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Abstract

We show that proving lower bounds in algebraic models of computa�
tion may not be easier than in the standard Turing machine model�
For instance� a superpolynomial lower bound on the size of an alge�
braic circuit solving the real knapsack problem �or on the running
time of a real Turing machine	 would imply a separation of P from
PSPACE� A more general result relates parallel complexity classes
in boolean and real models of computation� We also propose a few
problems in algebraic complexity and topological complexity�
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R�esum�e

On montre qu
il n
est pas toujours plus facile d
obtenir des bornes
inf�erieures dans des mod�eles de calcul alg�ebriques que dans le mo�
d�ele classique de la machine de Turing� Par exemple� une borne in�
f�erieure superpolynomiale sur la taille d
un circuit alg�ebrique r�esolvant
le probl�eme du sac��a�dos r�eel �ou sur le temps de calcul d
une machine
de Turing r�eelle	 impliquerait une s�eparation de P et PSPACE� Un
r�esultat plus g�en�eral �etablit des relations entre classes de complexit�e
parall�eles dans les mod�eles de calcul bool�eens et r�eels� On propose
aussi quelques probl�emes de complexit�e alg�ebriques et de complexit�e
topologique�

Mots�cl�es� complexit�e alg�ebrique� arbres de d�ecision� localisation de points�
bornes inf�erieures�
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� Introduction

One important motivation for the study of algebraic complexity is the search for
better lower bounds than in boolean models of computation� This hope has been
fullled to a large extent� In particular� there is a large body of work on lower
bounds for linear or algebraic decision trees� Here� one of the seminal papers is
the quadratic lower bound for the knapsack problem by Dobkin and Lipton ���
�other early results can be found in ���� and ����	� Nevertheless� the ultimate
goal of proving superpolynomial lower bounds for natural problems has remained
elusive� Sometimes this is due simply to the fact there is no superpolynomial
lower bound� Meyer auf der Heide ���� has constructed linear decision trees �or
linear search algorithms in his terminology	 of polynomial depth for Knapsack�
As he puts it� this �destroys the hope of proving nonpolynomial lower bounds for
this NP�complete problem in the model of linear search algorithms�� One can
still try to prove a superpolynomial lower bound for Knapsack in more realistic

�A part of this work was done while the authors were visiting the Liu Bie Ju Center for

Mathematical Sciences at the City University of Hong�Kong�
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�i�e�� less powerful	 computation models� e�g�� arithmetic circuits� or� if one wants
a uniform model of computation� the real Turing machine of Blum� Shub and
Smale ���� This has remained an open problem to this date�

In this paper� we show that Meyer auf der Heide
s result e�ectively destroys
the hope of proving a superpolynomial lower bound for Knapsack in these less
powerful models� Indeed� we show that a superpolynomial lower bound on the
circuit size �or a fortiori on the time on a real Turing machine	 for Knapsack
implies P �� PSPACE� In other words�

Proposition � If P � PSPACE� Knapsack can be solved in polynomial time on
a real Turing machine�

Although widely believed to be true� the separation of P from PSPACE is a
notorious open problem� This shows in a precise sense that lower bounds over
the reals are not easier than in boolean models of computation�

Our proof is based on Meyer auf der Heide
s construction� In fact there is
a more general result� based on a subsequent paper by the same author �����
The main result in that paper implies that problems in PAR�

Rovs

can be solved
by linear decision trees of polynomial depth� Here PAR stands for �parallel
polynomial time� and the notation Rovs is meant to recall that we consider R as
an ordered vector space� i�e�� the only legal operations are �� � and � �see ��� ��
for more information on parallel complexity classes in the BSS model	� The
superscript � means that real parameters are not allowed in a machine
s program
�� and � are the only allowed constants	� Meyer aud der Heide used a somewhat
di�erent model of computation� he worked with parallel random access machines
performing arithmetic operations on integers at unit cost� One can check that
the result �and its proof	 still hold for real inputs�

The class of problems that can be solved in polynomial time by parameter�
free real Turing machines is denoted P�

Rovs

� It also makes sense to work with
real Turing machine which can use arbitrary real parameters� The corresponding
classes are denoted PRovs

and PARRovs
� We shall prove the following�

Theorem � PRovs
� PARRovs

if and only if P�poly � PSPACE�poly� and
P�
Rovs

� PAR�
Rovs

if and only if P � PSPACE�

In the theory of computation over the reals� PAR plays the same role as PSPACE
in the classical theory �and in fact PAR � PSPACE for the standard structure
f�� �g	� Theorem � can therefore be viewed as a transfer result for the problems
P � PSPACE and P�poly � PSPACE�poly� This is similar in spirit �but tech�
nically very di�erent	 to the transfer theorem for the problem P � NP due to
Blum� Cucker� Shub and Smale ����

Theorem � implies Proposition � since Knapsack is in PAR�
Rovs

� For PARRovs
�

complete problems there is a more precise statement� such a problem is in PRovs
if

and only if PRovs
� PARRovs

� that is� if and only if P�poly � PSPACE�poly� This
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applies for instance to DTRAO� the Digital Theory of the Reals with Addition
and Order ���� For Knapsack we have seen that one direction of this implication
holds� but the converse is not known to be true because Knapsack is presumably
not PARRovs

�complete� Nevertheless� there is a weak converse to Proposition ��
it can be shown that if Knapsack is in PRovs

then the standard knapsack problem
�in the Turing model	 is in P�poly� This would imply P�poly � NP�poly since
the standard knapsack problem is NP�complete �there is a similar remark in ����	�

Note that under the �quite unlikely	 hypothesis P�poly � PSPACE�poly�
Theorem � is actually a strengthening of Meyer auf der Heide
s result since for
any input size� a polynomial�time real machine can always be unwinded into a
polynomial depth decision tree� This somehow suggests that one cannot avoid
using his result� Note also that Theorem � does not hold in all structures� Knap�
sack is still in PAR �even in NP	 over the reals with addition and equality� but it is
known that it does not admit polynomial�size decision trees in that structure �����

The remainder of this paper is organized as follows� In section � we give a
renement of the main result of ���� which concerns the size of coe�cients in a
linear decision tree� We also answer in Theorem � a question left open in that
paper� Section � is devoted to the proof of Theorem �� Finally� section � discusses
the generalization of these results to models of computation with multiplication�

� Coe�cient Size in Decision Trees

As explained in the introduction� the following result is essentially established
in �����

Theorem � Any problem in PAR�
Rovs

can be solved by a family of linear linear
decision of polynomial depth�

We recall that the internal nodes in a linear decision tree �also called a linear
search algorithm� or LSA for short	 are labeled by tests of the form �l�x	 � �
�� where l is an a�ne function and x � Rn is the input� Leaves are labeled �
�reject	 or � �accept	�

Note that Theorem � actually holds for any problem in PARRovs
� if A �

PARk
Rovs

� there exists B � PAR�
Rovs

such that A�Rn is the restriction of B�Rn�k

�obtained by xing the values of the k parameters	� Since B can be solved by a
family of polynomial depth LSA� the same is true for its restriction�

In this section we present a renement of Theorem ��

Theorem � Any problem in PAR�
Rovs

can be solved by a family of LSA of poly�
nomial depth in which the test functions have integer coe�cients of polynomial
size�

Before explaining the proof� we recall a few denitions� Let H � fh�� � � � � hmg a
set of hyperplanes inRn� We denote by h�i and h�i the two open halfspaces dened
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by hi� For a point x in Rn� let pvi�x	 � � if x � h�i � pvi�x	 � � if x � h�i and
pvi�x	 � � if x is on hi� The position vector of x is pv�x	 � �pv��x	� � � � �pvm�x		�
The set of points that have a given position vector� if not empty� is called a face�
The partition of Rn into faces is called the arrangement of H� and is denoted
A�H	� We dene the dimension of a face f to be the dimension of its a�ne
closure� A face of dimension k is called a k�face� A n�face is called a cell� and a
��face a vertex�

Let A be a language in PAR�
Rovs

� A � Rn is recognized in parallel time p�n	
by a constant�free real machine� where p is a polynomial� It is shown in ����
that A � Rn is a union of faces of A�H	� where H is a set of hyperplanes in
Rn dened by linear equations with integer coe�cients in ���p�n�� �p�n��� It is
therefore su�cient to prove the following result�

Theorem � Let H � fh�� � � � � hmg be a set of hyperplanes in Rn�

�i� The range searching problem for H can be solved by a LSA of depth
�n logm	O����

�ii� Moreover� if the coe�cients of h�� � � � � hm are integers in ��q� q�� the test
functions in this LSA have integer coe�cients of size �n log q	O����

Here we say that a LSA solves the range searching problem if two points of Rn

arriving to the same leaf always belong to the same face� Part �i	 answers a
question of ����� This question was almost answered in a paper by Meiser �����
the main caveat being that multiplications are used in his algorithm �thus the
implicit computation model is the algebraic decision tree instead of the LSA	�
Range searching has been studied by many other authors� see e�g� ��� and the
references there�

Part �ii	 follows from a fairly straightforward analysis of the proof of �i	� It is
shown in ��� that this bound on coe�cients can also be obtained from an analysis
of the constructions in ���� and �����

By a lemma from ����� it su�ces to recognize the union h� � � � � � hm�

Lemma � �Meyer auf der Heide� Let H be a set of hyperplanes in Rn� If the
union of these hyperplanes can be decided by a LSA T� of depth T � then the range
searching problem for H can be solved by a LSA T� of depth �T � Moreover� the
hyperplanes appearing in the nodes of T� and T� are the same�

In the remainder of this section� we present our algorithm for recognizing h� �
� � � � hm� This algorithm is a modication of Meiser
s� and we refer to his paper
for any unexplained notion�

Given a nite set R of hyperplanes in Rn� �A�R	 denotes the triangulated
arrangement of R� The importance of triangulations stems from the following
fact�
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Lemma � �Meiser� For any set H of m hyperplanes in Rn� and any �� � � � �
�� there is a set R � H of r � O��n���	 log��n��		 hyperplanes such that no cell
of �A�R	 is intersected by more than �m hyperplanes of H�

The algorithm works as follows� let R be the subset of H given by Lemma � for
� � ���� and r � jRj� The position of an input x in A�R	 can be computed in
depth �r by testing in turn the position of x with respect to each hyperplane of
R� The r leaves corresponding to the hyperplanes of R can be labeled accept� If
x does not lie on an hyperplane of R� it belongs to a cell c of A�R	� We now
describe a method for locating x in the triangulation of c�

��� Structure of Triangulations

We rst recall how the triangulation �p of a bounded polytope p of Rn is built�
Let z� be a vertex of p and ff�� � � � � fsg the set of �d� �	�faces of p that are not
adjacent to z�� The collection of cells forming �p is fconv�z�� f	� f � �f�� � � ��
�fng� where conv�z�� f	 is the interior of the convex hull of z� � f �

The case of an unbounded polytope p is a little more involved� For x � p�
ccx�p	 is dened as fy� �� � � x � �y � pg� This set does not depend on
x� It is called the characteristic cone of p and denoted cc�p	� First� we apply
the triangulation algorithm for bounded polytopes to p� However� the cone C �
z��cc�p	 will not be covered by the elementary cells obtained� We can make sure
that C is line�free by adding to H the set of hyperplanes fx� � �� � � � � xd � �g�
Then C can be triangulated as follows� let h be a hyperplane such that h�C is a
bounded polytope p� of h� We set �C � fcone�z�� f	� f � �p�g� where cone�z�� f	
is the interior of the cone of apex z� and base f �

��� Point Location in a Triangulated Polytope

We now explain how to locate a point x in the triangulation of a cell c of A�R	�
More precisely� we want to nd a �possibly unbounded	 simplex s of �A�c	 such
that x belongs to the closure of s� Let z� be the vertex that has been used to
triangulate c� and ff�� � � � � � f

�
n�
g the set of �n��	�faces of c that are not adjacent to

z�� In the rst step� we compute i such that x � conv�z�� f�i 	� Since the n� faces
under consideration are bounded by at most r hyperplanes� and n� 	 r� this can
be done in time O�r�	� Let z� be the vertex that has been used to triangulate f�i �
and ff�� � � � � � f

�
n�
g the set of �n��	�faces of f�i that are not adjacent to z�� In the

second step� we determine in time O�r�	 a face f�i such that x � conv�z�� z�� f�i 	�
One can keep going down the hierarchy of triangulations in the same way� and
eventually determine after n� � steps a simplex s of �A�c	 such that x belongs
to the closure of s �if c is unbounded� we also have to test if x � cone�z�� p�	 in
the rst step� if this is the case� the following steps consist of going down the
hierarchy of cones of apex z� induced by the triangulation of p�	� Since each step
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can be performed in depth O�r�	� the depth of the LSA locating x in �A�R	 is
O�nr�	�

��� Recursion

According to Lemma �� the set H� of hyperplanes of H intersecting s has at most
jHj�� elements� There are two cases�

�a	 If x belongs to s� we call the algorithm recursively with H replaced by H��

�b	 If x is on the boundary of s� let h be the a�ne closure of a �n� �	�face of
s such that x � h� If h � H we accept x� Otherwise� we proceed as in �a	�

��� Analysis of the Algorithm

Let T �m	 be the depth of the LSA deciding the union of m hyperplanes� We
have T �m	 	 O�nr�	 � T �m��	 for m � r for r as in Lemma �� T �m	 � O�r	
otherwise� Thus T �m	 � O�nr� logm	 � O�n� log� n logm	� This completes the
proof of �i	�

Let us now assume that the hyperpanes of H have integer coe�cients in
��q� q�� Each hyperplane appearing as a test function in the LSA is the a�ne
closure of a union of faces of A�H	� Every such hyperplane is therefore the
a�ne closure of n vertices p�� � � � � pn of H � � H � fx� � �� x� � �� � � � � xn �
�� xn � �g� By Cramer
s rule� pi is a rational point �ai��ui� � � � � ain�ui	� with
jaijj� juij 	 B � qnnn��� An equation of the hyperplane h containing p�� � � � � pn is
det�x�p�� p��p�� � � � � pn�p�	 � �� Multiplying the columns of this determinant
by u�� �u�u�	� � � � � �u�un	 respectively� we obtain an equation for h with integer
coe�cients no larger than n���B	�n� Thus the length of each coe�cient is bounded
by n� log n� �n� log q �O�n�	� This completes the proof of Theorem ��

� Proof of the Main Result

Let us recall that a real language �or problem	 is a subset of R� �
S
n��R

n� and
that the boolean part BP�C	 of a class C of real problems is the set of boolean
problems of the form A � f�� �g� where A � C�

��� Boolean Parts

We need some characterizations of boolean parts� In the parameter�free case
there is almost nothing to prove� see ���� and ��� for the general �parameters
allowed	 case�

Fact � BP�PRovs
	 � P�poly and BP�P�

Rovs

	 � P� BP�PARRovs
	 �

PSPACE�poly and BP�PAR�
Rovs

	 � PSPACE�
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Fact � Let B be a problem in PAR�
Rovs

� For every n � � there exists a quanti�er�
free formula Fn in the theory of the reals with addition and order de�ning B�Rn�
The atomic predicates in Fn are of the form l�x	 � � or l�x	 � �� where l is an
a�ne function with integer coe�cients of polynomial size�

It is also possible to give a single�exponential bound on the number of atomic
predicates in Fn� but we do not need this here�

It is shown in the next result that nondeterminismdoes not increase the power
of parallel polynomial time� We work with the following denitions� a problem
A � R� is in NPARRovs

�respectively� NPAR�
Rovs

	 if there exists a corresponding
problem B � PARRovs

�respectively� B � PAR�
Rovs

	 and a polynomial p such that
for any n � � and x � Rn� x � A i�


y � Rp�n�hx� yi � B� ��	

Theorem 	 NPARRovs
� PARRovs

and NPAR�
Rovs

� PAR�
Rovs

�

Proof� Obviously� PARRovs
� NPARRovs

and PAR�
Rovs

� NPAR�
Rovs

� Let us show
the converse inclusion NPAR�

Rovs

� PAR�
Rovs

� Thus� let A � NPAR�
Rovs

� and
let B � PAR�

Rovs

be the corresponding problem� We claim that there exists a
polynomial q such that this existential formula is satised i� it is satised by a
point y � Rp�n� all of whose components are of the form yi � li�x	 where li is
an a�ne function with rational coe�cients of size at most q�n	� This will show
that A � PAR�

Rovs
since one can then try in parallel all such values of y to decide

whether x � A �divisions can be avoided by storing separately numerators and
denominators	�

To prove the claim� assume that ��	 holds for a given x� By Fact �� hx� yi � B
i� �x� y	 satises a formula Fn�x� y	 with coe�cients of polynomial size� We
can assume that Fn is a disjunction

Wmn

i��Ci�n of conjunctions of linear inequali�
ties� Since ��	 is valid� one conjunction Ci�n must be valid� From the existence
of �small� points in polyhedra �Theorem � in ���� note that the number of in�
equations does not appear in that bound	 we conclude that Ci�n� and hence Fn�
is satised by a point y of the required form� This completes the proof that
NPAR�

Rovs

� PAR�
Rovs

�note the similarity with the proof of Theorem � in ���	�
Finally� we show that NPARRovs

� PARRovs
� For any A � NPARRovs there

exists k � �� � � Rk and A� � NPAR�
Rovs

such that x � A i� hx� �i � A�� But we
have just seen that� in fact� A� � PAR�

Rovs

� This shows that A � PARRovs
since

this problem is the restriction of a PAR�
Rovs

problem �one could also use a version
of Fact � adapted to PARRovs

problems to prove that result	� �

Corollary � BP�NPARRovs
	 � PSPACE�poly and BP�NPAR�

Rovs

	 � PSPACE�

�



��� Exploring a Linear Decision Tree

To a problem A of R� we associate a boolean problem  A� An instance of  A
is described by three integers n� L� d �given in unary	 and a �possibly empty	
system S of a�ne inequalities of the form l�x	 � � or l�x	 � �� The coe�cients
of these inequalities are integers written in binary� and the variable x lives in Rn�
The system denes a polyhedron PS � Rn� An instance of  A is positive if there
exists a LSA T of depth at most d with coe�cients of bit size at most L such
that T recognizes A on PS �i�e�� A � PS � E � PS � where E is the subset of Rn

recognized by T 	�
We need an algorithm to solve  A� and for positive instances of this problem

we also need to compute the label lr of the root of a corresponding tree T �this
tree may not be unique� but any solution will do	� Thus lr is just a boolean value
if T is reduced to a leaf� and an a�ne inequality of the form l�x	 � � otherwise�

Lemma � If A � PAR�
Rovs

then  A � PSPACE� Moreover� for a positive instance
lr can be constructed in polynomial space�

Proof� We rst determine whether T can be of depth �� i�e�� reduced to a leaf� In
that case� T recognizes either Rn or � depending on the label of that leaf� Label
� is not acceptable i�


x � Rn x � PS nA ��	

Since A � PARRovs
� the problem of deciding whether a given x and S satisfy

x � PS nA is PARRovs
� Hence by Corollary �� deciding ��	 is a PSPACE problem�

Label � is not acceptable i� 
x � Rn x � PS�A� This is also a PSPACE problem�
If there is a solution in depth �� we accept the instance of  A and output the

corresponding label� Otherwise� for d � � we look for solutions of depth between
� and d �for d � � we exit and reject the instance	� To do this we enumerate
�e�g� in lexicographic order	 all possible linear inequalities of the form l�x	 � �
where the coe�cients of l are of bit size at most L� For each such inequality we
do the following�

�� Decide by a recursive call whether �n�L� d� ��S � fl�x	 � �g	 is a positive
instance of  A�

�� Decide by a recursive call whether �n�L� d� ��S � fl�x	 � �g	 is a positive
instance of  A�

�� In case of a positive answer to both questions� exit the loop� accept
�n�L� d�S	 and output lr � l�

The instance is rejected if it is not accepted in the course of this enumeration
procedure�

In addition to the space needed to solve the depth � case� we just need to
maintain a stack to keep track of recursive calls� Hence this algorithm runs
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in polynomial space� showing that  A � PSPACE� For positive instances� the
algorithm also outputs lr as needed� �

Before proving Theorem � we need an intermediate result�

Theorem 
 Let A be a problem of PAR�
Rovs

which can be solved by a polynomial�
depth LSA with coe�cients of polynomial size� P�poly � PSPACE�poly implies
A � PRovs

� and P � PSPACE implies A � P�
Rovs

�

Proof� For inputs of size n� A can be solved by a tree of depth and coe�cient
size bounded by anb� where a and b are constants� The idea is to use Lemma �
to move down that tree� The hypothesis P�poly � PSPACE�poly implies that
 A � P�poly� Moreover� for positive instances lr can be constructed in polynomial
time with polynomial advice �one should argue that each bit of lr is in PSPACE�
and therefore in P�poly	� Thus we set L � d � anb and S � �� By hypoth�
esis �n�L� d�S	 is a positive instance of  A and therefore lr can be computed in
polynomial time �with polynomial advice	� If lr is a boolean value we stop and
output that value� Otherwise lr is an a�ne function� and we can determine in
polynomial time whether the input x � Rn to A satises lr�x	 � �� If so� we set
S � � S � flr � �g� Otherwise� we set S � � S � flr � �g� In any case� we set
d� � d � �� and feed �n�L� d��S �	 to the algorithm for  A� This process continues
until a leaf is reached� This requires at most anb steps�

The above algorithm runs in polynomial time with polynomial advice �in
fact� the only advice used is the advice needed to solve instances of  A of the
form �n�L� d�S	 where L� d 	 anb and S is a system of at most anb inequalities
of coe�cient size bounded by anb	� That advice can be encoded in the digits
of a real constant and retrieved in polynomial time� showing that A � PRovs

� If
P � PSPACE then no advice is needed� hence A � P�

Rovs

� �

Proof of Theorem �� Let us do the �easy� direction rst� The boolean problem
QBF is a well�known PSPACE�complete problem� It is clearly in PAR�

Rovs

� hence
P�
Rovs

� PAR�
Rovs

implies QBF � P�
Rovs

� Thus QBF � P since BP�P�
Rovs

	 � P�
We conclude that P � PSPACE by the completeness of QBF� If we only assume
that PRovs

� PARRovs
� we obtain QBF � P�poly since BP�PRovs

	 � P�poly� This
implies PSPACE � P�poly �or equivalently� P�poly � PSPACE�poly	�

For the converses� we know from Theorem � that any problem in PAR�
Rovs

can
be solved by a polynomial�depth LSA with coe�cients of polynomial size� Thus
P � PSPACE implies P�

Rovs

� PAR�
Rovs

by Theorem ��
Now� let A be a problem in PARRovs

���� � � � � �k	� This problem is the restric�
tion of a higher�dimensional PAR�

Rovs

problem� That is� there exists B � PAR�
Rovs

such that for any x � Rn� x � A if and only if �x�� � � � � xn� ��� � � � � �k	 � B� By
Theorem �� P�poly � PSPACE�poly implies B � PRovs

� Thus A � PRovs
since it

is in fact the restriction of a PRovs
problem� �

�



� Multiplicative Models

This section is made mostly of problems and conjectures�

��� Algebraic Complexity

Extending Theorem � to models of computation with multiplication seems to be a
challenging problem� In that context� it is natural to work with algebraic decision
trees instead of LSA� We recall that the internal nodes in an algebraic decision
tree are divided into computation nodes and branch nodes� A computation node
c has a single child and is labeled by an expression of the form � �� ��	 where
� � f����g� Here � is the node variable� � and 	 are constants from R or
variables above c �a variable is said to be above c if it is one of the n input
variables or labels a computation node on the path from the root of the tree
to c	� A branch node b has two children and is labeled by an expression of the
form �� � � �� where � is a variable above b� Finally� the leaves of the tree are
labeled � or �� The tree computes a boolean�valued function on Rn in the usual
way� We propose the following conjecture�

Conjecture � Any problem in PARR can be solved by a family of polynomial�
depth algebraic decision trees�

It would already be interesting to solve this conjecture for specic problems in
PARR� e�g�� for the linear programming problem �feasibility of systems of the
form �Ax � b�	�

One can also consider algebraic decision trees over C � In this case� tests are
of the form �� � � ��� We conjecture that the situation is signicantly di�erent
than in the real case�

Conjecture � Hilbert	s Nullstellensatz� Twenty Questions and KnapsackC can�
not be solved by families of polynomial�depth algebraic decision trees�

We recall that an input to Hilbert
s Nullstellensatz �HN	 is a system of polynomial
equations in several complex variables� The input is accepted if this system has a
solution� Twenty Questions was introduced in ����� an input x � C n is accepted
if the rst component x� is an integer between � and �n�

These three problems are in PARC � and even in NPC � Thus the conjecture
implies PC �� NPC � It follows from the NPC �completeness of HN ��� �� that if
the conjecture is true for Twenty Questions or KnapsackC � it is also true for HN�
Note that the restrictions of KnapsackC and Twenty Questions to R can be solved
by real algebraic decision trees of polynomial depth� In fact� any nite subset
fa�� � � � � amg of R can be recognized in depth O�logm	 by the obvious binary
search algorithm� This is not so over the complex numbers�

Proposition � A �nite subset fa�� � � � � amg � C cannot be recognized in depth
m� � if the ai	s are algebraically independent over Q�

��



This result appears in ��� as a corollary to a much more general theorem� We give
a proof below since it can be sketched from scratch in a few lines� First� recall that
the canonical path in an algebraic decision tree is the path followed by a Zariski
dense subset of the inputs� It is obtained by answering no to each test �� � � ��
encountered during a computation �we assume without loss of generality that all
the �
s represent non�constant polynomials in the input variables	�

Proof of Proposition 
� Consider a tree of depth d recognizing a nite subset
E � C � Let ��� � � � � �j be the complex parameters appearing on the canonical
path� We may assume that at most one new parameter is introduced at each
node� so j 	 d� Each element of E must be a root of some polynomial computed
along the canonical path� These polynomials have coe�cients in Q���� � � � � �j�
and roots in K � Q���� � � � � �j�� This eld has transcendence degree at most j�
hence j � m if K is to include fa�� � � � � amg� �

As a side remark� we note that a similar but even simpler argument shows that
Twenty Questions is a witness to the separation of P from NP in the BSS model
with addition and equality only� This is a simpler problem than Knapsack �used
in ����	 or its multidimensional version �used in ���� for the original proof of this
separation	�

��� Topological Complexity

As a rst step towards a positive solution to Conjecture �� one may attempt to
work with decision trees in which internal nodes are labeled by tests of the form
�P �x	 � � �� where P can be any polynomial �thus one assumes that computing
an arbitrary polynomial in the input variables takes unit time	� This leads to the
subject of topological complexity as studied by Smale ���� and Vassiliev ����� The
corresponding trees will be called topological decision trees to distinguish them
from ordinary algebraic decision trees�

It is not clear whether any problem in PARR can be solved by a family of
polynomial�depth topological decision trees� We have seen that the correspond�
ing problem has a positive answer for the reals with addition and order� An im�
portant ingredient of the proof was the fact that the range searching problem for
arrangements of hyperplanes can be solved in polynomial depth� It seems there�
fore natural to investigate the complexity of range searching in semi�algebraic
sets�

Problem � Is it possible to solve the range searching problem for m polynomials
of degree d in n variables by a topological decision tree of depth �nd logm	O��� �
or even depth �n log�md		O��� �

Here we say that a tree solves the range searching problem for the polynomials
P�� � � � � Pm if two input points arriving to the same leaf always belong to the same

��



face� As in the linear case� a face is the set of points satisfying one of the �m

�sign conditions� of the form P��x	 
� �� � � � �Pm�x	 
m � where 
i � f���� �g�
Range searching in semi�algebraic sets has been studied mostly for polynomi�

als of bounded degree ���� In this case� it is not hard to see that algebraic decision
trees of depth O�n logm	O��� can solve the problem �one can make a reduction to
the linear case by introducing new variables representing all monomials of degree
at most d	�
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