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Abstract

Scheduling computational tasks on processors is a key issue for high-
performance computing. Although a large number of scheduling heuristics
have been presented in the literature, most of them target only homogeneous
resources. We present a new scheduling heuristic for heterogeneous processors,
which improves the load-balancing achieved at each decision step while keeping
a low complexity. Experimental comparisons with five heuristics taken from the
literature (BIL, GDL, CPOP, HEFT and PCT) and using six classical testbeds,
show very favorable results.

Keywords: heterogeneous processors, unrelated parallel machines, scheduling heuristics, allocation,
complexity.

Résumé

L’ordonnancement de graphes est un probléme fondamental du calcul paralléle.
Bien que de nombreuses heuristiques d’ordonnancement existent dans la litté-
rature, la plupart d’entre elles ne s’intéressent qu’a des ressources homogénes.
Nous présentons une nouvelle heuristique d’ordonnancement pour processeurs
hétérogénes qui équilibre la charge de travail & chaque étape de décision tout en
ayant une faible complexité. Des comparaisons expérimentales avec cinq heu-
ristiques de la littérature (BIL, GDL, CPOP, HEFT et PCT) sur six problémes
classiques donnent de trés bons résultats.

Mots-clés: processeurs hétérogénes, heuristiques d’ordonnancement, distribution, complexité.



1 Introduction

The efficient scheduling of application tasks is critical to achieving high performance in parallel and dis-
tributed systems. The objective of scheduling if to find a mapping of the tasks onto the processors, and to
order the execution of the tasks so that: (i) task precedence constraints are satisfied; and (ii) a minimum
schedule length is provided. Since the scheduling problem with communication delays is NP-hard [3], various
heuristics have been proposed in the literature (see the tutorial [1]).

Although various different approaches are used to solve the task scheduling problem, most of them target
homogeneous processors only. Heterogeneity poses new challenges to scheduling techniques. Scheduling
methods that are suitable for homogeneous environments may well not be efficient for heterogeneous domains.
For instance, clustering techniques (such as Gerasoulis and Yang’s dominant sequence clustering [10]) are
widely used in the context of homogeneous parallel machines, while they seem difficult to use in the context
of heterogeneous processors. In the literature, most heuristics for heterogeneous processors are adaptations
of list-scheduling techniques for homogeneous processors, and are still based upon critical paths and bottom
levels.

In this paper, we introduce a new scheduling heuristic for heterogeneous processors, which we name
the Iso-Level Heterogeneous Allocation (ILHA) heuristic. In a word, the main characteristic of the ILHA
heuristic is a better load-balancing at each decision step, which is achieved by considering a chunk of several
ready tasks rather than a single one; the idea is to allocate to each processor a number of the tasks in the
chunk that is proportional to its computing power. We compare the ILHA heuristic with five heuristics
taken from the literature: the minimum Partial Completion Time static priority (PCT) heuristic, the Best
Imaginary Level (BIL) heuristic, the Heterogeneous Earliest Finish Time (HEFT) heuristic, the Critical Path
on a Processor (CPOP) heuristic and the Generalized Dynamic Level (GDL) heuristic. For the experimental
comparisons, we use six classical testbeds: LAPLACE, LU, STENCIL, FORK-JOIN, DOOLITTLE, and
LDMt. All these comparisons show very favorable results. Note that the ILHA heuristic requires a simple
graph traversal, which renders it very attractive to process huge size problems.

The rest of the paper is organized as follows. Section 2 is devoted to some technical preliminaries
(definitions and notations). We briefly survey the five heuristics from the literature in Section 3. We present
the ILHA heuristic in Section 4. In Section 5, six classical testbeds are used to compare the different
heuristics. Finally, we give some concluding remarks in Section 6.

2 Preliminaries

In this section, we specify some notations for the standard macro-dataflow model, which is widely used
in the scheduling literature [1]. For each task scheduling algorithm, the input is a directed acyclic graph
G = (N, A), that models a parallel program, where N' = {N; : i = 1,--- N} is a set of N nodes and
A= {A4,;;} is aset of edges. A node in the DAG represents a task. Each task has a computation cost which
is defined as the amount of computation cycles needed to process it. The time needed to compute this task
on a processor is then the product of this computation cost by the cycle time of the processor. An edge
corresponds to a precedence constraint and has a communication cost. Each edge A;; carries a label D ;
which specifies the amount of data that N; passes to N;. This can be used to compute the time needed to
achieve the communication. We suppose that if both tasks are assigned to the same processor, there is no
communication cost; otherwise, we pay a cost proportional to D; ;, regardless the location of the processors.
Moreover, we suppose that we can realize an unlimited number of communications simultaneously.

A task without any input edge is called an entry task while a task with no output edge is called an exit
task. A task is said ready when all its predecessors have finished their execution. We denote by Pred(N;)
the set of the immediate predecessors of task N; and by Succ(N;) the set of the immediate successors of task
N;.

The target architecture consists of a set of p heterogeneous processors P = {Py, P,...,P,} so that
computation can be overlapped with communication and there is no limitation on the communication links:
as soon as a task IV; is completed, data D; ; is sent to all its successors. The execution time of node IV; on
processor P;, given by E(N;, P;) (denoted further by e; ;) is available at compile time for each node-processor
pair.



Our scheduling objective is to minimize the scheduling length where all interprocessor communication
overheads are included. This scheduling problem is NP-complete even if there is an infinite number of
processors available [3], hence the need to rely on heuristics.

3 The algorithms

In this section we survey five heuristics from the literature.

3.1 Minimum partial completion time static priority (PCT) algorithm

Maheswaran and Siegel present in [5] a dynamic algorithm. Their heuristic refines a given mapping which
has already been computed statically. It can be used from scratch to compute a static mapping at compile
time by using any basic schedule as input (for example, assume that every task is allocated to the fastest
processor). In the following, we assume that we already have a scheduling of our task graph. The first phase
of the algorithm assigns ranks to each task. The second phase orders the tasks and uses a minimization
criterion to solve the mapping problem.

Consider the first phase of the algorithm. We assign to each task a priority equals to an estimation of
the time needed to finish the program. Since we already have a scheduling, we take communications into
consideration. Letting P; be the processor to which task /V; is assigned in the given scheduling, we define
the priority as follows:

priority(N;) = e; ; + N, egl«i}é(m)(ci’k + priority(Ny))
where ¢; ;, = D; 1, X 7 is the time needed to send the data from the node N; to the node N, with bandwidth
7. If both nodes are on the same processor, we have ¢; ; = 0.

In the second phase, we allocate the ready tasks to processors in the order given by their priority. We
first compute the node with the highest priority, then the following node and so on. Let P; be a candidate
processor for task NN;. We note pct(N;, Pj) the partial completion time of task N; on processor P;, and
dr(N;) the instant where all the data needed to compute Nj is available by Pj, i.e. the time at which the last
data item required by N; to begin its execution is available by P;. N; may be computed after the instant
dr(N;) and as soon as the processor P; is available. Let proc(Ny) be the processor which executes task Ny.
We deduce the following equations for dr(V;) and pct(N;, P;):

e For an entry task, we have:
pCt(Ni,Pj) = €45

e For any other task, we have:
pct(N;, P;) = e; j + max(Available[j] + dr(N;))

Ni) = . Ny, proc(N,
dr(N;) Nkerlg?é);(Ni)(ck’ + pet(Ng, proc(Ny)))

where Available[j] is the instant where processor P; is free to start the execution of a new task.

The task N; is mapped onto the processor which minimizes pct(Ny, ).

THE PCT ALGORITHM

: Compute the priority for each task

: ReadyTask < {Entry tasks}

: While ReadyT ask is not empty

Choose n in ReadyTask with the highest priority
Compute pct(n,p) for all p in P

Assign n to the processor which minimize pct(n,p)
Update A[p] and ReadyTask

: End while




3.2 Best imaginary level (BIL) algorithm

Oh and Ha present in [6] a list scheduler. The general idea is to assign a priority, or a static level, to each
node. Then the list scheduler schedules the runnable nodes in the decreasing order of priority, and tries to
determine the optimal processor for the selected node.

They define the level of a node N; as the Best Imaginary Level (BIL). The BIL is the length of the
critical path beginning with Nj; if this node is remapped onto a processor Pj, including the communications
and assuming that all the children are perfectly scheduled. Since it is not always possible to schedule the
nodes at the best times, we use the term imaginary:

BIL(N;,P;) =e;j+ max  [min(BIL(N, P;), min(BIL(Ng, Py) + ¢ p))]
Ny €Succe(N;) PF£]
The BIL of a node is then used to compute a priority order over the nodes.

Once the BIL is computed for each node, we start the second phase which consists of selecting a node,
i.e. computing a priority order. To select a node, we adjust the level of a IV; on processor P; to measure the
Best Imaginary Makespan (BIM). BIM is defined as follows: BIM (N;, P;) = Available[j] + BIL(N;, P;).
For each node, there exist p different BIM values, one for each processor. Assuming there exist k runnable
nodes at a step, we define the priority of a node N; as the k** smallest BIM value, or the largest finite BIM
value if the k' is undefined. The selected node is the one with the highest priority.

Once we have selected a node, we have to find a processor where to map it. If the number of ready nodes
k is high, i.e. greater than the number of processors, the execution time becomes more important than the
communication overhead, since the communication overhead is likely to be hidden. Therefore, we define the
revised BIM as follows :

k
BIM*(NZ,PJ) = BIM(NZ,PJ) + €45 X mam(ﬁ -1,0)

We select the processor that has the highest revised BIM value. If more than one processor have the
same revised BIM value, we select the processor that makes the sum of the revised BIM values of other
nodes on the processor maximum. As soon as the task is assigned to a processor, we update the runnable
nodes and continue while there exists a ready task.

THE BIM ALGORITHM

1: Compute BIL(n,p) for all n and p

2: ReadyTask < {Entry tasks}

3: While ReadyT ask is not empty

4:  Compute BIM for every task in ReadyT ask

5 Choose the node n with the highest priority

6: Compute BIM*(n,p) for all p

7: Assign n to the processor p that maximizes BIM*(n, p)
8: Update ReadyTask

9: End while

3.3 Heterogeneous earliest finish time (HEFT) and critical path on a processor
(CPOP) algorithms

Topcuoglu, Hariri and Wu present in [9] two heuristics. The general idea of both heuristics is the same. In
a first phase, they compute a priority on the runnable nodes and select the node with the highest priority.
Then, in the second phase, using two different criteria, they determine a processor to which the selected node
is mapped. Before studying the two different algorithms, we need some definitions. We define the earliest
start time, ST, and the earliest finish time, EF'T, of node N; on processor P; as follows :

EST(N,.P) = maz(Alj], | max (EFT(Ni,proc(Ny)) + )

EFT(NZ,P]) =€, + EST(N“P])
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where proc(Ny,) is the processor where Ny, is assigned. EST returns the ready time, i.e. the time when all
data needed by IV; is available at the host P;, and when the host P; itself is available.

In the algorithm, tasks are ranked upward and downward to set the scheduling priorities. The upward
rank of a task IV; is recursively defined by

ku Nz =€ ik k?u Ny,
rank, (N;) e+NkEr§11?C>C((Ni)(c,k+ran (Ng))

where &, = 6;'3' is the average execution time of the task IV; over the processors. rank, is the length of
2

the critical path from N; to the exit node, including the computation cost of the node itself. Similarly, the

downward rank of a task IV; is recursively defined by

rankq(N;) = N Er}r)la)é(N )(c;m + € + rankq(Ng))
k re i

The ranky is the largest distance from the start node to the node N;, excluding the computation cost of the
node itself.

3.3.1 HEFT

To set, priority to a task IV;, the HEFT algorithm uses the upward rank value of the task. Ready tasks are
sorted with respect to decreasing rank, values. If two nodes to be scheduled have the same priority, one of
them is selected randomly.

The HEFT algorithm uses the EFT value to select the processor for the selected task. It is natural to
consider the EFT value to select a processor. Indeed, when all nodes in the graph have been scheduled,
the schedule length is the earliest finish time of the exit node. We assign node NN; to the processor P; that
minimizes the value of EFT(N;, P;).

TaHE HEFT ALGORITHM

: Compute rank, for all nodes

: ReadyTask < {Entry tasks}

: While ReadyT ask is not empty

Select the task n with highest priority

Assign the task n to the processor p that minimizes
the EFT value of n

Update EST values and ReadyT ask

7: End while

I

3.3.2 CPOP

The CPOP algorithm uses rank,(n) + rankq(n) to assign the node priority. As previously, we select the
node with the highest priority, i.e. we first consider the tasks that belong to the critical path. A task is
on the critical path if its value of rank, + ranky is equal to the value of rank,(Ns) where N; is the start
node. The critical-path-processor (CPP) is the one that minimizes the length of the critical path. If the
current task is on the critical path, then it is assigned to the C'PP, otherwise it is assigned to the processor
that minimizes the EFT. The time needed to compute the tasks along the critical path is a lower bound of
the execution time. Hence it appears to be a good criterion in order to (try to) minimize the length of the
critical path. The C'PP is often the fastest processor.

3.4 Generalized dynamic level (GDL) algorithm

Sih and Lee propose in [8] a compile-time scheduling heuristic for heterogeneous networks called GDL. As in
the previous algorithm, the GDL scheduler computes the critical path in a heterogeneous system. Contrarily
to the CPOP algorithm, GDL defines the assumed execution time of node N; denoted e*(N;) as the median
execution time of the node over all the processors.



THE CPOP ALGORITHM
1: Compute rank, and ranky for all nodes
2: ReadyTask < {Entry tasks}
3: While ReadyT ask is not empty
Select the task n with highest priority
If n is on the critical processor

Assign n to the CPP
Else

Assign the task n to the processor p that

minimizes the FFT value of n

9: Update EST values and ReadyT ask
10:End while

We define the static level of a node N;, SL(N;) as the largest sum of execution times along any directed
path from N; to an exit node of the graph. SL(N;) can be easily computed recursively. To take the difference
in processor speeds into account, we introduce

A(N“ PJ) = 6*(Ni) — ei,j.

Then, we introduce a dynamic level DL(N;, P;) which reflects how well node N; and processor P; are
matched. This quantity will be re-evaluated at each step of the algorithm to take next decisions into account
and is given by

DL(N;, Pj) = SL(N;) — EST(N;, Pj) + A(N;, Pj).
The term EST(N;, P;) is the earliest start time defined in the same way as for the HEFT and the CPOP
algorithms. This algorithm is very simple. While there exists a ready task, we select the node and the
processor which maximize the expression DL.

Descendant consideration Although DL(N;, P;) indicates how well node N; is matched with processor
P;, it fails to consider how well the descendants of IV; are matched with P;. For each node N; we note D(N;)
the descendant to which N; passes the most data and d(N;, D(NV;)) the amount of data passed between them.
We then define F'(N;, D(N;), P;j) to indicate how quickly D(XV;) can be completed on any other processor if
N; is executed on P;j.
F(Ni, D(N;), Pj) = 7 x d(N;, D(Ny)) + TF;DE(D(Ni),Pk)
i j

This is a lower bound of the time necessary to finish the execution of D(NV;) on any processor other than P;.
We then define a descendant consideration term as

DC(N;, Py) = ¢*(D(N)) — min{ E(D(N,), P;), F(N;, D(N;), P;)}

Resource scarcity We generally fail to consider how important it is for two nodes to obtain the same
processor. To characterize this resource scarcity cost, we first define the preferred processor of a node, i.e. the
processor that maximizes its dynamic level. We then define the cost of not scheduling N; onto its preferred
processor by

C(NZ) = DL(NZ, P;) - g;éaJ)EDL(NZ, Pk),

where j* is the index of the preferred processor of N;. If the cost is zero, then there will be at least one
processor leading to the same dynamic level for N;
Generalized dynamic level By taking into account the descendant consideration and the resource
scarcity we can now define a generalized dynamic level :

GDL(NZ,P]) = DL(N;,P]) + DC(NZ,P]) + C(NZ)

The algorithm is unchanged. We select among the runnable tasks the task and the processor which
maximize the GDL.



THE GDL ALGORITHM

1: Compute e*(n) and D(n) for all nodes n

2: Compute SL(n) for all nodes n

3: ReadyTask <+ {Entry tasks}

4: While ReadyT ask is not empty

5:  Compute GDL(n,p) for every node n in ReadyT ask
and every processor p

6:  Select the pair (n,p) that maximizes GDL

7. Update ReadyTask

8: End while

4 The Iso-Level Heterogeneous Allocation (ILHA) algorithm

The main idea of the algorithm that we propose is to perfectly balance the load between those computations
that can be performed in parallel. First we sketch a simple method to balance a set of n tasks on p
heterogeneous processors, then we explain how to split the task graph into task levels which we assign to
processors using the load-balancing algorithm. Finally we outline the ILHA algorithm.

Load balancing algorithm Given n independent chunks of computations, each requiring the same
amount of work, how can we assign these chunks to p processors so that the load is best balanced? Intuitively,
1

the load of P; should be inversely proportional to its cycle-time ¢;, i.e. P; should receive ¢; = =521 X n
i=1 t]-

chunks. This strategy leads to a perfect load balance when n is a multiple of C' = lem(t1,ta,- - ,tp) ;’:1 L

E:

a quantity that may be very large. For the general case, the following algorithm provides the best solution [2]:

OPTIMAL DISTRIBUTION
1
:Vie{l,...,p}, ¢ = \‘% an .

i=11t;

—_

cform=c+c2+...+c,ton
find k € {1,...,p} such that t; x (¢, +1) = min{t; x (¢; + 1))}
cL=cp+1

=W

4.1 First version

Iso-level splitting We split a task graph into levels made up of independent tasks, by considering the
tasks that will be ready at the same time-step. In other words, two tasks belong to the same level if they
have the same top-level, using the terminology of [10]. This is done by a traversal of the graph. Initially,
the 0-level is composed of the entry tasks. The (i + 1)-th level groups the tasks that are ready when the i-th
level is achieved.

The ITHLA-0 algorithm A first version of the ILH A algorithm is the following: we traverse the task
graph to split it into levels made of independent tasks. We compute the number of tasks that we allocate to
each processor using the load-balancing algorithm. Once this is done, we have to determine exactly which
task is given to each processor. The criteria is to minimize the communication costs. So for each task of
the level, we consider its predecessors. If they are all allocated to the same processor, we try to allocate the
task to the same processor (i.e. if the processor may receive another task), otherwise, we allocate the task
to the fastest processor that is not yet saturated (able to receive new tasks according to the load-balancing
strategy). This simple strategy leads to the following algorithm:

4.2 Refined version

In the previous version of the ILHA algorithm, we process all the ready tasks at each step. In some cases, it
would be better to take into account the bottom level of the ready tasks and to consider first the tasks on a

6



THE ILHA ALCORITHM

1: ReadyTask < {Entry tasks}

2: While ReadyT ask is not empty

3:  Compute the optimal distribution with ||ReadyT ask|| tasks

For each task ¢t of ReadyT ask
If all predecessors of t are on p and p is free

Assign t to p

For each task t of ReadyT ask not yet assigned
Assign t to the first free processor

Update ReadyT ask

10:End while

critical path. To this purpose, we sort the ready tasks according to their bottom level. Then, we introduce
a parameter B, the maximal number of ready tasks that will be considered at each step. We consider those
B tasks with the higher bottom levels and we allocate them using the load balancing algorithm. Then, we
update the set of ready tasks (indeed some new tasks may have become ready) and we re-sort them according
to their bottom level. Thus, we expect that the tasks on a critical path will be processed as soon as possible.
Unfortunately, we face a tradeoff for choosing an appropriate value for B. On one hand if B is large, it will
be possible to better balance the load and minimize the communications. On the other hand, a small value
of B will enable us to process the tasks on the critical path sooner. Of course B must be at least equal to
the number of processors, otherwise some processors will be kept idle. The choice of B will be discussed
furthermore in the Section 5.
We obtain the final version of the ILH A algorithm:

THE ILHA ALGORITHM
1: Compute the bottom level of each task
2: ReadyTask < {Entry tasks} sorted by decreasing value of their bottom
level
3: While ReadyT ask is not empty
4:  Take the B first tasks of the ReadyT ask
Compute the optimal distribution with B tasks
For each task t of ReadyT ask

If all predecessors of t are on p and p is free

Assign t to p

For each task t of ReadyT ask not yet assigned
10:  Assign ¢ to the first free processor
11:  Update the list of ReadyT ask by inserting the new ready tasks on the
good place in the sorted list
12:End while

5 Experiments

5.1 Testbeds

In order to compare the different algorithms, we consider six classical kernels representing various types of
parallel algorithms. The selected task graphs are:

o LU: LU decomposition
e LAPLACE: Laplace equation solver
e STENCIL: stencil algorithm



e FORK-JOIN: fork-join graph
e DOOLITTLE: Doolittle reduction
e LDMt: LDM! decomposition

Miniature versions of each task graph are shown in Figure 1.

-

The LAPLACE task graph
The LU task graph

O

The stencil task graph The fork-join task graph

The DOOLITTLE reduction task graph
The LDM? decomposition task graph

Figure 1: The different task graphs

5.2 Weights and speeds

Task weights For the LAPLACE, STENCIL, and FORK-JOIN testbeds, all tasks have same weight,
which we normalize to 1. For the linear algebra testbeds, i.e. LU, DOOLITTLE and LDMt, the situation

8



is more complicated, because the amount of work to be done at each step of the algorithm is not constant
(see [4, 7]). For the LU kernel, the weight of a task at level k is N — k, where N is the size of the graph. For
the DOOLITTLE and LDM¢t kernels, the the weight of a task at level & is k, where k varies from 1 to N,
the size of the graph.

Processor speeds We consider two sets of experiments. In the first set, we use only 3 processors with
respective cycle times 6, 10 and 15. Remember that the time to execute a task is the product of its weight
by the processor cycle-time. In the second set, we use 10 processors: five processors with cycle time 6, three
processors with cycle time 10, and two processors with cycle time 15.

Communication costs For each testbed, we let the communication costs be proportional to the task
weights: indeed in each kernel, we always communicate the data that has just been updated. In other words,
the communication cost from a task v to a task v’ is equal to ¢ times the weight of v, where c is a parameter
that models the communication-to-computation ratio of the target platform. For each kernel, we perform
a first simulation with small communication costs, i.e. ¢ = 1, as well as a second simulation with large
communication costs, i.e. ¢ = 10.

5.3 Results

In the first subset of experiments, we use only 3 processors with respective cycle times 6, 10 and 15. These
three processor speeds are strongly heterogeneous: it turns out that many heuristics fail to be more efficient
than a sequential execution. This should not be too surprising: if we were able to achieve a full utilization
of the computing resources, i.e. an efficiency equal to one, we would improve the sequential time (using the
fastest processor alone) by a factor 6 * (3 + 15 + 1=) = 2 (which represents the maximum number of tasks
that we may compute during a cycle time). In the second subset of experiments, we use a larger number
of processors, namely 10 processors: 5 processors of cycle time 6, three processors of cycle time 10 and two
processors of cycle-time 15. This time, if we were able to achieve a full utilization of the computing resources,
i.e. an efficiency equal to one, we would improve the sequential time (using one of the fastest processors
alone) by a factor 2 = 7.6.

5.3.1 Results with three processors

In Figures 2 to 13, we show the expected execution time of the five heuristics (BIL, GDL, CPOP, HEFT and
PCT) and of two instances of the ILHA heuristic with different values for B, namely B = 10 and B = 20.

For the LAPLACE problem (Figures 2 and 3), BIL, HEFT and the two versions of ILHA have very
good results. As they perfectly balance the load and overlap communications and computations, there is
no difference between the experiments with the two different values of the communication cost. GDL and
CPOP are equivalent to a sequential scheduling in both cases. Finally, PCT presents very poor results, worse
than a sequential execution (and these poor results are even worse when the communication cost increases).

For the STENCIL problem (Figures 4 and 5), contrarily to the LAPLACE problem, only HEFT and
ILHA present good results. The remarks concerning these two heuristics remains valid. One more time,
GDL and CPOP amount to a sequential scheduling, because they assign all the tasks to the fastest processor.
PCT presents bad results again. The more interesting fact is that, contrarily to the LAPLACE problem,
BIL presents poor results: in the STENCIL problem, there is a lot of potential communications, and BIL
generates too many of them to be efficient.

For the LU problem (Figures 6 and 7), HEFT is the best scheduler. This time, CPOP and PCT present
similar results as HEFT. These three algorithms are slightly better than the two versions of ILHA. The
important fact is that we see here the interest to decrease the value of B. Indeed, the ILHA version with
B =10 is quite better than the ILHA version with B = 20. The difference between the two versions is more
visible when the communication cost increases. It is the only impact of the communication cost in these
experiments. BIL and GDL have poor results: their expected execution times are twice greater than those
of the other algorithms.

For the FORK-JOIN problem (Figures 8 and 9), GDL and CPOP find a sequential scheduling. The other
heuristics (BIL, HEFT, PCT and ILHA) obtain very good results and are optimal. Indeed, they achieve
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Figure 2: Comparison of the different heuristics for the LAPLACE problem, with 3 processors of cycle-time
6, 10 and 15 and a communication cost equal to 1.
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Figure 3: Comparison of the different heuristics for the LAPLACE problem, with 3 processors of cycle-time
6, 10 and 15 and a communication cost equal to 10.
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Figure 4: Comparison of the different heuristics for the STENCIL problem, with 3 processors of cycle-time
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Figure 6: Comparison of the different heuristics for the LU problem, with 3 processors of cycle-time 6, 10
and 15 and a communication cost equal to 1.
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Figure 7: Comparison of the different heuristics for the LU problem, with 3 processors of cycle-time 6, 10
and 15 and a communication cost equal to 10.
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Figure 8: Comparison of the different heuristics for the FORK-JOIN problem, with 3 processors of cycle-time
6, 10 and 15 and a communication cost equal to 1.
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Figure 9: Comparison of the different heuristics for the FORK-JOIN problem, with 3 processors of cycle-time
6, 10 and 15 and a communication cost equal to 10.
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a full utilization of the resources and again a factor of 2 over the sequential time. The influence of the
communication cost is very low, because all the communications are overlapped by the computations.
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Figure 10: Comparison of the different heuristics for the DOOLITTLE problem, with 3 processors of cycle-
time 6, 10 and 15 and a communication cost equal to 1.

For the DOOLITTLE problem (Figures 10 and 11), the best results are obtained with HEFT, ILHA
and BIL. PCT is close to the three previous algorithms. The expected execution times of GDL and CPOP
are slighlty better than the sequential time. The ratio between HEFT-ILHA-BIL and GDL-CPOP is close
to 2. HEFT, ILHA and BIL are close to the optimal solution. In this case, as for the LU problem, the
communication cost has no effect, but the value of B influences the results of the ILHA algorithm, even
though these effects are less important here.

For the LDM¢t problem (Figures 12 and 13), the conclusions are exactly the same as for the DOOLITTLE
problem.

5.3.2 Results with 10 processors

In Figures 14 to 25, we show the expected execution time of the five heuristics (BIL, GDL, CPOP, HEFT
and PCT) and of the ILHA heuristic with B = 38. With this value of B, we are able to perfectly balance the
load of the processors. Indeed we give 5 tasks to each processor of cycle time 6 (hence 30 tasks), 3 tasks to
each processor of cycle time 10 (hence 9 tasks) and finally 2 tasks to each processor of cycle time 15 (hence
4 tasks). So in 30 time-units we process 25 + 9 + 4 = 38 tasks. To compute these 38 tasks in a sequential
way, using one of the fastest processos, we need 38 x 6 = 228 time-units. So we may improve the sequential
time by a factor at most 22 = 7.6.

For the LAPLACE problem (Figures 14 and 15), the conclusions obtained with 3 processors remain
valid. However, the differences between all the algorithms are increased. The solution given by CPOP is still
equivalent to the sequential scheduling. GDL is a little better than the sequential scheduling. PCT shows
bad results which become even worse when the communication cost increases. The main interesting fact is
that we can see in these figures that HEFT, BIL and ILHA asymptotically reach a speedup of 7.6. These
three algorithms use three different schedules but they all perfectly balance the load over all the processors.

For the STENCIL problem (Figures 16 and 17), we note that ILHA and HEFT perfectly balance the load
and achieve a full utilization of the resources. We can measure a speedup close to 7.6 over the sequential
time achieved by CPOP and GDL. BIL and PCT present bad results. Note that that the communication
cost has a small effect on BIL while it strongly affects PCT.
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Figure 11: Comparison of the different heuristics for the DOOLITTLE problem, with 3 processors of cycle-
time 6, 10 and 15 and a communication cost equal to 10.
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Figure 12: Comparison of the different heuristics for the LDM¢t problem, with 3 processors of cycle-time 6,
10 and 15 and a communication cost equal to 1.
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Figure 13: Comparison of the different heuristics for the LDMt problem, with 3 processors of cycle-time 6,
10 and 15 and a communication cost equal to 10.
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Figure 14: Comparison of the different heuristics for the LAPLACE problem, with 10 processors and a
communication cost equal to 1.
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Figure 15: Comparison of the different heuristics for the LAPLACE problem, with 10 processors and a
communication cost equal to 10.
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Figure 16: Comparison of the different heuristics for the STENCIL problem, with 10 processors and a
communication cost equal to 1.
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Figure 17: Comparison of the different heuristics for the STENCIL problem, with 10 processors and a
communication cost equal to 10.
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Figure 18: Comparison of the different heuristics for the LU problem, with 10 processors and a communication
cost equal to 1.
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Figure 19: Comparison of the different heuristics for the LU problem, with 10 processors and a communication
cost equal to 10.

For the LU problem (Figures 18 and 19), BIL and GDL are close to the sequential time when the four
other algorithms present very good results. The ratio between these two sets of curves is around 7.5. It
seems that HEFT, CPOP, PCT and ILHA perfectly balance the load over the processors and so achieve a
full utilization of the resources.

For the FORK-JOIN problem (Figures 20 and 21), HEFT, ILHA and PCT have very good results and
asymptotically reach the theoretical speedup. CPOP gives the sequential schedule for the fork-join problem.
GDL is slightly better than the sequential schedule.

For the DOOLITTLE problem (Figures 22 and 23), the conclusions obtained with 3 processors remain
true. ILHA is better than HEFT, and this becomes more visible as the communication cost increases.

For the LDM¢t problem (Figures 24 and 25), the conclusions are the same as for the DOOLITTLE
problem.

5.4 Comments

Here are some synthetical comments on the experiments:

e The CPOP heuristic is not efficient for regular problems, where each node of the task graph is on a
critical path: this comment holds for LAPLACE, STENCIL, and FORK-JOIN. However, CPOP leads
to an efficient scheduling for LU, DOOLITTLE and LDMt.

e The BIL heuristic gives good results for LAPLACE, FORK-JOIN, DOOLITTLE and LDM¢, but
relatively bad ones for STENCIL and LU.

e PCT is efficient for LU, DOOLITTLE, LDMt and FORK-JOIN but it is dramatically bad for LAPLACE
and STENCIL.

e GDL never gives good results, but it is never the worst heuristic.
e ILHA and HEFT give very satisfactory results.

It appears that HEFT and ILHA heuristics give very close results. However, if we consider the number
of communications generated by both heuristics, we point out that our algorithm involves significantly fewer
communications: see Table 1.
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Figure 20: Comparison of the different heuristics for the FORK-JOIN problem, with 10 processors and a
communication cost equal to 1.
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Figure 21: Comparison of the different heuristics for the FORK-JOIN problem, with 10 processors and a
communication cost equal to 10.
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Figure 22: Comparison of the different heuristics for the DOOLITTLE problem, with 10 processors and a

communication cost equal to 1.
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Figure 23: Comparison of the different heuristics for the DOOLITTLE problem, with 10 processors and a
communication cost equal to 10.
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Figure 24: Comparison of the different heuristics for the LDM¢t problem, with 10 processors and a commu-
nication cost equal to 1.
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Figure 25: Comparison of the different heuristics for the LDMt problem, with 10 processors and a commu-
nication cost equal to 10.
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In the classical scheduling model (as outlined in Section 2), we assume that the number of communications
that can be performed at the same time is not limited. While this model is widely used in the scheduling
community, it is not realistic in practice. The interest of ILHA may well become more important in actual
implementations on heterogeneous networks of workstations, where communication resources often turn out
to be the limiting factor to achieving good performances.

Problem Heft | Ilha B=10 | Ilha B=100
STENCIL 17129 5742 396
LU 11244 4494 2508
LAPLACE 17129 8669 392
FORKJOIN 100 100 100
DOOLITTLE | 13727 10585 5018
LDMt 14387 10494 5272

Table 1: Number of communications with HEFT and ILHA

6 Conclusion

In this paper we have dealt with five different heuristics from the literature to solve the task scheduling
problem on heterogeneous platforms: PCT, BIL, HEFT, CPOP and GDL. It appears that HEFT is the only
heuristic giving good results for all the six testbeds used in our comparison.

We have introduced a new heuristic, ILHA, which seems very promising for the following main reasons:
(i) ILHA is always the best heuristic with HEFT, (ii) ILHA only requires a traversal of the task graph, so
its low complexity makes its suitable to process huge task graphs in a reasonable time. (iii) ILHA generates
very few communications.
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