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Abstract

We present a cellular algorithm in O(w?) for the leader election problem on a
finite connected subset F of Z? of diameter w, for any fixed d. The problem
consists in finding an algorithm such that when setting the elements of F' to a
special state, and all the others to a state #, the cellular automaton iterates a
finite number of steps and eventually sets only one precise element of F' to a
special state called leader state. We describe the algorithm in detail, prove it
and its complexity, and discuss the possible extensions on more general Cayley
graphs.

Keywords: graph automata, leader election, finite state automata, d-dimensional integer grid,
cellular automata

Résumé

Nous présentons un algorithme cellulaire en O(w?) pour le probleme d’élection
d’un général sur un sous-ensemble fini connexe F' C Z" de diamétre w, pour
n’importe quel d fixé. Le probleme consiste & trouver un algorithme tel que
lorsqu’on met les éléments de F' dans un état spécial et tous les autres dans un
état #, 'automate cellulaire itere un nombre fini de pas, et met un seul élément
de F' dans un état spécial nommé état général. Nous décrivons ’algorithme en
détail, démontrons sa correction et sa complexité et discutons des extensions
possibles a des graphes de Cayley plus généraux.

Mots-clés: graphes d’automates, éléction d’un général, automate fini, grille entiere de dimension d,
automates cellulaires
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Abstract We present a cellular algorithm in O(w?) for the leader election problem on a finite connected
subset F of Z¢ of diameter w, for any fixed d. The problem consists in finding an algorithm such that
when setting the elements of F' to a special state, and all the others to a state #, the cellular automaton
iterates a finite number of steps and eventually sets only one precise element of F' to a special state
called leader state, and all the others to a different state. We describe the algorithm in detail, prove it
and its complexity, and discuss the possible extensions on more general Cayley graphs.

1 Introduction

The leader election problem, or queen bee problem, has been introduced in 1971, in dimension two by [3].
This problem can be informally seen as a reverse firing squad synchronization problem, because here we have
all the cells in the same state at initialization, and we want a unique cell to be in a special state at the end
of the computation (assimilated to “general” state), while all the others have to be in another state, sort of
“soldier” state.

In dimension two, several authors have proposed different solutions, and among the last and the best
ones we have to cite [1] and [4] for two dimensions. Their idea is to follow the perimeter of the figure, using
a compass. This way the time complexity is linear in the perimeter, thus in the number of cells.

In arbitrary dimensions, the problem is much more difficult, and the best solution we knew of before this
paper was the one of [2]. He proposed the use of search algorithms in finite labyrinths. However, the time
complexity is O(n®), where n is the number of cells.

We present here another solution, using a new approach. We make use of a spanning lattice, similar to the
spanning tree introduced by [6]. This lattice is constructed through signals starting from points susceptible
to be elected as global leaders. We actually have several lattices growing at the same time, so when they hit
each other they compete for survival, only one wins, and at the end, the best makes its leader the global
leader.

2 Definitions

We consider cellular automata over Zd, where d € IN, d > 1, ordered by the lexicographic order <, : for
two elements ¢; = (z1,%2,...,2q4) and ¢z = (y1,¥ys2,---,Yyi), we say that

C1 <L62<:>E|iwith1Si§dwitth,1Sj<i,l‘j:yj and z; < y;.

2.1 General definitions

Definition 1. Let X be a finite set called alphabet, Q be a finite set called set of states, and & be a function
0:Q x X — Q, called the transition function. Let also s € Q and F' C Q be respectively the start state and
the final states. Then a finite state automaton (FSA) is a 5-uple (X, Q, s, F,J).

Definition 2. Let z € Z, x = (z1,%2,...,%,), and let e; = (0,0,...,0,1,0,...,0) the point with 1 as the
i-th coordinate. We call neighbor of x any element of the set N, = {x —e;,x +¢; | 1 <i < d}. We see that
we can order the elements of N, according to the sign: © — e; before x + e; and thereafter according to i,
writing, for example, v — (1,0,0,...,0) <y z + (0,1,0,...,0).

* LIP, ENS-Lyon, CNRS URA 1398 46 Allée d’Italie, 69364 Lyon cedex 07, France. e-mail codrin@ens-lyon.fr
** Grima, IUT Roanne, Université J. Monnet 20 avenue de Paris, 42334 Roanne cedex, France. e-mail
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Definition 3. A cellular automaton over Z° is a couple (Q,68) with the notations above, where X = Q*¢.
A configuration is a function ¢ : Z° — Q. Given two configurations ¢, and ¢y, we note ¢; = d(ea) if
ca(x) = 0(er (), er(yr),c1(y2),---,c1(y2q)), where y; € Ny and y; <n yi+1 for 1 <i < 2d.

2.2 Leader election

The problem of leader election is defined as follows: Find a cellular automaton on Z? such that given a
finite connected subset F C Z, the cellular automaton starts with all the cells members of F' in a certain
state, exactly the same all over, and with the cells outside F' marked with a special symbol #, and after ¢
steps, with ¢ finite, only one cell of F' is in a special state, called global leader state, and all the others are in
another state, meaning that they cannot be the leader. We also impose that the cells marked with # never
change this state, thus confining the computation to the set F'.

3 Algorithm

3.1 Idea

We present the algorithm through examples in the integer plane, i.e. in two dimensions. However, the general
rules and the proofs are extended to Z<.

We call a cell a local leader when the only neighbors it has in the figure are on the positive senses of the
coordinate axis.

Each cell which is a local leader (here, for d = 2, this means the most south-western with respect
to its neighbors), becomes the root of a spanning lattice, constructed through signals issued from it and
propagated across the surface occupied with cells. This lattice expands in pulses until it hits another similar
lattice (because in an arbitrary simply-connected plane figure there can be several local leaders) or until it
fills the whole region. In the first case, one of the two lattices dies off, and in the second one, it makes the
leader the unique global one. We decide which of the lattice wins based on the lexicographic ordering <, of
the two local leaders generating the lattices, by making so that the smaller win. This way, the smallest local
leader cell of the figure is elected as global leader.

3.2 Examples

Let us first consider the simplest figure : a rectangle. There is only one local leader, the south-western corner,
and from this cell a lattice starts growing, until it reaches the borders. The local leader sends a lattice
expansion signal to its northern and eastern neighbors, which is propagated farther. Each cell receiving a
signal from a direction among north, south, east and west, sends it in the other three directions. When a
cell receives several signals, it considers them all as fathers, and sends further the signal to the others left,
named sons. This way, we can speak of the “building” of the lattice.
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Fig. 1: initial phase expansion steps region filled

We said the growth is pulsed ; this means after one expansion step we have a report step, when the lattice
border cells may send back a “report” signal, each cell to its fathers, and these propagate them back to the
root of the lattice. We need this in case of conflict, in order to make the conflicts be synchronously solved,
as we explain farther in the paper.

A father thus may send back a report, to its fathers. For this example, we only need to consider the
termination of the algorithm. During the expansion step, if a cell has no neighbor to send further the



expansion signal, then it switches to a “dead-end” state, otherwise it sends a “border signal”. On the other
hand, when a father has only dead-end sons, it switches also to dead-end state. Thus, when the root has
only dead-end sons, it knows that it is the global leader.

This algorithm also works when the figure is more complicated than a rectangle, yet it has only one local
leader. We now have to explain how we deal with several local leaders. At “mid-way” at some point of the
expansions, there is a conflict between the two lattices. Therefore we have to identify and order the lattices
in a certain way. Since we can have an unbounded number of local leaders and we want a finite number of
states, we cannot decide to have different states for different lattices (we wouldn’t even know how to assign
them locally). However, we can borrow an idea from [4], which originally consists in measuring the coordinate
difference between the emitter of a signal (in this case the expansion signal) and its receiver using the time
difference between a reference signal and a coordinate signal, retarded when going say positively along the
coordinate axis, and accelerated when going the other way, here negatively.

We will explain in the section 3.3 how this works. The idea is briefly illustrated in figure 2, where the
cell with two concentric circles has to decide whether ¢ <, fs or {5 <p, ¢;.

ly

Fig. 2: conflict in the cell with two concentric circles

3.3 Solving the conflicts

First, we forget about the fact that the expansion is pulsed. We consider some “grown” lattices of the same
maximum length (from each root to the respective border), and we study the expansion step leading to their
touching, thus to a conflict. We have to make the border cells able to measure the coordinate difference of
the conflicting local leaders.

Measuring the coordinate difference using signals We do this using, as we have said, an idea from [4], based
on signals. Informally speaking, a signal is a special state (or substate) s which “propagates” from a cell z
to another cell y, along a specific path (z = 21, 22,...,2, = y).

For each coordinate, thus here for the two, z and y, the local leader sends a signal, at variable speed,
to all its children. When the coordinate signals go along the positive sense of the coordinate axis, they are
handed from a cell to another at one time unit difference, that is, if the cell receives the signal at time ¢,
then at time ¢ + 1 the neighbor receives it, and the signal is said to travel at speed 1 (maximal speed). If
the coordinate signals go along the negative sense, the reverse happens : they are received at time ¢ and sent

1
(thus received by the neighbor) at time ¢ + 3, traveling at speed 3" And, when a coordinate signal travels

along a different axis, it goes at a speed in between, which is % (being transmitted at the second time unit
to the neighbors).

Thus if we consider the speed % as a “reference” speed, each coordinate signal gets accelerated when
going in the positive sense of the respective coordinate axis, decelerated in the opposite and not perturbed
(i.e. traveling at speed %) when going perpendicularly.

These signals serve the double purpose of expanding the lattice and measuring the coordinate difference.



The former is done by memorizing the neighboring source cells (as fathers) by each cell receiving a coor-
dinate signal. Actually, the (possibly) fastest coordinate signals “open” the path, followed by the subsequent
coordinate signals. We will see this in detail in the next section.

The latter is done as follows: suppose we have an emitter cell ¢ = (xo,¥o0,-..) and a receiver cell
¢ = (x¢, ye, dots). The z-coordinate signal is sent at time 0, it arrives at the cell ¢ time #., and it travels a
path of length [ (i.e. it crosses [ edges to get there). Then the simple law of speed and distance tells us that

Te — o =20 —t, (1)

The following figure shows the path of the z and y coordinate signals from ¢; to the cell marked with two

concentric circles in the figure 2. Wet call this a beam of coordinate signals.
me
A

Fig. 3 : coordinate measure signals: a beam

Conflicts Suppose now we have two synchronous emitter cells ¢; = (z1,y1,...) and o = (z2,y2,...), as in
figure 2. Let ¢ be the “conflict cell” (the one with two concentric circles on the figure 2). It happens that the
length [ of the path from the emitters to it is the same. We have from the equality (1)

Te—x1 =20 —t; and z, — x5 = 2] — 15

where t; (respectively t5) denotes the arrival time of the z coordinate signal from ¢; (resp. ¢») in c.
Then,
1 < To <=t < ts (2)

Therefore, the cell ¢ is able to find the minimun in sense of the lexicographic order <y, (see figure 6). One
method is to store the order of arrival for each coordinate signal, and at the end, to make the right choice.
We actually see that it is enough to know which signal arrived first from which of the beams, all this for
each coordinate. We explain the implementation of this in the section 3.4, paragraph Conflict.
However, we need that the emitters be synchronous and that they be at equal distances from the conflict
cell. All this is actually possible because

— at the beginning all the local leaders are synchronized, because the initialization is synchronous
— the lattices expand “uniformly”
— we ensure the further synchronization as wee see in the next paragraph.

Synchronization We set up a second signal, called a sweep signal, going slower than any coordinate signal,

1
i.e. at speed -, and traveling along the same paths. Thus, a cell “takes” the decision when all sweep signals

have arrived, sending it back to the local leaders through other signals: border signal to the winner, destroy
signal to the losers. On the other hand, with the sweep signal system we make sure that all the border cells
send back their report at the same time.

We will see that the sweep signals arrive all at the same time (or at exactly three time units difference,
in a special case), thus ensuring the synchronization and pulse of the lattice expansion process.



If we consider the figure 3, and show the space-time diagram of the sweep and x (East-West) coordinate
signals issued from the two local leaders ¢; and ¢2 on the path containing the conflicting cell, we get the
following figure :

Fig. 4 : conflict and decision; the edge labels are in the sense of the arrows

3.4 Memory structure

We actually see the states of each cell of the figure as elements of a cartesian product, each component taking
care of a specific aspect : action to be taken by the cell, information about the signals, information about
the neighbors, information to solve the conflicts. By abuse of language, we call states the components having
to do with the action or the status of the cell.

Main components of states A cell can be in any of the following states : start state, inactive state, potential
global leader state, lattice state, conflict state, decision state, dead-end state and global leader state. This
makes the automaton look as shown in the following figure:

global
eader

Fig 5: Finite State Automaton schematic diagram

potential
global
eader

Signals We associate with each cell a signal vector SV, to handle the signal transmission, composed of
counters for each signal. As we said earlier, the counter SV[i] encodes how long the signal i has been held



in the cell. The sweep, destroy and border signals are three supplemental signals, so SV has d + 4 elements.
A value of 0 in SV[i] means the signal i (coordinate, sweep, destroy or border) is not in the cell, a value of
1 means the signal just arrived, and so on, with values no greater than 3.

Neighborhood We also need to encode information about the 2d neighbors. Thus, each cell has also an array
NV of 2d elements with values from {?,S, F, FW, F'L} meaning no information, son, father, father winner,
father loser. The ith element of the array gives information about the ith neighbor (in the order defined in
section 2). Also, when the cell receives the sweep signals and takes the decision, it has to communicate it to
its fathers, and this is done using the values F'L and FW put in the elements of the array NV.

Conflict In case of conflict, the cell has to be able to find the minimum in lexicographic order of arrivals of
coordinate signals, so we also need a d x 2d boolean matrix C'M such that CM[i, j] = 1 means the neighbor
J (in the same order as above) is among the very first to have sent the i-coordinate signal to the conflict cell,
and otherwise, CM[i, j] = k means the neighbor j is among the ones having sent the i-coordinate signal one
time unit after the j' with CM[i,j'] = k — 1 Here, k is 1, 2 or 3. In any other case, CM[i, j] = 0.

3.5 Transition rules

We now describe how the cells switch from a state to another, updating at the same time their NV and SV
arrays.

Initialization At starting time, all cells are in start state. When a cell is in start state, if it is a local leader,
it switches to potential global leader state, otherwise, it switches to inactive state.

The cells bordering the figure (outside it) are all marked with a special symbol #, and the arrays of all
the figure cells are all set to zero.

Ezxpansion The cell being in potential global leader state sends the coordinate signals to its neighbors. When
a cell being in inactive state receives one coordinate signal, it changes the NV to note the source of the signal
as father, and waits for the other coordinate signals and for the sweep signal. It also switches immediately to
conflict state. If it receives several coordinate signals from different sources, it notes them all as its fathers
in the NV array.

When a cell being in lattice state receives some coordinate signals, it propagates them farther, according

1
to the delay rules (acceleration if in the positive sense, deceleration if the opposite, speed 3 if perpendicular

direction) to its children.
There is also another case of switching to conflict state, explained as Special case.

Dead-end and stop Les us call the unknown neighborhood the neighbor cells of a cell which are marked with
? in the NV array of the cell. If, for a cell, all the unknown neighbors are actually in state #, and all its
children are in dead-end state, the cell switches to dead-end state as well. If the cell being in potential global
leader state sees all its children in dead-end state, then it switches to global leader state.

Conflict and decision We call conflict period for a cell the period of time between the switching to conflict
state (reception of a first coordinate signal, being in and the switching to lattice. When a cell switched to
conflict state from inactive state, it waits to receive all the coordinate and the sweep signals. Whenever it
receives a coordinate signal, say for coordinate i, the first time, it writes 1 to CM]i, j|] where j runs through
the neighbors which sent it this signal the first. This way, only these neighbors are noted as potential winners,
and, at the end, the cell takes a decision, according to the lexicographic order of the coordinates, switching
to decision state, and setting the NV appropriately: if the i-th neighbor is a winning father, it puts NVi]
to FW, and for all j which denote the losing fathers, it puts NV[j] to F L. Thus, when a cell is in lattice
state and sees some of its children switching to conflict state and then to decision state, it looks in their
NV arrays at the right elements, to “learn” the outcome of the conflict. If at least one of its children tells it
that it is F'L, then it propagates the destroy signal back to its fathers, thus back towards its potential global
leader, otherwise, it propagates the border signal.



Special case This happens when two local leaders are separated by a path of even length. In this case we
have two cells which enter the conflict state and are at the same time neighbors, each one belonging to a
lattice and only one. When this happens, the cell “ignore” each other and behave as said before. However,
at the next expansion they might receive some coordinate signals from the established fathers and also from
unknown neighbors (of F' (not yet fathers or children). The reasoning would be the same as the one described
in section 3.3, but there is a difference : the length [ is no longer the same, it is [ from the “known” part
(the fathers, actually from the potential global leader ¢;) and [ + 1 from the “unknown” part (¢2). Thus the
equality (2) becomes

T < To<=t <ty+2 (3)

This is why the values in CM go from 1 to 3. Therefore, the rule is enriched with the case of switching
to conflict state from lattice state, which is this very case: if a cell being in lattice state and still having
unknown neighbors in F' (that is marked with 7 in its NV array) receives a coordinate signal, then it switches
to conflict state. It also starts filling the C'M matrix with values from 1 to 3, and at the end decides again
about the order, but this time by saying that

1. if the signals with 1 arrived at least from some unknown neighbors, then these neighbors win and only
them
. else if the signals with 2 arrived at least from some unknown neighbors, then the same happens
3. else if the signals with 3 arrived at least from some unknown neighbors, then they win, but also with the
known (fathers) neighbors which sent signals arriving first (C'M value 1).
4. else only the known father neighbors which sent signals first win (C'M value 1)

[\

Suppose we have the figure 2 slightly modified, with the row of /> being one cell lower, in order to illustrate
this case, and call the two new potential global leaders ¢} and £,. Then we have the following space-time
diagram:

time
A ,/;\\” decision”

Fig. 5 : conflict and decisions

For the left conflict cell, ¢} is declared winner because its z coordinate signal arrives before ¢t — 2 where
t is the arrival time of the z coordinate signal from ¢4, which is the unknown part for the left conflict cell
(case 4 from above, and the order on z, if any, decides lexicographically). For the right conflict cell, again ¢}
is declared winner because its = coordinate signal, this time from the unknown part, arrives one time unit
before the x coordinate signal from £, (case 1 from above).



Decision transmission The decisions are taken when the last sweep arrives. In all cases, the signals arrive
(also) from some unknown neighbors, and the decisions are notified only to these unknown neighbors, because
in case of signal crossing (that is even length), each of the conflict cell takes care of the other’s fathers. Also,
the FW values of NV are switched thereafter to F, and all the others (F or FL) to ?.

Report When a cell is in lattice state and it receives from its children a border or destroy signal, it propagates
it up to its fathers.

Destruction When a cell being in potential global leader state receives at least one destroy signal from one of
its children, then it sends the destroy signal to all its children and it switches to inactive state. When a cell
being in lattice state or dead-end state receives a destroy signal from one of its fathers, then it propagates
it to all its children, and it switches to inactive state.

Updating and iteration When a cell being in potential global leader state receives from all its children only
border signals, it starts a new expansion period, sending again the coordinate signals.

4 Analysis

4.1 Definitions
We have been talking about lattices and about constructed and expanded lattices. We now set this properly.

Definition 4. By constructed lattice of radius h of a local leader ¢ we mean the intersection of a ball B(¢, h)
of Z°, centered in a local leader, with the initial figure F C Z°, in which all the cells are in special states :
potential global leader state, lattice state or dead-end state, and have the NV appropriately set. The cell being
in the local leader state (that is the potential global leader) has no father and is (transitively) the father of all
the other members of the constructed lattice. The relations father-son are oriented outwards from the leader
to the borders and the cells which have to be in dead-end state (because all their children are in dead-end
state or are marked with #) are in this state.

4.2 Proofs

If we look at the evolution of the algorithm, we can remark a certain periodicity. The start of the h-th
period is the moment when the potential global leaders “know what to do”, i.e. at the beginning to start
the expansion, and afterwards to continue or to destroy themselves. We denote by this the time coordinates
m; = mi_1 + 4i, where m; = 1.

Proposition 1. Let h < w. At the start of the h-th period the constructed lattices are of size h, with h being
at most the length of the longest among the shortest path from the future global leader to the borders of the

figure.
The main loop gives the main steps of the h-th period:

1. at (relative) time coordinate 0, the potential global leaders have decided either to expand or to destroy,
and are about to send the appropriate signals. Their constructed lattices of radius h are disjoint, with no
signals being held for transmission, and the rest of the cells are in the inactive state.

2. at time h, the constructed lattices which had to be destroyed are indeed destroyed, and all their cells
switched to inactive state, having no more signals held to be transmitted to neighbors and clearing the
neighbor array NV .

3. between time h+ 1 and time 3h + 3 the expansion of the surviving constructed lattices is completed, and

conflicts detected by the new border cells.

at time 3h + 3 the sweep signals have reached the borders, and the conflicts are solved.

at time 4h + 4 the decisions are reported to the local leaders, and a new period starts.

Silha



Proof. Straightforward, by induction, and by the construction of the algorithm. We can emphasize that there
is no interference between the expansion and the destruction of two neighboring constructed lattices, because
the destroy signal travels as fast as the fastest coordinate signal, but has a one-cell-shorter path to go to a
same cell, element of the current border.

Also, since the report signals only travel within each constructed lattice, there is no interference either,
and they “safely” get back to the local leaders, informing them about the possibility of expansion or necessity
to destroy themselves.

We also insist on the synchronization of the process, all lattices starting the expansion at the same
moment, and solving the conflicts, sending back the decisions and restarting the loop again at the same
moment. This is ensured by the sweep signals traveling at a constant speed, along the same distance, the
radius h, from the local leaders to the borders, and the report signals, traveling again at a constant speed,
along the same maximal distance, and by the fact that the local leaders wait for all the report signals to
come before restarting the period. O

Proposition 2. The constructed lattice rooted in the local leader which should be elected according to the
lexicographic order of the coordinates never looses any conflict.

Proof. By the construction of the algorithm, from the way the conflicts are handled. The beam of coordinate
signals from the future global leader will arrive “faster” than any other coordinate signals (that is with the
appropriate mark), thus making the border cell take the right decision each time. ad

Proposition 3. If there is only one potential global leader at the beginning of a time period (at a m; mo-
ment), then the algorithm finishes electing it as the global one.

Proof. The dead-end states start propagating themselves towards the root once the border cells are reached
by the sweep signal, and by the construction of the algorithm, the potential global leader becomes global. O

Theorem 1. The algorithm finishes in 2(w? + w) time steps, where w is the length of the longest among
the shortest paths starting from the global leader and going to the border of the figure.

Proof. From the way the conflicts are handled, we see that after each conflict at least one constructed lattice
will dissapear. Since between the conflicts the constructed lattices only grow, if at the beginning there are
several ones, during the evolution their number decreases strictly monotonically. We arrive in the case of the
previous proposition and thus the algorithm stops.

On the other hand, we can only look at the evolution of the constructed lattice of the future global
leader. This constructed lattice keeps expanding itself, without delay, and without being destroyed (previous

" = w(w +1)
propositions), and m,, = 42 k=4———=. O

2
k=1

5 Discussion

We can think of extending this algorithm to other types of graphs. We can do this on labeled trees and we
can hope to do it on some special Cayley graphs, under specific conditions. M ore work has to be done to
relax as much as possible of these conditions, or to classify the graphs and find necessary conditions for the
leader election problem to be solvable.
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