Pascal Koiran
email: koiran]@ens.ens-lyon.fr

Are Lower Bounds Easier over the Reals ?

Keywords: algebraic complexity, decision trees, range searching, lower bounds complexit e alg ebrique, arbres de d ecision, localisation de points, bornes inf erieures algebraic complexity, decision trees, range searching, lower bounds

We show that proving lower bounds in algebraic models of computation may not be easier than in the standard Turing machine model. For instance, a superpolynomial lower bound on the size of an algebraic circuit solving the real knapsack problem (or on the running time of a real Turing machine) would imply a separation of P from PSPACE. A more general result relates parallel complexity classes in boolean and real models of computation. We also propose a few problems in algebraic complexity and topological complexity.

Introduction

One important motivation for the study of algebraic complexity is the search for better lower bounds than in boolean models of computation. This hope has been ful lled to a large extent. In particular, there is a large body of work on lower bounds for linear or algebraic decision trees. Here, one of the seminal papers is the quadratic lower bound for the knapsack problem by Dobkin and Lipton 8] (other early results can be found in 18] and 20]). Nevertheless, the ultimate goal of proving superpolynomial lower bounds for natural problems has remained elusive. Sometimes this is due simply to the fact there is no superpolynomial lower bound: Meyer auf der Heide 14] has constructed linear decision trees (or linear search algorithms in his terminology) of polynomial depth for Knapsack. As he puts it, this \destroys the hope of proving nonpolynomial lower bounds for this NP-complete problem in the model of linear search algorithms." One can still try to prove a superpolynomial lower bound for Knapsack in more realistic A part of this work was done while the authors were visiting the Liu Bie Ju Center for Mathematical Sciences at the City U n i v ersity of Hong-Kong. 1 (i.e., less powerful) computation models, e.g., arithmetic circuits, or, if one wants a uniform model of computation, the real Turing machine of Blum, Shub and Smale 4]. This has remained an open problem to this date.

In this paper, we s h o w t h a t M e y er auf der Heide's result e ectively destroys the hope of proving a superpolynomial lower bound for Knapsack in these less powerful models. Indeed, we s h o w that a superpolynomial lower bound on the circuit size (or a fortiori on the time on a real Turing machine) for Knapsack implies P 6 = PSPACE. In other words: Proposition 1 If P = P S P ACE, Knapsack can be solved i n p olynomial time on a r eal Turing machine. Although widely believed to be true, the separation of P from PSPACE is a notorious open problem. This shows in a precise sense that lower bounds over the reals are not easier than in boolean models of computation.

Our proof is based on Meyer auf der Heide's construction. In fact there is a more general result, based on a subsequent paper by the same author 15]. The main result in that paper implies that problems in PAR 0 Rovs can be solved by linear decision trees of polynomial depth. Here PAR stands for \parallel polynomial time" and the notation R ovs is meant to recall that we consider R as an ordered vector space, i.e., the only legal operations are +, ; and < (see 2 , 7] for more information on parallel complexity classes in the BSS model). The superscript 0 means that real parameters are not allowed in a machine's program (0 and 1 are the only allowed constants). Meyer aud der Heide used a somewhat di erent model of computation: he worked with parallel random access machines performing arithmetic operations on integers at unit cost. One can check t h a t the result (and its proof) still hold for real inputs.

The class of problems that can be solved in polynomial time by parameterfree real Turing machines is denoted P 0 Rovs . It also makes sense to work with real Turing machine which can use arbitrary real parameters. The corresponding classes are denoted P Rovs and PAR Rovs . W e shall prove the following.

Theorem 1 P Rovs = P AR Rovs if and only if P=poly = PSPACE=poly, a n d P 0 Rovs = P AR 0 Rovs if and only if P = P S P ACE. In the theory of computation over the reals, PAR plays the same role as PSPACE in the classical theory (and in fact PAR = PSPACE for the standard structure f0 1g). Theorem 1 can therefore be viewed as a transfer result for the problems P = P S P ACE and P=poly = PSPACE=poly. This is similar in spirit (but technically very di erent) to the transfer theorem for the problem P = NP due to Blum, Cucker, Shub and Smale 3].

Theorem 1 implies Proposition 1 since Knapsack i s i n P AR 0 Rovs . F or PAR Rovscomplete problems there is a more precise statement: such a problem is in P Rovs if and only if P Rovs = P AR Rovs , that is, if and only if P=poly = PSPACE=poly. This applies for instance to DTRAO, the Digital Theory of the Reals with Addition and Order 7]. For Knapsack w e h a ve seen that one direction of this implication holds, but the converse is not known to be true because Knapsack is presumably not PAR Rovs -complete. Nevertheless, there is a weak converse to Proposition 1: it can be shown that if Knapsack i s i n P Rovs then the standard knapsack problem (in the Turing model) is in P=poly. This would imply P=poly = NP=poly since the standard knapsack problem is NP-complete (there is a similar remark in 11]).

Note that under the (quite unlikely) hypothesis P=poly = PSPACE=poly, Theorem 1 is actually a strengthening of Meyer auf der Heide's result since for any input size, a polynomial-time real machine can always be unwinded into a polynomial depth decision tree. This somehow suggests that one cannot avoid using his result. Note also that Theorem 1 does not hold in all structures: Knapsack is still in PAR (even in NP) over the reals with addition and equality, but it is known that it does not admit polynomial-size decision trees in that structure 10].

The remainder of this paper is organized as follows. In section 2 we give a re nement of the main result of 15] which concerns the size of coe cients in a linear decision tree. We a l s o a n s w er in Theorem 4 a question left open in that paper. Section 3 is devoted to the proof of Theorem 1. Finally, section 4 discusses the generalization of these results to models of computation with multiplication.

Coe cient Size in Decision Trees

As explained in the introduction, the following result is essentially established in 15].

Theorem 2 Any problem in PAR 0

Rovs can be solved by a family of linear linear decision of polynomial depth. We recall that the internal nodes in a linear decision tree (also called a linear search algorithm, or LSA for short) are labeled by tests of the form \l(x) 0 ?" where l is an a ne function and x 2 R n is the input. Leaves are labeled 0 (reject) or 1 (accept).

Note that Theorem 2 actually holds for any problem in PAR Rovs : if A 2 PAR k Rovs , there exists B 2 PAR 0 Rovs such that A\R n is the restriction of B \R n+k (obtained by xing the values of the k parameters). Since B can be solved by a family of polynomial depth LSA, the same is true for its restriction.

In this section we present a re nement of Theorem 2.

Theorem 3 Any problem in PAR 0

Rovs can be solved by a family of LSA of polynomial depth in which the test functions have integer coe cients of polynomial size.

Before explaining the proof, we recall a few de nitions. Let H = fh 1 : : : h m g a set of hyperplanes in R n . W e denote by h + i and h ; i the two open halfspaces de ned by h i . F or a point x in R n , let pv i (x) = + i f x 2 h + i , p v i (x) = ; if x 2 h ; i and pv i (x) = 0 i f x is on h i . T h e position vector of x is pv(x) = (p v 1 (x) : : : pv m (x)). The set of points that have a g i v en position vector, if not empty, is called a face. The partition of R n into faces is called the arrangement o f H, and is denoted A(H). We de ne the dimension of a face f to be the dimension of its a ne closure. A face of dimension k is called a k-face. A n-face is called a cell, and a 0-face a vertex.

Let A be a language in PAR 0 Rovs : A \ R n is recognized in parallel time p(n) by a constant-free real machine, where p is a polynomial. It is shown in 15] that A \ R n is a union of faces of A(H), where H is a set of hyperplanes in R n de ned by linear equations with integer coe cients in ;2 p(n) 2 p(n)]. It is therefore su cient t o p r o ve the following result.

Theorem 4 Let H = fh 1 : : : h m g be a set of hyperplanes in R n .

(i) The range searching problem for H can be solved b y a L S A o f d e p t h

(n log m) O(1) .

(ii) Moreover, if the coe cients of h 1 : : : h m are integers in ;q q], the test functions in this LSA have integer coe cients of size (n log q) O(1) . Here we s a y that a LSA solves the range searching problem if two points of R n arriving to the same leaf always belong to the same face. Part (i) answers a question of 15]. This question was almost answered in a paper by Meiser 13], the main caveat being that multiplications are used in his algorithm (thus the implicit computation model is the algebraic decision tree instead of the LSA). Range searching has been studied by m a n y other authors, see e.g. 6] and the references there.

Part (ii) follows from a fairly straightforward analysis of the proof of (i). It is shown in 9] that this bound on coe cients can also be obtained from an analysis of the constructions in 14] and 15]. By a lemma from 15], it su ces to recognize the union h 1 h m .

Lemma 1 (Meyer auf der Heide) Let H be a set of hyperplanes in R n . If the union of these hyperplanes can be d e cided by a LSA T 1 of depth T, then the range searching problem for H can be solved by a LSA T 2 of depth 2T . M o r eover, the hyperplanes appearing in the nodes of T 1 and T 2 are the same.

In the remainder of this section, we present our algorithm for recognizing h 1 h m . This algorithm is a modi cation of Meiser's, and we refer to his paper for any unexplained notion.

Given a nite set R of hyperplanes in R n , A(R) denotes the triangulated arrangement of R. The importance of triangulations stems from the following fact.

Lemma 2 (Meiser) For any set H of m hyperplanes in R n , and any ", 0 < " < 1, there i s a s e t R H of r = O((n 2 =") l o g 2 (n=")) hyperplanes such that no cell of A(R) is intersected b y m o r e than "m hyperplanes of H.

The algorithm works as follows: let R be the subset of H given by Lemma 2 for " = 1 =2, and r = jRj. The position of an input x in A(R) can be computed in depth 2r by testing in turn the position of x with respect to each h yperplane of R. The r leaves corresponding to the hyperplanes of R can be labeled accept. I f x does not lie on an hyperplane of R, it belongs to a cell c of A(R). We n o w describe a method for locating x in the triangulation of c.

Structure of Triangulations

We rst recall how the triangulation p of a bounded polytope p of R n is built. Let z 0 be a vertex of p and ff 1 : : : f s g the set of (d ; 1)-faces of p that are not adjacent t o z 0 . The collection of cells forming p is fconv(z 0 f) f2 f 1 : : : f n g, where conv(z 0 f) i s t h e i n terior of the convex hull of z 0 f. The case of an unbounded polytope p is a little more involved. For x 2 p, cc x (p) is de ned as fy 8 0 x + y 2 pg. This set does not depend on x. It is called the characteristic cone of p and denoted cc(p). First, we a p p l y the triangulation algorithm for bounded polytopes to p. H o wever, the cone C = z 0 +cc (p) will not be covered by the elementary cells obtained. We c a n m a k e sure that C is line-free by adding to H the set of hyperplanes fx 1 = 0 : : : x d = 0 g. Then C can be triangulated as follows: let h be a hyperplane such t h a t h\C is a bounded polytope p 0 of h. W e s e t C = fcone(z 0 f) f2 p 0 g, where cone(z 0 f) is the interior of the cone of apex z 0 and base f.

Point Location in a Triangulated Polytope

We n o w explain how to locate a point x in the triangulation of a cell c of A(R). More precisely, w e w ant to nd a (possibly unbounded) simplex s of A(c) s u c h that x belongs to the closure of s. L e t z 0 be the vertex that has been used to triangulate c, a n d ff 0 1 : : : f 0 n 0 g t h e s e t o f (n;1)-faces of c that are not adjacent t o z 0 . In the rst step, we compute i such that x 2 conv(z 0 f 0 i). Since the n 0 faces under consideration are bounded by at most r hyperplanes, and n 0 r, t h i s c a n be done in time O(r 2). Let z 1 be the vertex that has been used to triangulate f 0 i , and ff 1 1 : : : f 1 n 1 g the set of (n ;2)-faces of f 0 i that are not adjacent t o z 1 . I n t h e second step, we determine in time O(r 2) a face f 1 i such t h a t x 2 conv(z 0 z 1 f 1 i). One can keep going down the hierarchy of triangulations in the same way, and eventually determine after n ; 1 steps a simplex s of A(c) s u c h that x belongs to the closure of s (if c is unbounded, we a l s o h a ve to test if x 2 cone(z 0 p 0) i n the rst step if this is the case, the following steps consist of going down the hierarchy of cones of apex z 0 induced by the triangulation of p 0). Since each step can be performed in depth O(r 2), the depth of the LSA locating x in A(R) i s O(nr 2).

Recursion

According to Lemma 2, the set H 1 of hyperplanes of H intersecting s has at most jHj=2 elements. There are two cases.

(a) If x belongs to s, w e call the algorithm recursively with H replaced by H 1 .

(b) If x is on the boundary of s, l e t h be the a ne closure of a (n ; 1)-face of s such t h a t x 2 h. I f h 2 H we accept x. Otherwise, we proceed as in (a).

Analysis of the Algorithm

Let T(m) be the depth of the LSA deciding the union of m hyperplanes. We have T(m) O(nr 2) + T(m=2) for m > r for r as in Lemma 2, T(m) = O(r) otherwise. Thus T(m) = O(nr 2 log m) = O(n 5 log 4 n log m). This completes the proof of (i).

Let us now assume that the hyperpanes of H have i n teger coe cients in ;q q]. Each h yperplane appearing as a test function in the LSA is the a ne closure of a union of faces of A(H). Every such h yperplane is therefore the a ne closure of n vertices p 1 : : : p n of H 0 = H f x 1 = 0 x 1 = 1 : : : x n = 0 x n = 1 g. By Cramer's rule, p i is a rational point (a i1 =u i : : : a in =u i), with ja ij j ju i j B = q n n n=2 . An equation of the hyperplane h containing p 1 : : : p n is det(x ;p 1 p 2 ;p 1 : : : p n ;p 1) = 0. Multiplying the columns of this determinant by u 1 (u 1 u 2) : : : (u 1 u n) respectively, w e obtain an equation for h with integer coe cients no larger than n!(2B) 2n . T h us the length of each coe cient is bounded by n 2 log n + 2 n 2 log q + O(n 2). This completes the proof of Theorem 4.

Proof of the Main Result

Let us recall that a real language (or problem) is a subset of R 1 = S n 0 R n , a n d that the boolean part BP(C) of a class C of real problems is the set of boolean problems of the form A \ f 0 1g where A 2 C .

Boolean Parts

We n e e d s o m e c haracterizations of boolean parts. In the parameter-free case there is almost nothing to prove see 10] and 7] for the general (parameters allowed) case.

Fact 1 BP(P Rovs) = P=poly and BP(P 0 Rovs) = P BP(PAR Rovs) = PSPACE=poly and BP(PAR 0

Exploring a Linear Decision Tree

To a problem A of R 1 we associate a boolean problem Ã. An instance of à is described by three integers n, L, d (given in unary) and a (possibly empty) system S of a ne inequalities of the form l(x) 0 o r l(x) < 0. The coe cients of these inequalities are integers written in binary, and the variable x lives in R n . The system de nes a polyhedron P S R n . An instance of à is positive i f t h e r e exists a LSA T of depth at most d with coe cients of bit size at most L such that T recognizes A on P S (i.e., A \ P S = E \ P S , where E is the subset of R n recognized by T).

We need an algorithm to solve Ã, and for positive instances of this problem we also need to compute the label l r of the root of a corresponding tree T (this tree may not be unique, but any solution will do). Thus l r is just a boolean value if T is reduced to a leaf, and an a ne inequality of the form l(x) 0 otherwise. Lemma 3 If A 2 PAR 0 Rovs then à 2 PSPACE. Moreover, for a positive instance l r can be c onstructed i n p olynomial space.

Proof. We rst determine whether T can be of depth 0, i.e., reduced to a leaf. In that case, T recognizes either R n or depending on the label of that leaf. Label 1 i s not acceptable i 9x 2 R n x 2 P S n A

(2)

Since A 2 PAR Rovs , the problem of deciding whether a given x and S satisfy x 2 P S nA is PAR Rovs . Hence by Corollary 1, deciding (2) is a PSPACE problem. Label 0 is not acceptable i 9x 2 R n x 2 P S \A. This is also a PSPACE problem.

If there is a solution in depth 0, we accept the instance of à and output the corresponding label. Otherwise, for d > 0 w e look for solutions of depth between 1 and d (for d = 0 w e exit and reject the instance). To d o t h i s w e e n umerate (e.g. in lexicographic order) all possible linear inequalities of the form l(x) 0 where the coe cients of l are of bit size at most L. F or each such inequality w e do the following.

1. Decide by a recursive call whether (n L d ; 1 S f l(x) 0g) is a positive instance of Ã.

2. Decide by a recursive call whether (n L d ; 1 S f l(x) < 0g) is a positive instance of Ã. 3. In case of a positive answer to both questions, exit the loop, accept (n L d S) and output l r = l.

The instance is rejected if it is not accepted in the course of this enumeration procedure.

In addition to the space needed to solve the depth 0 case, we just need to maintain a stack t o k eep track of recursive calls. Hence this algorithm runs in polynomial space, showing that à 2 PSPACE. For positive instances, the algorithm also outputs l r as needed.

Before proving Theorem 1 we need an intermediate result.

Theorem 6 Let A be a p r oblem of PAR 0 Rovs which can be solved b y a p olynomialdepth LSA with coe cients of polynomial size. P=poly = PSPACE=poly implies A 2 P Rovs , a n d P = PSPACE implies A 2 P 0 Rovs .

Proof. For inputs of size n, A can be solved by a tree of depth and coe cient size bounded by an b , where a and b are constants. The idea is to use Lemma 3 to move d o wn that tree. The hypothesis P=poly = PSPACE=poly implies that à 2 P=poly. Moreover, for positive instances l r can be constructed in polynomial time with polynomial advice (one should argue that each b i t o f l r is in PSPACE, and therefore in P=poly). Thus we set L = d = an b and S = . By hypothesis (n L d S) is a positive instance of à and therefore l r can be computed in polynomial time (with polynomial advice). If l r is a boolean value we stop and output that value. Otherwise l r is an a ne function, and we can determine in polynomial time whether the input x 2 R n to A satis es l r (x) 0. If so, we s e t S 0 = S f l r 0g. Otherwise, we set S 0 = S f l r < 0g. I n a n y case, we s e t d 0 = d ; 1, and feed (n L d 0 S 0) to the algorithm for Ã. This process continues until a leaf is reached. This requires at most an b steps.

The above algorithm runs in polynomial time with polynomial advice (in fact, the only advice used is the advice needed to solve instances of à of the form (n L d S) w h e r e L d an b and S is a system of at most an b inequalities of coe cient size bounded by an b). That advice can be encoded in the digits of a real constant and retrieved in polynomial time, showing that A 2 P Rovs . I f P = P S P ACE then no advice is needed, hence A 2 P 0 Rovs . Proof of Theorem 1. Let us do the \easy" direction rst. The boolean problem QBF is a well-known PSPACE-complete problem. It is clearly in PAR 0 Rovs , h e n c e P 0 Rovs = P AR 0 Rovs implies QBF 2 P 0 Rovs . Thus QBF 2 P since BP(P 0 Rovs) = P . We conclude that P = PSPACE by the completeness of QBF. I f w e only assume that P Rovs = P AR Rovs , w e obtain QBF 2 P=poly since BP(P Rovs) = P =poly. This implies PSPACE P=poly (or equivalently, P =poly = PSPACE=poly).

For the converses, we know from Theorem 3 that any problem in PAR 0 Rovs can be solved by a polynomial-depth LSA with coe cients of polynomial size. Thus P = P S P ACE implies P 0 Rovs = P AR 0 Rovs by Theorem 6. Now, let A be a problem in PAR Rovs (1 : : : k). This problem is the restriction of a higher-dimensional PAR 0 Rovs problem. That is, there exists B 2 PAR 0 Rovs such that for any x 2 R n , x 2 A if and only if (x 1 : : : x n 1 : : : k) 2 B. B y Theorem 6, P=poly = PSPACE=poly implies B 2 P Rovs . T h us A 2 P Rovs since it is in fact the restriction of a P Rovs problem.

Multiplicative Models

This section is made mostly of problems and conjectures.

Algebraic Complexity

Extending Theorem 1 to models of computation with multiplication seems to be a challenging problem. In that context, it is natural to work with algebraic decision trees instead of LSA. We recall that the internal nodes in an algebraic decision tree are divided into computation nodes and branch nodes. A computation node c has a single child and is labeled by an expression of the form := ? where ? 2 f + ; g. Here is the node variable and are constants from R or variables above c (a variable is said to be above c if it is one of the n input variables or labels a computation node on the path from the root of the tree to c). A branch n o d e b has two c hildren and is labeled by an expression of the form \ 0 ?" where is a variable above b. Finally, the leaves of the tree are labeled 0 or 1. The tree computes a boolean-valued function on R n in the usual way. W e propose the following conjecture.

Conjecture 1 Any problem in PAR R can be solved b y a f a m i l y o f p olynomialdepth algebraic decision trees. It would already be interesting to solve this conjecture for speci c problems in PAR R , e.g., for the linear programming problem (feasibility of systems of the form \Ax b").

One can also consider algebraic decision trees over C . In this case, tests are of the form \ = 0 ? " . W e conjecture that the situation is signi cantly di erent than in the real case.

Conjecture 2 Hilbert's Nullstellensatz, Twenty Questions and Knapsack C cannot be solved by families of polynomial-depth algebraic decision trees. We recall that an input to Hilbert's Nullstellensatz (HN) is a system of polynomial equations in several complex variables. The input is accepted if this system has a solution. Twenty Questions was introduced in 16]: an input x 2 C n is accepted if the rst component x 1 is an integer between 1 and 2 n .

These three problems are in PAR C , a n d e v en in NP C . T h us the conjecture implies P C 6 = N P C . It follows from the NP C -completeness of HN 2, 4] that if the conjecture is true for Twenty Questions or Knapsack C , it is also true for HN. Note that the restrictions of Knapsack C and Twenty Questions to R can be solved by real algebraic decision trees of polynomial depth. In fact, any nite subset fa 1 : : : a m g of R can be recognized in depth O(log m) b y the obvious binary search algorithm. This is not so over the complex numbers.

Proposition 2 A nite subset fa 1 : : : a m g C cannot be r ecognized in depth m ; 1 if the a i 's are algebraically independent over Q.

This result appears in 5] as a corollary to a much more general theorem. We give a proof below since it can be sketched from scratch in a few lines. First, recall that the canonical path in an algebraic decision tree is the path followed by a Zariski dense subset of the inputs. It is obtained by a n s w ering no to each test \ = 0 ? " encountered during a computation (we assume without loss of generality that all the 's represent non-constant polynomials in the input variables). Proof of Proposition 2. Consider a tree of depth d recognizing a nite subset E C . Let 1 : : : j be the complex parameters appearing on the canonical path. We m a y assume that at most one new parameter is introduced at each node, so j d. E a c h element o f E must be a root of some polynomial computed along the canonical path. These polynomials have coe cients in Q 1 : : : j] and roots in K = Q 1 : : : j]. This eld has transcendence degree at most j, hence j m if K is to include fa 1 : : : a m g.

As a side remark, we note that a similar but even simpler argument shows that Twenty Questions is a witness to the separation of P from NP in the BSS model with addition and equality o n l y . This is a simpler problem than Knapsack (used in 10]) or its multidimensional version (used in 12] for the original proof of this separation).

Topological Complexity

As a rst step towards a positive solution to Conjecture 1, one may attempt to work with decision trees in which i n ternal nodes are labeled by tests of the form \P (x) 0 ?" where P can be any polynomial (thus one assumes that computing an arbitrary polynomial in the input variables takes unit time). This leads to the subject of topological complexity as studied by Smale 17] and Vassiliev 19]. The corresponding trees will be called topological decision trees to distinguish them from ordinary algebraic decision trees. It is not clear whether any problem in PAR R can be solved by a f a m i l y o f polynomial-depth topological decision trees. We h a ve seen that the corresponding problem has a positive answer for the reals with addition and order. An important ingredient of the proof was the fact that the range searching problem for arrangements of hyperplanes can be solved in polynomial depth. It seems therefore natural to investigate the complexity of range searching in semi-algebraic sets.

Problem 1 Is it possible to solve the range searching problem for m polynomials of degree d in n variables by a topological decision tree of depth (nd log m) O(1) ? or even depth (n log(md)) O(1) ? Here we s a y that a tree solves the range searching problem for the polynomials P 1 : : : P m if two input points arriving to the same leaf always belong to the same face. As in the linear case, a face is the set of points satisfying one of the 3 m \sign conditions" of the form P 1 (x) 1 0 : : : P m (x) m 0 w h e r e i 2 f < = > g.

Range searching in semi-algebraic sets has been studied mostly for polynomials of bounded degree 1]. In this case, it is not hard to see that algebraic decision trees of depth O(n log m) O(1) can solve the problem (one can make a reduction to the linear case by i n troducing new variables representing all monomials of degree at most d).

Rovs) = PSPACE.

Acknowledgment

Meiser's paper was pointed out to the authors by F riedhelm Meyer auf der Heide.

Fact 2 Let B be a p r oblem in PAR 0 Rovs . F or every n 0 there exists a quanti erfree formula F n in the theory of the reals with addition and order de ning B \R n .

The atomic predicates in F n are of the form l(x) 0 or l(x) > 0, where l is an a ne function with integer coe cients of polynomial size.

It is also possible to give a single-exponential bound on the number of atomic predicates in F n , b u t w e do not need this here.

It is shown in the next result that nondeterminism does not increase the power of parallel polynomial time. We w ork with the following de nitions: a problem A R 1 is in NPAR Rovs (respectively, N P AR 0 Rovs) if there exists a corresponding problem B 2 PAR Rovs (respectively, B 2 PAR 0 Rovs) and a polynomial p such that for any n 0 a n d x 2 R n , x 2 A i 9y 2 R p(n) hx yi 2 B:

(1) Rovs be the corresponding problem. We claim that there exists a polynomial q such that this existential formula is satis ed i it is satis ed by a point y 2 R p(n) all of whose components are of the form y i = l i (x) where l i is an a ne function with rational coe cients of size at most q(n). This will show that A 2 PAR 0 Rovs since one can then try in parallel all such v alues of y to decide whether x 2 A (divisions can be avoided by storing separately numerators and denominators).

To p r o ve the claim, assume that (1) holds for a given x. B y F act 2, hx yi 2 B i (x y) satis es a formula F n (x y) with coe cients of polynomial size. We can assume that F n is a disjunction W mn i=1 C i n of conjunctions of linear inequalities. Since (1) is valid, one conjunction C i n must be valid. From the existence of \small" points in polyhedra (Theorem 2 in 7] note that the number of inequations does not appear in that bound) we conclude that C i n , and hence F n , is satis ed by a p o i n t y of the required form. This completes the proof that NPAR 0 Rovs = P AR 0 Rovs (note the similarity with the proof of Theorem 3 in 7]).

Finally, w e show t h a t N P AR Rovs PAR Rovs . For any A 2 NPAR Rovs there exists k > 0, 2 R k and A 0 2 NPAR 0 Rovs such that x 2 A i hx i 2 A 0 . B u t w e have just seen that, in fact, A 0 2 PAR 0 Rovs . This shows that A 2 PAR Rovs since this problem is the restriction of a PAR 0 Rovs problem (one could also use a version of Fact 2 adapted to PAR Rovs problems to prove that result).

Corollary 1 BP(NPAR Rovs) = PSPACE=poly and BP(NPAR 0 Rovs) = P S P ACE: