i-th neighbor is #, according to the (homogeneous) labeling.

The principle of the algorithm is to build a depth first search tree for each leader,
and to compare at every step of the search the two new vertices reached by each
leader in its search, using the d-tuples defined above, and the lexicographical order.

We can prove, by induction on the neighborhood of the leaders, that if the search
is finished without finding any difference, there is a true symmetry in the graph, with
an axis or a center between the two leaders. This finalization needs at most a time
equal to |V

In the case where the final configuration is a k-leader face, the process is slowed
down (as said before), and, when a leader becomes a soldier, it simply stops its search.
At the end, several configuration can be reached : one leader only left (no symmetry),
k' leaders left, where k is divided by k' (central symmetry), or two leaders left (axial
symmetry or a possible central one if & is even).

5 No actual need of the dual

As we have announced, the dual G* is only used here in order to alleviate the presen-
tation: the algorithm performs very well without any dual “physically” present. We
do not need any supplemental information linking the initial and dual labelings; we

10

show how to perform the election only using the initial vertices and their homogeneous
labeling.

The idea is very simple : instead of relying on alternating from one graph to the
dual, the “true” computation bypasses this alternation, doing in one computation
step two of the previously presented steps. There are several cases, as seen in figure 9:

1. the “normal” case, when the faces on the border have only one active part, a
sub-chain of the whole cycle making up the face. Then, we end up, (bypassing
the activation of the “middle” dual) with exactly the complementary of the face
being active, a sort of swap.

2. “special” cases, when (in the superposition setting) a dual vertex has to remain
active one step after the waking-up (or when the C-to-N switch occurs). Here, in
our new setting, the whole face surrounding it has to remain active, with edges
marked with a new mark, called F', behaving synchronously.

Shrinking border First shrinking border

Figure9. “Normal” and “special” cases.

Care also has to be taken in order to preserve the connectivity with the N-marked
incident edges. Thus an order of action has been chosen:

1. exploration of the face (through special signals sE) in order to detect the case (by
active end-of-chain vertices)

2. deactivation and activation of the appropriate vertices (through other signals,
detailed below)

3. edge label updates, if necessary, from C' to N or to F.

4. local steps of the tree election (with synchronous decisions, when the edges are
F-marked).

All these processes are performed in O(k) time thus the overall complexity is not
affected, since k is constant.

In the “normal” case, when only p vertices forming a chain are active among the
k ones of a face, being also linked with C-marked edges. Both ends of the p-chain
send exploration signals sE on all non C-marked edges and leading to P vertices. This
means that sometimes, the signals will go round at the same time on many faces to
which such an “end” of a p-chain belongs. The signals thus have to come back after
going round each such face, and we know how to do this, using the homogeneous
labeling. Now, for each face, the sender counts until sE comes to it; all the other
vertices make it simply pass (and cross, when necessary, with an opposite sE) round

11

the face. This process is actually similar to the initialization process described in
section 3.2, and shown in figure 3.
For each face, two cases appear:

— the signal sE comes back exactly after k£ tops. Then, the same vertex sends a new

signal sA on that face. This signal follows the same trajectory as the sE, but also
switches to A all the passive vertices. When reentering the p-chain (at its other
end), it changes itself into another signal, s$§, which switches to $ all the active
vertices, deletes the C-marks, and it is finally stopped by the sender.
If an external N-marked (or F-marked) edge is present (that is, adjacent to this
face), then that vertex switches the signal s$ to sN, which leaves active the next
vertices, but adds to the C-marked edges the mark F'. Of course, this signal is also
stopped by the initial p-chain end (which sent the sE and the sA). Also, when two
sA signals go along the same vertices because coming from two adjacent faces,
then the C-mark is changed to the F-mark (this is the C-to-N switch).

— the signal sE comes back earlier. This means that the sE received is not the one
physically sent by the same vertex, and we actually are in a more general case,
when more chains of active vertices are on the same face. This is the tricky case
(see figure 10), and we have to keep the whole face active (taking also care of any
N-links). Now, the sender emits another signal, sF, which switches to active all
the passive vertices, and to F' all the edges, passing through all vertices. Thus even
the C-marked edges are switched to F'. Nothing happens when passing through
vertices also linked with N, these links simply remaining active as they were.

Finally, we want that in this last case, the F-links behave like the N-ones, but syn-
chronously. This is easy to achieve, by dilatating the time with a factor k : all “de-
cisions” for the tree election shown in figure 2 are delayed until special interrogation
signals go round the whole F-linked face, so that all vertices know what to do , and
this takes the k supplemental steps.

Figurel0. Example of “special” case signals.

6 possible extensions

When not all the faces have the same number of vertices, it is easy to consider a union
of all the transition functions locally defined for each type of face, and to apply the
correct one at each vertex. The only conditions are that there be a bound on this
number of vertices of the faces, and that the vertices know the exact cardinals of the
faces they belong to.

12

The proofs can easily be extended to this case, because the notion of duality is
still the same.

The extension to Z"™ for n > 2 is more complicated, because due to the fact that
some vertices can be in # state, locally, faces can be of less than n dimensions. In
Z", a face is a hypercube of dimension p < n, and the vertices need to detect the
value p before starting the shrinking process.

This is easily done by the same mechanism of initial exploring of the neighborhood,
and then, the appropriate dual vertices have to be simulated, that is dual of the
appropriate p-dimensional faces. These in turn need to keep the mixed edges active,
and also keep track of the limited dimension.

Globally the process is identical, and again, the proofs should easily be extended
to this case as well.

A first question is how to extend this to graphs with “holes”. There also is the
open question of minimal time complexity needed to elect a leader. For instance, for
Z™ graphs, in [7] and [5] a quadratic algorithm is given, in O(w?) time, where w is
the diameter (the longest among the shortest paths) of the graph. Little+ is known
about the possibility of improving this, or about an optimal bound. There is of course
the trivial bound of linear time in the number of vertices, since all vertices need to at
least “acknowledge” the achievement of the election.

References

1. A. Beckers and T. Worsch. A Perimeter-time CA for the Queen Bee Problem. In Cellular
Automata: Research towards Industry. (Proceedings of ACRI’98). Springer Verlag London,
1998.

2. H. S. M. Coxeter and W. O. J. Moser. Generators and Relations for Discrete Groups,
volume 14 of Ergebnisse der Mathematik und ihrer Grenzengebiete - neue Folge. Springer
Verlag, 1965.

3. J. Mazoyer and M. Delorme, editors. Cellular Automata, a Parallel Model, chapter An
Introduction to Automata on Graphs, by E. Rémila, pages 345-352. Kluwer Academic
Publishers, 1999.

4. J. Mazoyer, C. Nichitiu, and E. Remila. Compass Permits Leader Election. In Proceedings
of SODA 1999. STAM, 1999.

5. C. Nichitiu. Algorithmique sur graphes d’automates : élection d’un chef, simulations. PhD
thesis, Ecole Normale Supérieure de Lyon, http://www.ens-lyon.fr, December 1999.

6. C. Nichitiu and E. Rémila. Simulations of graph automata. In Thomas Worsch and
Roland Vollmar, editors, MFCS’98 Satellite Workshop on Cellular Automata. Universitat
Karlsruhe, Interner Bericht 19/98, 1998.

7. C. Nichitiu and E. Rémila. Leader Election by d Dimensional Cellular Automata. In
Proceedings of ICALP 1999, volume LNCS 1644. Springer Verlag, 1999.

8. A. Wu and A. Rosenfeld. Cellular Graph Automata. I. Basic Concepts, Graph Property
Measurement, Closure Properties. Information and Control, 42:305-329, 1979.

13

