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Automates a galets : un etat de l'art
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The purpose of this paper is to give a n o verview on pebble automata, which can be encountered in di erent domains, as gures (families) recognition, complexity theory and labyrinths theory . It gives denitions, examples and some basic theorems with their proofs.

Introduction

Un automate a galets est un automate ni qui peut se d eplacer g en eralement dans un graphe ( ni ou in ni) connexe, et qui, de plus, dispose d'un nombre ni de marqueurs, ici appel es galets, dont i l s a i t r e c o n n a ^ tre la pr esence ou l'absence, qu'il peut d eposer ou reprendre suivant certaines modalit es.

C'est dans le cadre d'une etude syst ematique des familles de gures (born ees ou non) du plan par des automates cellulaires Tou97] que s'est naturellement impos ee l'id ee de d e nir une notion de rationalit e pour de tels objets, et les automates a galets, que nous avons d ecouverts dans un article de Max Garzon Gar93] -qui cherchait, lui, a caract eriser des classes de graphes de Cayley par des machines nitaires -nous ont paru des candidats possibles. Nous avons egalement pens e qu'ils pourraient permettre de caract eriser des familles de signaux (dans le plan, mais aussi dans l'espace) qui jouent u n r ôle fondamental dans le comportement des automates cellulaires. Plus g en eralement, ces machines -simples -qui se d eplacent s u i v ant des trajectoires qui sont a priori tr es g en erales nous ont sembl e i n t eressantes en soi, mais egalement susceptibles d'applications dans le domaine de l'imagerie, par exemple, plus pr ecis ement, en tomographie. Notons ici que le mode de fonctionnement de ces machines se distingue fondamentalement de celui des graphes d'automates (et particuli erement des jeux a galets) puisque le graphe sur lequel va o p erer l'automate (ou plus g en eralement un syst eme d'automates coop erants) est, a l'origine, nu : s'il contient une marque \ext erieure", ce ne peut être que l'automate (ou le syst eme d'automates) charg e de tous ses galets sur l'une de ses positions (sommet ou arête), ou une couleur attribu ee a une position.

Telles sont, a grands traits, les motivations qui nous ont conduit a une recherche syst ematique des travaux relatifs a c e m o d ele de machines (on pourrrait y ajouter le d e que repr esente le passage de la dimension 1 a une dimension sup erieure, la dimension 2 etant vue comme une porte ouverte aux autres). Et c'est a un etat de l'art de ces travaux qu'est consacr e ce rapport.

Les recherches men ees sur et par les automates a galets peuvent s e r epartir suivant deux grandes tendances, qui ne sont pas strictement i s o l ees, bien au contraire. La premi ere est celle de l'exploration d'univers et de la reconnaissance de structures (deux d emarches qui sont dans de nombreux cas evidemment \ equivalentes", mais que l'on ne peut confondre : la reconnaissance implique une proc edure d'arrêt partielle (arrêt sur les entr ees reconnues) et la d ecision -qu'elle g en eralise -n ecessite une proc edure d'arrêt totale (arrêt sur toute entr ee), ce qui n'est pas le cas de l'exploration). Elle contient l a t h eorie des labyrinthes. On peut la voir comme une etude comparative de la puissance des machines, et par cons equent interpr eter certains de ses r esultats comme des mesures de complexit e. Mais la seconde est plus explicitement et directement rattach ee a la probl ematique de la complexit e, bien qu'elle produise et s'appuie sur des r esultats qui Dans la même veine, on trouve encore les travaux plus tardifs de A. Szepietowski Sze82], Sze83b], Sze83a].

Parall element a ces travaux, que nous pourrions dire \de la branche am ericaine", se d eveloppent les travaux \de la branche est-allemande" a partir d'une conjecture de K. D opp: etant donn ee une classe d'automates A et une classe de labyrinthes L qu'il pr ecise, \Pour tout automate de A, on sait d e nir de fa con constructive un labyrinthe de L qu'il ne ma^ trise pas" D op71]), puis autour de L. Budach. La probl ematique est encore celle de l'exploration ou de la ma^ trise de certaines classes de graphes, en particulier de labyrinthes co-nis. Dans son article Bud78], L. Budach prouve, de fa con tr es sophistiqu ee, la conjecture de D opp: pour tout automate ni on sait e ectivement construire un labyrinthe qui le pi ege. Ce travail se prolonge et se pr ecise principalement dans les travaux de M uller M ul79], F. Ho mann Hof81], Hof85], A. Hemmerling Hem86b], Hem87b], Hem89], Hem91]. A. Hemmerling Hem87b] a g r emente les automates de plusieurs têtes et montre qu'ils sont strictement plus puissants que les syst emes nis d'automates.

Nous donnerons un aper cu rapide, dans le paragraphe qui suit, des travaux de complexit e. Dans le paragraphe 3 seront p r ecis ees les d e nitions des principales classes d'objets sur lesquels agiront les automates, leurs liens et quelques unes de leurs propri et es essentielles. Le paragraphe suivant (4) sera consacr e a u x automates, a ce que sont leurs comportements dans les di erentes structures int eressantes et a ce que l'on entend par exploration, ma^ trise et reconnaissance d'un objet ou d'une classe d'objets. Des exemples illustreront les possibilit es et les limites de ces automates, justi ant l ' i n troduction, au paragraphe 5, des automates a galets. Dans la voie des limites seront p r ecis es quelques r esultats relatifs a l'existence de pi eges d'automates. Des r esultats fondamentaux illustrant la puissance des automates a galets seront enonc es et eventuellement d emontr es aux paragraphes 6 et 7. Nous terminerons, paragraphe 8, par une s erie de probl emes encore ouverts a notre connaissance, pour une part r epertori es dans Hem86a], ouvrage qui pr esente une remarquable synth ese de la th eorie des labyrinthes.

2 Automates a galets et th eorie de la Complexit e Les travaux que nous avons retenus se d eveloppent s u i v ant deux voies : celle de la simulation d'algorithmes non d eterministes par des algorithmes d eterministes, et celle de la comparaison de la puissance de reconnaissance de machines sur des objets qui sont des graphes ou des mots.

{ Dans son premier article, W. J. Savitch S a v70] m o n tre que la question de savoir si les classes de complexit e en espace lin eaire d eterministe et nond eterministe DSPACE(L(N)) et NS PA CE (L(N)) sont egales m ene a des probl emes concernant des automates a galets dans certains environnements, qu'il nomme labyrinthes (mazes). Un tel automate est un automate ni avec alphabet d'entr ee f0 1g, d o n t l'ensemble des etats a la structure d'un groupe cyclique ni, et qui a la possibilit e de manipuler un nombre ni de marques (les galets) dans son environnement. Dans Sav73], il montre qu'il existe des automates a galets qui reconnaissent une certaine famille de graphes, qu'il d enomme \threadable mazes" si et seulement si toute machine de Turing non d eterministe a ruban L(n)born e p e u t être simul ee par une machine de Turing d eterministe a r u b a n L(n)-born e, pourvu que L(n) log 2 (n). Mais il conjecture qu'aucun automate a galets ne peut reconna^ tre cette famille, ce qui mettrait pourtant en evidence une di erence entre les classes de complexit e en 

Les labyrinthes et autres d edales

Les structures dans lesquelles se d eplacent les automates s' etendent du plan discret, eventuellement color e, consid er e assez informellement comme un pavage par des tuiles carr ees \unit e" (ou cellules) a la structure formelle tr es g en erale de grapho de introduite par Hemmerling Hem89], en passant par di erents types de graphes, comme \les d edales a la Blum ou a la Budach". La terminologie est assez variable. Dans la suite, nous conviendrons d'utiliser le terme de labyrinthe comme un terme g en erique, pour toutes les structures que nous rappelons et dans lesquelles nous nous proposons de faire evoluer des automates nis plus ou moins \renforc es". Mais, dans les enonc es nous devrons être, g en eralement, plus pr ecis.

3.1 Le plan discret, di erents motifs et les \d edales a l a

Blum" (mazes)

Figures ou motifs du plan

Les premiers articles qui evoquent des automates a galets BH67], Myl72], Sha74], sont consacr es a l ' etude de motifs 2-dimensionnels et a la capacit e d e 4-automates a reconna^ tre ou caract eriser certaines de leurs propri et es. Les motifs sont alors principalement des ensembles nis connexes de la grille carr ee classique, dont les points (les cellules) sont color e(e)s en blanc et noir, et qui ont une fronti ere. Chaque motif est suppos e a voir un point (une cellule) distingu e(e) qui sera le point (la cellule) sur lequel (laquelle) l'automate commencera a fonctionner. En fait, le d edale est compris, plus bri evement, comme l'ensemble des cellules blanches, et sa d e nition est etendue implicitement au cas in ni.

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Motif pour Blum et
On appelle obstacle tout ensemble maximal de cellules noires simplement connexes (c'est-a-dire ayant au moins un sommet commun, 8-connexit e). L'unique obstacle in ni d'un tel d edale est encore d esign e comme sa fronti ere, alors que l'ensemble des arêtes d'un obstacle qui le s eparent des cellules banches qui lui sont adjacentes est plutôt d esign e comme sa limite. Ue cellule blanche adjacente a une cellule noire est dite aussi cellule-limite. Cependant i l f a u t être attentif dans l'usage de cette correspondance. Par exemple, il n'y a pas egalit e e n tre le nombre de faces (voir paragraphe 3:3:2) de G(M) e t l'ordre de connectivit e d e M d e ni par Rosenfeld Ros70] comme le nombre de 8composantes connexes de son ensemble d'obstacles (rappelons que la 8-connexit e est fond ee sur le voisinage de Moore dans lequel deux cellules z = ( i 1 i 2 ) e t z 0 = ( i 0 1 i 0 2 ) s o n t v oisines lorsque max(ji 1 ; i 0 1 j ji 2 ; i 0 2 j) = 1). Toutefois, on retrouve c e t t e egalit e lorsque l'on associe a M, non plus G(M), mais le graphe red(G(M)) r eduit de G(M) et obtenu comme suit : red(G(M)) = (V E 0 ) o u V est l'ensemble des sommets de G(M) e t o u E 0 est obtenu en supprimant de l'ensemble des arêtes de G(M) toutes les arêtes horizontales dont les extr emit es ont des voisins sud, eux-mêmes connect es par une arête horizontale. Voir la gure 2.

Alors on a le r esultat suivant : { Un ensemble Z d' el ements appel es points, { Un sous-ensemble E de Z R Z, d o n t les el ements (P p Q) s o n t a ppel es arêtes (la composante p de (P p Q) etant l ' etiquette de (P p Q)), ces objets satisfaisant les conditions : { S i ( P p Q) e t ( P p 0 Q 0 ) s o n t des arêtes de L telles que les premi eres lettres de p et p 0 sont les mêmes, alors p = p 0 et Q = Q 0 , { S i ( P p Q) est une arête de L, ( Q p P ) aussi (o u p d esigne le mot renvers e d e p), et elle est appel ee l'inverse de (P p Q). Si, de plus, de tout point P de Z il part au moins une arête, le pr elabyrinthe est dit strict.

Pour tout point P du pr elabyrinthe, val(P ) d esigne l'ensemble fd 2 D= il existe p 2 D ? et Q 2 Z tels que (P dp Q) 2 Eg, que l'on appelle valence de P et dont le cardinal est le degr e de P. { Un labyrinthe est un pr elabyrinthe dans lequel l' etiquette de toute arête est r eduite a une lettre de D. { U n p r elabyrinthe (Z 0 E 0 ) est un sous-pr elabyrinthe plein de (Z E) lorsque

Z 0 Z et E 0 = f(P p Q) 2 E=P Q2 Z 0 g.
Les labyrinthes les plus int eressants seront les sous-labyrinthes plans pleins de A = ( Z 2 E ) o u ( P d Q) 2 E si et seulement s i Q = P + ( (d)) si est l'homomorphisme q u i e n voie canoniquement F sur le groupe ab elien libre Z 2 engendr e p a r ( 0 1) et (1 0). Ce sont donc des sous-graphes de la grille carr ee classique, et parmi ces derniers, les d edales co-nis (mazes) obtenus a partir d'un ensemble ni M de Z 2 en consid erant l e s p o i n ts de Z 2 origines de chemins in nis de la grille classique ne rencontrant p a s M.

Labyrinthe "à la Budach" . Il faut imaginer que tous les autres points à coordonnées entières sont colorés en noir, que les points blancs sont interdits, et que les arêtes sont les limites des cellules joignant les sommets noirs. 

Grapho des

D e nition

Un grapho de est un triplet G = ( V H I) o u : { V est un ensemble non vide d' el ements appel es sommets de G, { H est un ensemble disjoint d e V , non vide, dont l e s el ements sont a p p e l es les demi-arêtes de G, { I est une relation binaire sym etrique et non r e exive s u r V H, telle que : { I \ V 2 = , { pour tout h de H, il existe exactement u n v de V tel que (h v) 2 I.

On notera alors v = ver(h). De plus, on note H(v) l'ensemble des demi-arêtes incidentes au sommet v. { p o u r t o u t h de H, il existe au plus un h 0 de H tel que (h h 0 ) 2 I. O n d enote alors h 0 par hal(h). qui est parfois appel ee relation d'incidence.

Une demi-arête est dite libre lorsqu'elle n'est incidente a aucune autre. Deux demi-arêtes incidentes forment une arête. On peut aussi ordonner les demi-arêtes de mani ere a obtenir des arêtes orient ees ou arcs. Un grapho de est dit ouvert lorsqu'il contient une demi-arête libre. Dans le cas contraire, on parle de graphe. On d e nit, par analogie avec les graphes, des grapho des nis, simples et connexes (un chemin entre deux sommets est n ecessairement constitu e d'arêtes).

Sommet Demi-arête

Fig. 4 -Grapho des Notons qu'introduire des demi-arêtes a plusieurs avantages: d'une part cela permet de distinguer des sommets par lesquels les automates vont p o u v oir en quelque sorte \s' echapper" du graphe sous-jacent, d'autre part cela permet d'envisager un autre type de machines pour lesquelles des marqueurs pourront être d epos es sur ces demi-arêtes et non plus (seulement) sur les sommets du graphe sous-jacent, ce qui, dans certaines situations donne des mod eles plus puissants.

De plus, un automate n'aura plus n ecessairement a s e d eplacer le long d'une arête du grapho de mais pourra \sauter" sur une demi-arête d'un sommet adjacent comme l'indique la gure 5.

Indique le déplacement de l'automate Automate Fig. 5 -D eplacement d'un automate dans un grapho de En n, cela permet de faire des preuves et d'appliquer de fa con rigoureuse certains r esultats de g eom etrie (voir plus loin, par exemple, le th eor eme de Riemann-Hopf). Par ailleurs, on pourrait aussi rapprocher cette id ee de celle qui consiste a compl eter les graphes d'automates a n de pouvoir exploiter des propri et es de graphes r eguliers, entre autre des graphes de Cayley, e t , a t r a vers eux, la th eorie des groupes et une g eom etrie.

Pour qu'un automate puisse se mouvoir e cacement dans un grapho de, il doit conna^ tre les demi-arêtes par lesquelles il pourra quitter sa position actuelle. Deux possibilit es se pr esentent : se donner une permutation cyclique pour chaque ensemble H(v) de demi-arêtes admettant v comme sommet adjacent, cela donne naissance aux R-grapho des. Ou simplement etiqueter les el ements de tout H(v), ce qui donne lieu aux C-grapho des, parmi lesquels on retrouve i m m ediatement les d edales de la grille Z 2 classique. C'est ce que nous allons expliciter imm ediatement. Notons auparavant que la d e nition d'un vecteur de d ecodage dans les graphes d'automates RFH72], Rem92], a n de contrôler les communications entre automates voisins fait pr ecis ement des graphes sous-jacents des grapho des.

R-grapho des

Nous donnons dans ce paragraphe la d e nition d'un R-grapho de ainsi que celles de notions n ecessaires pour travailler avec ce type de labyrinthe, dont certaines ne sont que des adaptations de notions classiques de g eom etrie.

{ Une rotation ou permutation cyclique d'un ensemble ni non vide S est une bijection r de S sur lui-même telle que r card(S) (s) = s et r i (s) 6 = r j (s) pour 1 i < j card(S) e t t o u t s 2 S. { Une rotation sur un grapho de G est une application r : H ;! H telle que, pour tout v de V , r jH(v) est une rotation de H(v). { U n R-grapho de est la donn ee d'un grapho de en même temps qu'un syst eme de rotation, c'est donc un quadruplet (V H I r). Un R-graphe est un R-grapho de sans demi-ar ête libre. { P ar angle (incident au sommet v) d a n s u n R-grapho de on entend un chemin = ( h v h 0 ) o u h 2 H v = ver(h) h 0 = r(h). { Deux angles (h 1 v 1 h 0 1 ) e t ( h 2 v 2 h 0 2 ) sont dits li es si (h 0 1 h 2 ) 2 I ou (h 1 h 0 2 ) 2 I. { Une face d'un R-grapho de est un ensemble minimal non vide d'angles, clos pour la relation de lien. { U n chemin w = ( : : : g 0 g 1 g 2 : : : g m : : : ) dans un R-grapho de est dit suivre une face lorsque pour trois el ements cons ecutifs (g i g i+1 g i+2 ) d e w o u g i+1 est un sommet, alors (g i g i+1 g i+2 ) est un angle de cette face. { L ' ordre d'un sommet v ou d'une demi-arête h dans un R-grapho de est le nombre de faces contenant des angles dans lesquels v ou h apparaissent. Plus pr ecis ement : { ord(v) = cardfF=F est un face contenant un angle incident a vg,

{ ord(h) = 8 > > > > < > > > > : 1 : ang(h) = ( h ver(h) r (h)) : et ang(r 1 (h)) = (r 1 (h) v e r (h) h )
: appartient a l a m ême face, 2 : les angles ci-dessus appartiennent a deux faces : di erentes Deux demi-arêtes incidentes ont, par d e nition, le même ordre, et l'ordre d'une arête (comme d'un arc) est celui de l'une de ses demiarêtes. { Lorsque l'on se d eplace dans un labyrinthe, il peut être int eressant de conna^ tre quels sont les angles incidents a un sommet v, consid er es a partir d'une demi-arête de H(v). On d e nit alors la relation d' equivalence suivante, appel ee caract eristique de h, d esign ee par cha(h) : pour 0 i j < deg(v), i h j si et seulement s i ang(r i (h)) et ang(r j (h)) appartiennent a l a m ême face. Si Dans le cas des R-grapho des, les brins sont evidemment les demi-arêtes, l'involution est l'application qui a toute demi-arête h associe hal(h), est le syst eme de rotation du R-grapho de dont les cycles caract erisent e ectivement les sommets. Une face d'un R-grapho de peut être vue comme une face sur une surface virtuelle parcourue en empruntant une arête puis en tournant autour du sommet pour prendre l ' a r ête suivante dans la rotation.

cha(h) = ffj=0 j < deg(v)etj h ig=0 i < deg(v)g, alors ord(v) = card(cha(h)) et ord(h) = 1 si et seulement s i 0 h deg(v) ; 1 .
Compte tenu du contexte, nous choisissons de conserver la terminologie de R-grapho de. Cependant ces remarques sugg erent l' etude de la puissance d ' a utomates nis se d epla cant sur di erentes surfaces.

Consid erons maintenant des grapho des \ etiquet es" ou encore grapho des \ a boussoles". Tout C-grapho de peut evidemment être consid er e comme un R-grapho de particulier. Certains C-grapho des, les 2D-e t 3 D-grapho des vont jouer naturellement u n r ôle privil egi e. Nous allons les d e nir pr ecis ement, et pour cela revenir sur les notions de plongements. { S i v 6 = v 0 , P(v) 6 = P(v 0 ), { P our tout v de V , e de H, P (v) n'est pas un point i n t erieur de P(e), et P (v) 2 P (e) s i e t s e u l e m e n t s i v est une extr emit e d e e.

C-grapho de

Plongements de graphes et de grapho des

{ T out graphe ni ou in ni poss ede un 3-plongement, { Un graphe qui poss ede un 2-plongement est dit planaire.

Passons maintenant aux grapho des.

{ Un plongement de dimension n, n 2 f 2 3g (ou n-plongement) d'un grapho de se d e nit quasiment comme un plongement de graphe, mais il faut cependant a r r êter le sort des demi-arêtes. Pr ecisons donc qu'il s'agit encore d'une application P qui assigne a tout sommet v de G un point P(v) d e R n , a toute demi-arête h une courbe P(h) d a n s R n , de telle sorte que : { S i v 6 = v 0 , P(v) 6 = P(v 0 ), { P our tout v de V , h de H, P(v) n'est pas un point i n t erieur de P(h), et P(v) 2 P (h) si et seulement s i v = ver(h), { S i h h 0 2 H et si h 6 = h 0 , alors, P(h) e t P (h 0 ) n'ont pas de point int erieur commun, et (P (h) \ P (h 0 )) n P(V ) 6 = si et seulement s i fh h 0 g 2 I.

Un grapho de est dit planaire s'il poss ede un 2-plongement. Notons que si G 0 est le graphe obtenu en supprimant toutes les demi-arêtes libres d'un grapho de G, alors G est planaire si et seulement s i G 0 l'est.

Un plongement plan d'un R-grapho de est un 2-plongement du grapho de sous-jacent a vec la propri et e s u p p l ementaire que la rotation correspond a l'orientation du plan suivant le sens des aiguilles d'une montre. Un R-grapho de est dit plan lorsqu'il poss ede un plongement plan. On a aussi que G est plan si et seulement s i G 0 l'est.

nD-grapho des, n 2 f 2 3g

Par 2D ou 3D-grapho de, nous entendons des C-graho des avec D = fn e s wg et D f haut, basg comme ensembles de directions respectifs, et poss edant respectivement des 2-et 3-plongements dont les arcs P (h) s o n t des segments de droites parall eles ou perpendiculaires aux axes.

Un nD-plongement est dit norm e lorsque les arcs P(h) s o n t des segments de droites de longueur 1=2 parall eles ou perpendiculaires aux axes. Et il est dit fortement norm e lorsque j P(v) ; P (v 0 ) j= 1 equivaut au fait que v et v 0 sont adjacents. Il est int eressant de rappeler que tout graphe simple planaire ni ou in ni a un plongement dans lequel les arêtes sont repr esent ees par des segments de lignes droites. Ce qui se prolonge aux R-graphes.

De plus, un graphe planaire a, au plus, un ensemble d enombrable de sommets de degr e 3 , c e q u i , j o i n t au fait que les triangles pavent le plan, justi e, en Informatique, le recours aux triangulations.

Un chemin rectilin eaire polygonal de R 2 , RPP, est un ensemble ni ordonn e de points p 1 : : : p m tels que : { p i pr ec ede p i+1 pour tout 0 i m, { les segments p i p i+1 sont parall eles ou perpendiculaires aux axes. 4 Des automates sur des motifs, dans des labyrinthes Un automate ni \en soi" n'est rien sinon un \m ecanisme" qui dispose d'un nombre ni d' etats (que l'on peut interpr eter comme sa m emoire) susceptible d' evoluer dans un syst eme avec lequel il interagit. Cela conduit donc a di erentes sp eci cations plus ou moins formelles, dont un caract ere essentiel est, g en eralement, qu'elles soient nies. Le degr e de rigueur des preuves que l'on veut (ou\ peut raisonnablement") pr esenter implique le degr e de formalisation consenti.

Les 4-automates

Rappelons d'abord la d e nition des 4-automates se d epla cant dans des motifs nis du plan. Il s'agit de machines A = ( Q f0 1 B g q 0 F ) o u { Q est l'ensemble ni des etats de l'automate, { 0 e t 1 d esignent les couleurs des points a coordonn ees enti eres du plan qui d eterminent le motif, et B est une troisi eme couleur permettant d e discriminer les points de la fronti ere, { est la fonction de transition de l'automate, : Q f 0 1 B g ; ! P (Q) f 0 e n w s g dans le cas non d eterministe, : Q f0 1 B g ; ! Q f0 e n w s g dans le cas d eterministe, o u e n w s d esignent les directions habituelles du plan, { q 0 est l' etat initial de l'automate, { F est une partie de Q, l'ensemble des etats d'acceptation de l'automate. Le fonctionnement de l'automate sur un motif est le suivant : lorsque l'automate est sur un point du motif, dans un etat p, et que la couleur du point e s t x, alors il passe en etat q et se d eplace, en admettant que la fonction de transition soit d e nie sur (p x), suivant la direction d telle que (q d) 2 P (Q) f0 e n w s g si d 6 = 0, reste sur la même position sinon. Une con guration de l'automate A sur un motif M est un couple (q y) o u q est un etat et y un point du motif.

Un motif M est accept e par A si et seulement s i A partant de la con guration initiale (q 0 y 0 ) ( o u y 0 est le point initial du motif) entre dans un etat d'acceptation apr es un nombre ni de pas de calcul ou mouvements. Notons que, d'apr es sa d e nition, l'automate ne peut se d eplacer en dehors de sa fronti ere.

Nous reviendrons a la reconnaissance de gures du plan, dans un paragraphe propre, en conclusion de ce rapport, a n d'introduire DM97].

Automates sur d edales et divers grapho des

Nous donnerons maintenant les d e nitions dans le cadre g en eral des R-e t C-grapho des car elles pourront alors être assez facilement i n terpr et ees pour les cas particuliers habituels. D'abord formellement des machines, puis de leurs tâches : exploration et reconnaissance de grapho des.

On consid ere des automates qui sont, fondamentalement, des automates de Mealy, c'est-a-dire des automates avec sorties, A= ( Q X Y q 0 ), o u Q est l'ensemble ni des etats de l'automate, q 0 son etat initial, sa fonction de transition, qui gouverne ses etats, et sa fonction de d eplacement, qui d etermine son mouvement dans le grapho de. est donc une fonction de Q X dans Q, pas n ecessairement partout d e nie, et une fonction de Q X dans Y , p a s n ecessairement partout d e nie non plus. Ces automates n'ont pas d' etats d'acceptation ou de rejet, ce qui est coh erent avec l'objectif qu'on leur donne a priori: explorer des labyrinthes. Nous n'introduirons de tels etats que lorsqu'il s'agira de reconna^ tre ou de d ecider des classes d'objets.

1. R-automates ou automates sur un R-grapho de . Si (q deg(ver(h)) = q 0 et (q deg(ver(h)) = j, alors, (q h) `(q 0 h 0 ) o u h 0 = h si j = &, h 0 = hal(r j (h)) sinon.

Cela signi e donc que l'automate, dans un certain etat, sur une demi-arête, soit reste en place, tout en changeant d ' etat, soit se d eplace, en changeant d' etat, sur une demi-arête d'un sommet voisin si la demi-arête r j (h) est born ee, est dit quitter le grapho de sinon. On admettra que le syst eme se bloque si l'une ou l'autre des deux fonctions n'est pas d e nie pour (q ver(h)).

C-automates ou automates sur un C-grapho de

Dans ce cas, on a un ensemble de directions D. Alors,

X = f(S d)=S D d 2 Sg, Y = D f &g et (q (S d)) 2 S f &g pour tout (q (S d)) 2 Q X.
Si (q (c(H(ver(h) c (h))) = q 0 et si (q (c(H(ver(h) c (h))) = d 0 , o u b i e n d 0 = & et alors l'automate reste sur la même demi-arête, ou bien d 0 6 = & et alors il existe une demi-arête h 1 2 H(ver(h)) telle que d 0 = c(h 1 ) deux possibilit es encore, ou bien h 1 est libre, alors l'automate est dit sortir du grapho de par cette demi-arête, ou bien elle est born ee et alors l'automate va se placer sur h 0 = hal(h 1 ).

Comportement d'un automate a partir d'une demi-arête

Les positions de l'automate sont des demi-arêtes du grapho de. L'automate ne se d eplace pas n ecessairement le long d'arêtes. Son comportement s e repr esente par la suite d' etats et de positions (q i h i ) i 0 qu'il a a partir d'une con guration initiale (q 0 h 0 ), o u q 0 est pr ecis ement l ' etat initial de l'automate. { S o i t A. O n s i g n i e r a p a r X ;! A Y que l'ensemble des entr ees de A est X et son ensemble de sorties Y . Soit A et A 0 deux automates, X ;! A Y et Y ;! A 0 Y 0 . On appelle jeu de A dans A 0 l'automate X ;! A A 0 Y 0 dont l'ensemble des etats est Q Q 0 et les fonctions de transitions sont d e nies par : ((q q 0 ) x ) = ( (q x) 0 (q 0 (q x)) ((q q 0 ) x ) = 0 (q 0 (q x)). { Dans le cas o u Y 0 = X et o u 0 ne d epend que de l' etat de l'automate, ce jeu entre les deux automates peut être vu comme un syst eme dynamique S = ( Q Q 0 g ), g etant d etermin ee comme suit :

on peut ecrire 0 comme une fonction 0 de Q 0 dans X : 0 (q 0 ) = 0 (q 0 y ). Ceci donne la fonction de Q Q 0 dans X d e nie par : ((q q 0 )) = 0 (q 0 ), d'o u ((q q 0 ) x ) = ((q q 0 )). Alors, on pose : g((q q 0 ) ) = ( (q q 0 ) ((q q 0 ))), soit, en explicitant : g((q q 0 )) = ( (q 0 (q 0 )) 0 (q 0 (q 0 (q 0 )))).

{ Explicitons ce que cela donne dans le cas du jeu de A dans le labyrinthe L qui permet e ectivement cette interpr etation comme syst eme dynamique S(A L) = ( Q Z g) :

g((q P)) = ( (q valP) 0 (P (q valP))), soit, g((q P)) = ( (q valP) P (q valP))). ce que l'on peut repr esenter par : q ;! valP ((q valP)) dans A, P ;! ((q valP)) P ((q valP)) dans L.

On s'int eresse aux chemins de l'automate dans le labyrinthe a partir d'un point initial O, l'automate etant a u d epart dans son etat initial, c'est-a-dire aux suites (g t ((q 0 O ))) t 0 . Ces chemins peuvent être repr esent es par : P 0 = O ;! r0 P 1 ;! r1 P 1 ;! r1 : : : P n ;! rn : : : . La suite (q t v a l (P t ) ((q t v a l (P t )))) t est appel ee le A-mod ele de L lorsque A part de (q O). Si (L O ) est un labyrinthe point e (ou labyrinthe dans lequel on a distingu e u n p o i n t), le A-mod ele de (L O ) est le A-mod ele de L lorsque A part de (q 0 O ). Quelle est la puissance de tels automates dans les structures evoqu ees jusquel a? Nous allons voir que c'est a la fois beaucoup et peu !

Exploration

Sur des performances d'automates nis dans des labyrinthes

Dans ce paragraphe, nous enon cons et prouvons quelques r esultats illustrant ce que peuvent e t n e p e u v ent pas r ealiser des automates nis dans des labyrinthes, en mettant e n evidence des m ethodes de preuves classiques dans le domaine. La preuve d e c e t h eor eme repose sur une id ee assez e cace pour ce genre de r esultats : la mise en evidence de motifs particuliers, equivalents pour un automate (c'est-a-dire indistingables par lui), qui permettent d'exhiber des situations dans lequel l'automate est en d efaut.

Reconnaissance et ou d ecision

Dans ce cas, il s'agit de motifs carr es, de même dimension, sans cellules fronti eres c'est-a-dire dont les cellules sont color ees par 0 ou 1, disonsles sous-motifs distingu es. Deux tels motifs sont indistingables par A si chaque fois que A entre dans l'un par la cellule x i , e n etat q i et en ressort par la cellule x j en l' etat q j , il fait de même sur l'autre, c'est-a-dire que s'il y entre par x i , e n etat q i , il en ressort par x j en l' etat q j (les cellules du bord etant n um erot ees de la même fa con Cependant ils ne sont pas encore si puissants, comme nous allons le voir maintenant. 2. Nous consid erons dans ce paragraphe des motifs qui sont p l u s g en eraux que ceux de Blum et Hewitt. Il s'agit d'ensembles nis de points de Z 2 , color es en blanc (1) et noir (0), entour es de fronti eres form ees de points color es en B qui sont p r ecis ement les points qui ne sont ni blancs, ni noirs, mais qui ont u n v oisin blanc ou noir suivant les quatre directions usuelles ou une diagonale (8-voisin). Ce sont des motifs qui peuvent d o n c a voir des trous, comme les rectangles \creux" repr esent es dans la gure ??. O n d enote Rcr la classe de ces rectangles dont le point initial est le point n o i r du coin en haut, a g a u c he.

Th eor eme 2 Il n'existe pas de 4-automate non d eterministe reconnaissant la classe Rcr.

Une preuve d e c e t h eor eme donn ee dans Myl72

] utilise encore l'id ee de sous-motifs distingu es equivalents dans lequel l'automate est mis en d efaut.

Preuve Supposons qu'un 4-automate A= ( Q f0 1 B g q 0 F ) non d eterministe reconna^ t Rcr. Consid erons des sous-motifs d'objets de Rcr constitu es d'une ligne de points 0, horizontale ou verticale, bord ee de deux lignes de même longueur de points B, comme le montre la gure 8, dont l e s seuls points d'entr ee ou de sortie sont l e s p o i n ts des extr emit es num erot ees 1 2 3 4 5 6. A c hacun de ces motifs w est associ ee une fonction w A de Q f1 2 3 4 5 6g dans P(Q f1 2 3 4 5 6g) f0g, d etermin ee comme suit : si A entre par le point i et en etat q dans w, ou bien il ne sort pas de w, alors w A (q i) = 0 , ou bien il en sort par un point j, e n etat p, alors w A (q i) est l'ensemble des couples (p j) possibles (suivant et w). La relation E d e nie sur la classe des motifs distingu es par w 1 Ew 2 si et seulement s i w1 A = w2 A est une relation d' equivalence. D'apr es la d e nition de E, l e n o m bre de ses classes est evidemment ni, par cons equent il existe au moins une classe ayant une in nit e d ' el ements, soit w un de ses el ements. On peut supposer que w est un motif horizontal. Soit w 0 le motif distingu e vertical de même longueur qui appara^ t dans le carr e c de Rcr repr esent e sur la gure 9. Un carré creux de "base horizontale" w w' w Fig. 9 -Les motifs distingu es w et w 0 , l e c arr e c Soit w et w 0 sont dans la même classe in nie C, soit non. Mais alors w 0 appartient a u s s i a une classe in nie. En e et, comme le carr e creux est reconnu par A, l'automate, au cours de son test, doit entrer et sortir de chaque sous-motif w et w 0 . Comme l'automate est sp eci e d e f a con nie, au bout d'un certain nombre de pas, son comportement devient p eriodique, par cons equent, pour peu que la longueur de w 0 soit su sante (ce qui est possible car elle ne d epend que du choix de w qui lui-même appartient a une classe contenant une in nit e de motifs de longueurs distinctes) il existe une in nit e de motifs distingu es verticaux equivalents a w 0 , e t m ême plus pr ecis ement un motif de longueur n pour tout n j w 0 j. Nous sommes maintenant en mesure de montrer que nous aboutissons a une situation absurde en exhibant un motif qui n'est pas dans Rcr et qui est reconnu par A. Supposons que A accomplisse au moins m travers ees du carr e pour le reconna^ tre. Et consid erons la \spirale" obtenue en rempla cant c o n vena-blement c haque occurrence de w et w 0 par un el ement equivalent strictement plus long convenable, de telle sorte que l'on obtienne 2m + 3 coins inf erieurs gauche. On prend comme point initial du motif le m + 1 -i eme coin inf erieur gauche. Il est clair que l'automate reconna^ t ce motif qui n'est pas dans Rc, d e m ême que tout motif obtenu e n c o m p l etant d e f a con absolument quelconque les extr emit es de notre \spirale". Notons que la technique qui consiste a construire une spirale qu'un automate ne peut explorer est souvent utilis ee. Elle permet par exemple de prouver le r esultat suivant [START_REF] Hemmerling | Three dimensional traps and barrages for cooperating automata[END_REF] L'id ee de l'algorithme est de suivre l'obstacle a main droite, tout en explorant, avant c haque nouveau pas le long de la fronti ere, toutes les cellules blanches possibles vers le nord. Il est repr esent e sur la gure 10. Notons que l'automate r ealisant cet algorithme, que nous n' ecrivo n s p a s , a u n nombre d' etats assez important! L'algorithme ici est exactement suivre le graphe a main droite. Ce que l'on peut d ecrire plus pr ecis ement : l'automate est plac e initialement sur n'importe quelle demi-arête h du cographe, il se d eplace d es lors syst ematiquement v ers la position hal(r(h)) de sa position courante h, comme le montre la 11. On remarque que l'on en d eduit le r esultat pour les d edales nis M a la Blum en appliquant l'algorithme p r ec edent au graphe r eduit red(G(M)) qui a bien une seule face. On remarque aussi que ces algorithmes peuvent être vus comme des versions particuli eres de l'algorithme d e T erry RFH72]. Soyons un peu plus pr ecis. Le comportement de l'automate est en fait caract eris e par la suite in nie (q i ) i 0 de ses etats successifs. Comme j Q j est ni, il existe deux entiers distincts i 1 et i 2 tels que q i1 = q i2 et q ij 6 = q i1 pour tout i 1 j < i 2 .

Sommets constituant la figure

Par ailleurs, a partir d'une position, l'automate ne peut se d eplacer, en prenant des etats distincts, qu' a une distance au plus j Q j le long d'une direction. Il en r esulte que l'automate ou bien boucle dans un carr e d e c ôt e au plus 2 j Q j, ou bien se d eplace dans une bande in nie de largeur au plus 2 j Q j, d o n t l a direction est donn ee par le vecteur joignant les positions points de d epart de deux p eriodes cons ecutives. Dans chacun des cas l'automate laisse une in nit e de points hors de sa trajectoire. Voir la gure 12. Il r esulte de cette preuve que pour tout automate ni, il existe une partie nie du plan discret qui le pi ege. L'int erêt est donc de chercher s'il existe des pi eges ayant des propri et es int eressantes. Citons pour exemples quelques r esultats dont des preuves peuvent être trouv ees, par exemple, dans Hem89].

Th eor eme 4 Pour tout R-automate, il existe un pi ege (L h) o u L est un Rcographe plan cubique, dont chaque face c onsiste en au plus six angles.

Th eor eme 5 Il n'existe pas de C-automate qui explore t o u t 2Dcographe fortement norm e et qui s'arrête toujours sur de tels labyrinthes.

Th eor eme 6 Pour tout C-automate ni dont l'ensemble de directions D contient fe s w ng il existe un pi ege (L h) tel que L est un 2Dcographe ayant Ces r esultats sont essentiellement d ûs a Budach qui donna la premi ere preuve (tr es sophistiqu ee) Bud78] de l'existence de \d edales a la Budach" co nis pi egeant un automate ni. Les am eliorations de son r esultat sont e s s e n tiellement dûes a M uller M ul79] pour le nombre de faces et Antelmann Ant80] pour le nombre de sommets. De ces r esultats, dont les preuves sont plus ou moins compliqu ees, on peut d eduire que les automates nis sur des structures de dimension sup erieure ou egale a 2 ne sont pas tr es puissants. En fait, ces quelques remarques mettent e n evidence la pr edominance de la structure sur l'automate. Cependant, on peut am eliorer les performances de ces derniers sur des plans color es plus ou moins complexes ou dans des structures plus g en erales, en leur \ajoutant d e l a m emoire" (leur m emoire initiale consistant en leurs seuls etats). C'est ce qui conduit, entre autres, aux automates a galets.

Automate

Le comportement d'un tel automate est d ecrit par une suite de triplets constitu es de l' etat, de la position et de l'existence ou non d'un marqueur a cette position. Une coop eration plus riche peut être assur ee par des automates a k-têtes, qui peuvent être vus comme des syst emes de k-automates (les têtes) coop erant a vec la possibilit e d ' echanger leurs informations d'entr ee via un centre de contrôle. Un type d'automates encore plus puissants est obtenu en donnant l a possibilit e a c haque automate d'un tel syst eme de rejoindre (en une transition) -\sauter" a -la position de n'importe quel autre tête.

Une autre philosophie conduit a des mod eles d'un type di erent, dont nous donnons quelques repr esentants ci-dessous.

{ Automate a un ruban de Turing : C'est un automate ni auquel on adjoint un alphabet de travail X T contenant u n s y m bole sp ecial, le \blanc", les fonctions et sont alors d ecrites par :

: X X T Q ;! X T f 1 ;1 & g, e t , : X X T Q ;! Y avec ((S d) x T q )) 2 S f &g.
Une con guration d'un tel automate a ruban de Turing est une suite de quadruplets (h q w 1 w 2 ) o u w 1 et w 2 sont les mots du ruban de Turing, de part et d'autre de la tête (avec la convention que cette derni ere pointe la premi ere lettre de w 2 .

{ Automate a pile: c'est un automate a ruban de Turing, dont l e r u b a n est une pile. { Automate a \pile visitable": c'est un automate a pile, avec cette propri et e suppl ementaire que l'on peut aller lire (sans ecrire) dans la pile. { Automate a compteur: c'est un automate a p i l e a vec exactement trois symboles dans son alphabet de travail: le blanc, le symbole de fond de pile et un seul autre symbole 1. La pile d'un tel automate repr esente un nombre naturel. L'automate sait reconna^ tre si sa pile est vide ou non.

Des liens entre ces di erents types d'automates

Dans le sch ema de la gure 14, les eches A;!B signi ent que les automates de la classe A sont au moins aussi puissants que ceux de la classe B.

Automates à ruban de Turing

Automates multitêtes "sauteuses"

Automates multitêtes

Automates à une pile visitable Th eor eme 8 Il existe un automate a t r ois galets qui explore le monde vide.

Preuve

Un algorithme sur lequel est fond e c e r esultat est repr esent e par la gure 15. Les trois galets que poss ede initialement l'automate sont s u ccessivement d epos es suivant un triangle, les cheminements de l'automate sont repr esent es par les eches. A chaque tour, chaque fois qu'il rencontre un galet, l'automate le d eplace vers une nouvelle position suivant la direction (retenue dans ses etats) dans laquelle il arrive sur le galet. Remarque 4 Jusqu'a pr esent, les galets consid er es sont indi erenci es. On peut justement se demander si leur donner une etiquette ajoute de la puissance a l'automate ainsi obtenu. On d emontre que, suivant les structures sur lesquelles se d eplacent les automates, ces automates a galets etiquet es ont la même puissance que les automates a galets non etiquet es BH67], Hem89], DM97]. Mais c'est faux ou encore i n c onnu sur d'autres.

Galets

Dans le cas du monde vide, nous pouvons encore montrer que : Proposition 6 Un automate a un galet, ni un automate a deux galets ne sauraient explorer le monde vide. Preuve

Consid erons en e et un automate a u n g a l e t g. Il part d'une position de la grille avec son galet. Il doit le d eposer avant un certain temps ni t 0 sous peine de se comporter comme un automate sans galet, dont o n a d ej a vu qu'il ne reconna^ t pas le monde. Mais il doit ensuite revenir chercher ce galet avant un temps ni t 1 pour la même raison. Et, comme l'automate et son galet sont s p eci es de fa con nie, la suite qui d ecrit son comportement ( c haque el ement de cette suite repr esentant u n etat du syst eme, c'est-a-dire la position de l'automate et l'information qu'il porte ou non son galet) est n ecessairement p eriodique. Par cons equent s i l a r egion du plan qu'il sillonne n'est pas born ee, c'est encore une fois, a partir d'un certain point une bande du plan de largeur nie et fonction du nombre d' etats de l'automate. Il en r esulte que l'automate laisse une in nit e de points hors de sa trajectoire. La gure 16 illustre ce raisonnement. Ê Supposons maintenant que l'automate a deux galets g 1 et g 2 . I l p a r t d ' u n p o i n t de Z 2 , en possession de ses deux galets. Son comportement est encore caract eris e par une suite in nie d' etats qui peut être d ecompos ee en sous-suites particuli eres elles-mêmes d e nies par le fait que les deux galets sont hors graphe, que l'un des galets est d epos e et pas l'autre, que les deux galets sont d epos es. On peut donc la formaliser comme suit : I fi jg S j i S fi jg S j i S fi jg S j i S fi jg S j i : : :, o u i j 2 f 1 2g, I fi jg est la sous-suite initiale de l'automate, S j i une sous-suite correspondant au fait que l'un des galets est d epos e, l'autre repris, S fi jg une sous-suite (non initiale) correspondant au fait que l'automate se d eplace avec ses deux galets c'est-a-dire qu'aucun des galets n'est sur le graphe, et S fi jg une sous-suite correspondant au fait que l'automate se d eplace seul, alors que ses deux galets ont d ej a et e d epos es.

Alors, de deux choses l'une: ou bien l'automate se trouve en situation de porter avec lui ses deux galets une in nit e de fois, ou bien non. Dans le premier cas, apr es une suite nie que nous dirons d'initialisation, la trajectoire de l'automate s' ecrit : S 2 1 S f1 2g S 1 2 S f1 2g S 2 1 S f1 2g S 1 2 S f1 2g S 2 1 S f1 2g S 1 2 S f1 2g : : : , o u S i j d esigne une suite nie de mouvements au cours de laquelle le galet j est pos e, le galet i emport e par l'automate, S f1 2g une suite de mouvements au cours de laquelle les deux galets sont e m p o r t es par l'automate (le fait que la suite en question commence par S 2 1 n'a aucune importance, il su t eventuellement d e faire un changement de nom). D'apr es les r esultats dans les cas des automates a z ero ou un galet, on sait que ces di erentes suites repr esentent des comportements born es de l'automate,dans le temps et l'espace, et comme la suite globale devient elle-même p eriodique, il est clair que l'automate n'explore pas Z 2 . V oir la gure 16.

Dans le second cas, a partir d'une certaine position atteinte en temps ni, l'automate ne porte jamais plus qu'un galet. Sa trajectoire est alors de la forme S 2 1 S f1 2g S 1 2 S f1 2g S 2 1 S f1 2g S 1 2 S f1 2g S 2 1 S f1 2g S 1 2 S f1 2g : : : Alors, de deux choses l'une: ou bien la distance entre les deux galets est born ee, ou bien cette distance \cro^ t" avec le temps (c'est-a-dire que la suite des distances des galets contient u n e sous-suite strictement croissante). Dans le premier cas, il est clair que l'automate laisse des points a l'ext erieur de sa trajectoire, car a partir d'une certaine position, ou bien il boucle dans un carr e d e c ôt e 8 j Q j, o u b i e n i l s e d eplace dans une bande in nie de cette largeur. Dans le second cas, a partir d'une certaine position, la longueur du trajet que fait l'automate ayant d epos e le galet g 1 pour aller relever le galet g 2 , dans le monde vide, est telle qu'il se d eplace dans ce monde comme un automate sans galet, par cons equent dans une bande de largeur born ee. Par ailleurs, lorsque l'automate porte un de ses galets, comme il doit le d eposer avant d'aller a l a r e c herche de l'autre, il ne se d eplace que dans carr e b o r n e d u p l a n d o n t l e c ôt e est au plus 2:8 j Q j. V o i r l a g u r e 1 7 .

Notons que, dans le cas de trois galets, les distances entre les di erents couples de galets ne cessent de cro^ tre avec le temps. 

Exploration des d edales a la Blum, nis, ou 2D-cographes

Il est facile de voir qu'un automate a un galet peut explorer tout d edale a l a B l u m n i a un seul obstacle, de même que tout R-cographe a une seule face en s'arrêtant. Il su t de d eposer le galet a la position initiale, de r ealiser l'algorithme ( v oir proposition 1 et 2) et d'arrêter l'automate lorsqu'il retrouve son galet pour la premi ere fois. Qu'en est-il des cographes nis en g en eral?

Nous donnons d'abord le r esultat de BS77], enonc e sous la forme la plus g en erale qu'en donne Hem89], qui le compl ete d'ailleurs par une evaluation de la complexit e de l'algorithme sous-jacent.

Th eor eme 9 Il existe un automate a deux galets qui explore tout 2Dcographe norm e L et s'arrête apr es O(n 3 ) pas, si n d esigne le nombre de sommets du graphe sous-jacent a L.

L'id ee de la preuve est de se ramener, par un arti ce convenable, a un cographe a une seule face ou un d edale a un seul obstacle si nous nous pla cons dans le cas de Blum. Ceci repose sur la possibilit e de mettre un ordre sur les faces ou les obstacles qui permette de montrer que l'automate visite e ectivement tous les points ou cellules blanches du labyrinthe. Ici, par souci de rigueur et d'homog en eit e, nous choisissons de rester dans le cadre des cographes, et nous raisonnerons donc en termes de faces et non plus d'obstacles.

1. Un ordre sur les arêtes d'un C-cographe Soit L un C-cographe et P un 2D-plongement norm e d e L. P our toute arête e = fh h 0 g de L, o n d e nit ses coordonn ees comme les coordonn ees du point coo(e) = 1 2 (P(ver(h)) + P(ver(h 0 ))), c'est-a-dire du centre du segment de droite liant les images par P des extr emit es de e.

Il en r esulte un ordre entre a r êtes de L d e ni par : e 1 e 2 si et seulement si, avec coo(e i ) = ( x i y i ) i 2 f 1 2g, x 1 < x 2 ou x 1 = x 2 et y 1 y 2 .

2. Une arête e = fh h 0 g appartient a une face F si ang(h) = ( h ver(h) r (h)) ou ang(h 0 ) appartient a F. Une arête e est dite arête minimum d'une face F lorsqu'elle appartient a F et satisfait e e 0 pour toute arête e 0 de F. T oute face a donc exactement une arête minimum propre.

Lemme 1 Soit e l'arête minimum d'une face i n t erieure d'un 2Dcographe norm e L. A lors c'est une arête vertica l e e t e l l e a p p artient a deux faces distinctes de L. Si elle appartient a deux faces int erieures, elle n'est l'arête minimale que de l'une d'elles.

Preuve

Supposons que e, minimum pour F, soit horizontale. Comme l'arête e = fh h 0 g est minimum (pour la face), son extr emit e gauche est un sommet de degr e 1. Comme la face est int erieure, ang(h) e t ang(h 0 ) l u i appartiennent. Par cons equent, la demi-droite fcoo(e) + ( x ;1=2)=x 0g coupe, pour la premi ere fois, la fronti ere de la face au milieu d'une arête e 0 verticale mais telle que e 0 < e , ce qui contredit la minimalit e d e e. V oir la gure 19. e, e 0 = fh 0 h 0 0 g, e = fh h 0 g. Et supposons qu'un automate se d eplace a partir de la position h 0 0 . On peut aussi supposer que l'automate part vers l'est, car s'il part vers le sud ou vers l'ouest, e 0 n'est evidemment p a s l'arête minimum de la face.

Tant q u e x ; x 0 > 0, e n'est pas en concurrence avec e 0 . Ce n'est plus le cas lorsque x ; x 0 = 0 .

Le graphe etant norm e, e ne peut être qu'une arête verticale, et quatre cas peuvent s e p r esenter, illustr es sur la gure 24, o u p 0 p 1 repr esentent l e s sommets incidents a e 0 , p n;1 p n les sommets incidents a l'arête courante e et o u w d esigne la partie parcourue de w F a partir de p 2 . On peut compl eter les chemins de l'automate par les chemins indiqu es en pointill e sur les gures pour obtenir des chemins simplement clos du graphe. On en d eduit alors facilement que rin(p 0 p 1 wp n;1 p n va u t 1 m odulo 4 dans le cas (1), ;1 modulo 4 dans le cas (2), 0 modulo 4 dans le cas (3) et ;2 modulo 4 dans le cas 4.

Dans les deux premiers cas, e ne peut être qu'en dessous de e 0 , p a r c o n s equent e 0 ne peut pas être minimum. Dans le quatri eme cas, e ne peut être qu'au dessus de e 0 , donc elle n'entre pas en comp etition avec e 0 . I l ne reste que le cas (3) a examiner. Dans ce cas il se peut qu'il existe des arêtes e 0 0 = e e 0 1 : : : e 0 m du graphe, verticales, telles que x 0 j = x = x 0 et qui soient situ ees au dessus de e 0 ou que la m-i eme soit e 0 . V oir la gure 25 Supposons qu'il existe deux arêtes e 0 i e 0 i+1 , distinctes et distinctes de e 0 dans cette suite. Alors, il existe un chemin w i qui m ene l'automate de l'une a l'autre, et il est facile de v eri er que rin(w i ) v aut 2 modulo 4. Nous sommes maintenant en mesure de conclure. Il su t de consid erer un automate a un compteur et qui, grâce a ses etats compte modulo 4. En position initiale, il est sur la partie inf erieure d'une arête verticale, compteur a z ero. Si son compteur s'annule, l'automate sait, par son etat s'il est sur une arête possiblement m i n i m um. Il prend alors un nombre ni de positions, et entre chacune d'elles, il evalue modulo 4 l'indice du chemin qui les s epare. D es que cet indice vaut 0 modulo 4, c'est que sa position pr ec edente etait sa position d'origine. Il est clair que l'on raisonne de mani ere analogue en partant d'une arête horizontale (qui ne peut être arête minimum que d'une face ext erieure, et alors son sommet incident g a u c he est de degr e 1). 6. Il ne reste plus qu' a v oir qu'un automate a un compteur peut être simul e sur un tel graphe par un automate a deux galets. Ceci n'est pas di cile: l'automate, en se d epla cant d e l ' u n a lautre, g ere ses deux galets de telle sorte que leur distance soit la valeur du compteur. Le calcul de la complexit e s'en d eduit.

Le r esultat le plus g en eral est celui de Hemmerling Hem87a], que nous enoncons ci-dessous. Il est obtenu a partir d'algorithmes d'exploration qui s'appliquent a d e s 2 D-cographes arbitraires, et utilisent u n t ype particulier de chemins, les chemins r eguli erement b a l a n c es (\regular swinging").

Th eor eme 10 Il existe un automate a deux galets qui explore t o u t 2Dcographe et s'arrête apr es O(n 4 ) pas de calcul.

Ce r esultat est compl et e par le suivant a rm e par Ho mann Hof81] :

Th eor eme 11 Il n'existe pas d'automate a un galet explorant tout 2D-labyrinthe fortement norm e.

Avant de passer au cas des graphes simples in nis d enombrables connexes ou incographes, mentionnons des r esultats pour d'autres mod eles de machines, sur ces mêmes cographes, dont les preuves se d eduisent a i s ement de celles qui viennent d ' être produites.

Th eor eme 12 Il existe un automate a u n p ointeur et un galet, et deux automates coop erants, qui explorent tout 2Dcographe et s'arrêtent en respectivement O(n 2 ) et O(n 3 ) pas de calcul.

Labyrinthes in nis, incographes

Revenons a cette id ee que tout automate ni sur le plan discret dans lequel deux obstacles forment u n s y s t eme de coordonn ees rationnelles simule toute machine de Turing. Cela conduit a se demander quelles peuvent être les performances d'un tel automate ( eventuellement a vec galets) dans un plan obstru e d e telle sorte que le compl ementaire des obstacles reste connexe? Nous avons d ej a vu ce qu'il en est pour le plan non obstru e. Qu'en est-il en pr esence d'obstacles? Th eor eme 14 Il existe un automate a cinq galets distingu es qui explore tout 2D-incographe norm e e t t o u t 2Dcographe norm e, et qui s'arrête sur tout 2Dcographe a la n de son exploration.

El ements de preuves

Les preuves de ces deux th eor emes s'appuient sur les faits suivants : Il existe un automate a ruban de Turing qui explore tout 2D-incographe, toute machine de Turing peut être simul ee par un automate a deux compteurs et il est possible de simuler deux tels compteurs par un automate a galets dans un incographe convenable.

Le premier fait provient de ce qu'il su t de mettre sur l'ensemble des directions D = fe s w ng un ordre total qui d etermine un ordre total (par exemple l'ordre hi erarchique) sur l'ensemble des mots sur D, puis de faire enum erer ces mots par une machine de Turing. Si u est un tel mot, l'automate se d eplacera suivant l e c hemin indiqu e p a r u et reviendra a sa position de d epart en suivant l e renvers e w de w dans lequel si d i est une direction interdite, d i aura et e remplac e par un symbole neutre pour l'automate. Construire un compteur dans un incographe revient a trouver un chemin in ni, le long de certaines faces, sur lequel on pourra retrouver et manipuler tout entier naturel sans ambigu t e. Si l'incographe L consid er e ne contient q u e des faces nies, on peut imaginer construire un tel chemin dans l'incographe L 0 obtenu en supprimant les arêtes minimum des faces. Mais un tel incographe peut contenir des faces in nies (contenues dans une r egion born ee ou non) et aucun automate a galets ne peut d ecider si une face est nie.

Fig. 1 -

 1 Fig. 1 -Di erents motifs ou gures nies du plan

  Fig. 2 -D edale a la Blum et graphes associ es A l'ensemble des cellules blanches d'un d edale M on sait associer canoniquement un graphe planaire, son dual, G(M) : a c haque cellule blanche, on associe un sommet du plan discret, de telle sorte que deux cellules blanches adjacentes par une arête e du plan soient repr esent ees par les extr emit es d'une arête perpendiculaire a e, qui constitue elle-même une arête de G(M). Seuls les sommets

3. 2

 2 D edales \ a la Budach" { A u d epart, Budach se donne un ensemble de directions D = fn s e wg tel que si d est une direction, d est la direction oppos ee et = d= d. { Il consid ere alors le mono de D ? des mots sur D, le groupe libre F sur fn eg, l'homomorphisme : D ? ;! F qui a n associe n, a e, e, a s, n ;1 , a w, e ;1 , et l'application : F ;! D ? , qui a l ' el ement neutre de F associe le mot vide et a tout d 1 1 : : : d m m de F (qui ne contient donc pas de facteur d i i d ; i i ), associe (d 1 1 ) : : : (d m m ), avec (d) = d et (d ;1 ) = d. Cela permet de d e nir proprement l'ensemble R des mots (sur D) r eduits par R = ( (D + )), o u D + est l'ensemble des mots non vides sur D. { U n pr elabyrinthe L consiste alors en :

Fig. 3 -

 3 Fig. 3 -D edale a la Budach Venons en maintenant, et pour nir ce tour d'horizon de structures dans lesquelles vont evoluer des automates, aux d e nitions tr es g en erales de Hemmerling.

{

  Dans la suite, un Rcographe d esignera un R-graphe simple ni connexe et un R-incographe d esignera un R-graphe simple in ni d enombrable connexe. Remarque 1 Dans le cas ni, cette notion de R-grapho de est a r approcher de celle de constellation Jac70] ou encore d e c arte combinatoire C o r 8 4 ], Lie89] qui proviennent d'une part de la recherche d'une representation topologique d'un graphe connexe sur une surface, d'autre p art de l' etude syst ematique des subdivisions d'une surface a p artir de cette unique notion de brin. Rappelons qu'une carte combinatoire est un triplet (B ) o u B est un ensemble ni d' el ements dits brins, une involution sans point xe sur B et une permutation sur B. Ces donn ees permettent de d e nir les arêtes et les sommets de la carte qui sont respectivement les cycles de et ceux de .

  Soit D un ensemble ni non vide. Par boussole ou ensemble de directions D du grapho de G, o n e n tend une application c : H ;! D telle que la restriction c jH(v) est injective pour tout v. I l e n r esulte que deg(v) card(D). Un dans un C-grapho de est alors la donn ee d'un grapho de et d'une boussole, c'est donc un quadruplet (V H I c). Un C-graphe est un C-grapho de sans demi-ar ête libre.

  Rappelons d'abord quelques d e nitions et r esultats a propos des graphes. Ê { Un plongement de dimension n, n 2 f 2 3g (ou n-plongement) d'un graphe G = ( V E) est une application P qui assigne a tout sommet v de G un point P(v) d e R n , a toute arête e une courbe P(e) dans R n , de telle sorte que :

L

  'index de rotation d'un RPP w est rin(w) d e ni par : { rin(p 0 p 1 ) = 0 , e t { rin(p 0 : : : p m ) = P i=m;2 i=0 rin(p i p i+1 p i+2 ) o u, pour i 2, rin(p i p i+1 p i+2 ) = 8 > > < > > : 1 : dir(p i+1 p i+2 ) = r ;1 (dir(p i p i+1 )) 0 : dir(p i+1 p i+2 ) = dir(p i p i+1 ) ;1 : dir(p i+1 p i+2 ) = r(dir(p i p i+1 )) ;2 : dir(p i+1 p i+2 ) = r 2 (dir(p i p i+1 )) o u r d esigne la bijection d e nie sur D = fe s n wg par r(e) = s r(s) = w r(w) = n r(n) = e et o u dir(pp 0 ) signi e direction du segment du point p au point p 0 .Nous pouvons a partir de ce qui pr ec ede d ecrire une hi erarchie de labyrinthes, et lui faire correspondre parall element une hi erarchie de machines. Nous porterons en fait notre attention a l a h i erarchie fondamentale suivante: R-graphes ;! R-graphes plans ;! 2D-graphes : : : : : : ;! 2D-graphes fortement norm es.Notons le parall ele avec la hi erarchie de Chomsky pour les langages.

4.

  Expressions du comportement dans les cas particuliers classiques { Automates dans les \d edales a l a B l u m " Ê Dans cette sorte de d edale, l'automate se d eplace de cellule blanche en cellule blanche (les autres, noires, sont i n terdites). On se contente d'une description tr es informelle des chemins suivis, avec, parfois un peu d' equilibre sur les limites! Les r esultats ne sont pas en cause, d'ailleurs ils sont rigoureusement prouv es par Hemmerling,par exemple ! { Automates dans les \d edales a la Budach"En interpr etant le labyrinthe comme un automate lui-même, Budach donne une expression de ce comportement en termes de jeu, puis, dans un cas particulier, en termes de syst eme dynamique. Voyons comment.{ Automates On d esigne par P 0 (D) l'ensemble des parties non vides de D. Ici, X = Y = P 0 (D), : Q P 0 (D) ;! Q et : Q P 0 (D) ;! D, a vec (q S) 2 S pour tout q, tout S. On peut interpr eter tout labyrinthe comme un automate avec Z comme ensemble d' etats (possiblement in ni donc), D comme ensemble X d'entr ees, P 0 (D) comme ensemble Y de sorties, et des fonctions de transitions d e nies respectivement par (P r) = P r , le sommet adjacent a u s o m m e t P dans la direction r, e t (P r) = val(P). Notons que cette derni ere fonction ne d epend pas de la direction mais seulement d u p o i n t sur lequel se trouve l'automate. { Mouvement d'un automate dans un labyrinthe Le comportement de l'automate A dans le labyrinthe L peut être vu comme un jeu du premier automate dans le second, et interpr et e comme un syst eme dynamique. Pr ecisons.

1.

  Consid erons d'abord les motifs de Blum et Hewitt (mod eles BH) : ce sont des carr es nis de carr es-unit e (ou cellules) du plan, dont l a f r o n ti ere est constitu ee de cellules marqu ees par un caract ere particulier, B par exemple, les cellules du motif proprement dit etant c o l o r ees en blanc et noir, ou 0 et 1, comme le montre la gure 6. La cellule initiale d'un tel motif est la cellule correspondant a son coin nord ouest.

Fig. 6 -

 6 Fig. 6 -Motif de Blum et Hewitt

FigFig. 8 -

 8 Fig. 7 -Rectangles creux

Fig. 10

 10 Fig. 10 -4-automate explorant un d edale simplement connexe a l a B l u m

Fig. 11 -

 11 Fig.11-Exploration d'un Rcographe a une seule face Citons encore ici un r esultat de Hemmerling Hem87a], un des rares qui donnent une evaluation du nombre d' etats de l'automate dont il a rme l'existence. Il n ecessite d'introduire la notion d'index de rotation pour un 2D-cographe L: rot(L) = maxfj rin(w) j =w = ( v 0 : : : v m ) 1 m est un chemin suivant une face, avec (v i v i+1 ) 6 = ( v j v j+1 ) 0 i < j < m g, e t r ealise un algorithme d'exploration des 2D-cographes quelconques fond e sur la consid eration assez
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 12 Fig. 12 -Cheminements d'un automate ni dans le monde vide au plus trois faces et 2 O( p n:ln(n)) sommets, o u n est le nombre d ' etats de l'au- tomate.
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 13 Fig. 13 -Un automate sur le plan color e de deux axes
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 14 Fig. 14 -Puissance c ompar ee des di erents types d'automates evoqu es

Fig. 15 -

 15 Fig. 15 -Exploration du monde vide par un automate a t r ois galets Remarque 3 Il est int eressant de noter imm ediatement que cette exploration du monde, qui, bien sûr, n'est pas unique, d e nit une bijection de Z 2 sur N, e t par cons equent un ordre sur les el ements de Z 2 pour peu que l'on aie choisi une origine. Nous utilisons tr es fortement une telle bijection dans DM97].

6. 2

 2 Fig. 16 -Deux galets ne su sent pas pour explorer le monde (1)

Fig. 19 -

 19 Fig. 19 -Arête minimum d'une face i n t erieure Soit e, minimum pour F. Elle est donc verticale. Le point coo(e);(1=2 0) ne peut pas être un point d e l a r egion d etermin ee par F , car, comme F est une face int erieure, cela impliquerait l'existence d'une arête de la face strictement i n f erieure a F. De ce qui pr ec ede, il r esulte que ang(h) n e p e u t être un angle de F. S'il appartient a une face int erieure, cette face ne peut admettre e comme arête minimum, car la demi-droite fcoo(e) + ( x 0)=x ; 1=2g doit rencontrer la fronti ere de cette face sur une arête strictement i n f erieure a e. L'arête minimum d'une face int erieure est donc \l'arête verticale la plus au sud des arêtes les plus a l'ouest". Mais l'arête de la face ext erieure peut evidemment être horizontale. 3. Nous sommes maintenant en mesure d'associer canoniquement a u n 2 Dcographe norm e L ayant strictement plus d'une face un 2D-cographe norm e L 0 n'ayant qu'une seule face. En e et, si L a plus d'une face, il a au moins une face int erieure, et il n'en n'a qu'un nombre ni m. Chacune de ces faces a une arête minimum et une seule, mais chacune d'elle appartient a deux faces (ou encore a pour ordre 2). Elles forment un ensemble fe 1 : : : e m g. Si on supprime e 1 , L devient u n 2 D-cographe norm e a vec m ;1 faces int erieures. En r ep etant ce processus, lorsqu'on a supprim e toutes les arêtes minimum de L, on obtient L 0 , qui n'a plus qu'une face (ext erieure). Il s'agit d'ailleurs d'un arbre. La question qui se pose maintenant est de savoir si l'on peut d eterminer e ectivement l'arête minimale d'une face, de quel type de face, et, si oui,
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 20 Fig. 20 -Transformation d'un chemin clos par elimination d'un sous-chemin d'indice d e r otation nul d e nit une transformation de B sur B 0 par : (x y i+1 ; + z) = (x y i+1 ; + z yi+2;yi+1+ ), x i+1 x et 0 z y i+2 ; y i+1 + . Notons que (p i+2 ) = p i+1 et que (p i+3 ) = ( x i+3 y i+1 ), ce qui r ealise la projection voulue. Par ailleurs, si l'on pose : q j = p j : si p j 6 2 B (p j ) : sinon , on obtient u n c hemin simplement clos tel que si la r egion touchant l e c hemin simplement clos originel a main gauche est born ee si et seulement si celle qui touche le chemin obtenu a main gauche est born ee. Voir la gure 20. { I l r esulte du point p r ec edent qu'il su t de consid erer les chemins simplement clos tels que rin(p i p i+1 p i+2 ) v aut 1 (;1) pour tout i. Dans le cas g en eral, un chemin in ni ayant cette propri et e d ecrit une spirale : voir la gure 21. { Mais dans le cas d'un chemin simplement clos de ce type, p 0 p 1 : : : p m , on a n ecessairement m = 4 . En e et, il est facile de v eri er le lemme suivant : Lemme 2 Pour un chemin quelconque dans un 2D-graphe, { w = ( p 0 p 1 : : : p m ), { rin(w) = rin(p 0 p 1 : : : p k+1 ) + rin(p k p k+1 : : : p m ) pour 0 k < m , { rin(w) = ;rin(p m p m;1 : : : p 0 ), e t

Fig. 22 -

 22 Fig. 22 -Deux types de contradictions dans la pre u v e d e l a p r oposition

Fig. 23 -

 23 Fig. 23 -Chemins simplement clos associ es a une face n i e Soit e 0 une arête du 2D-graphe norm e consid er e. Elle appartient a u n e face F. P osons coo(e 0 ) = ( x 0 y 0 ), et coo(e) = ( x y) pour l'arête courante

  Fig. 24 -Recherche en cours de l'arête minimum

7. 1

 1 Principaux r esultats Th eor eme 13 Il existe un automate a sept galets distingu es qui explore tout 2D-incographe et tout 2Dcographe, et qui s'arrête sur tout 2Dcographe a l a n de son exploration. Ce r esultat, dû a Blum et Sakoda BS77], a et e a m elior e plus tard par Szepietowski Sze82]. Dans la terminologie de Hemmerling, il s' enonce :

  Rappelons cependant tout d'abord la d e nition plus g en erale de Budach, qui illustre bien le cadre et l'esprit des travaux de cette ecole.

Proposition 1 Pour tout d edale M, red(G(M)) est un graphe planaire n i connexe , et le nombre d e f a c es de red(G(M)) est exactement l'ordre d e c onnectivit e d e M.

Pour l' ecole allemande, un d edale est plutôt un sous-graphe connexe de la grille classique.

  , fuite, ma^ trise et reconnaissance d'un labyrinthe par un automate ni A est dit ma^ triser L lorsque, quelle que soit la con guration initiale, le comportement de l'automate est une suite in nie. { Un automate pour lequel on a, de plus, sp eci e un ensemble d' etats d'acceptation est dit reconna^ tre u n l a b y r i n t h e p oint e lorsque partant, dans son etat initial, du point d esign e, il entre au bout d'un temps ni dans un etat d'acceptation. On dit qu'un tel automate reconna^ t une classe de labyrinthes point es s'il en reconna^ t tout objet, et qu'il d ecide une telle classe lorsqu'il reconna^ t tout objet de la classe et rejette tout objet qui n'est pas dans cette classe en entrant dans un etat d'un ensemble d' etats de rejet qui aura et e s p eci e. Un probl eme d'automates et de labyrinthes n ecessite que soient p r ecis ees une classe d'automates, une classe de labyrinthes et une tâche a accomplir par un tel automate dans un tel labyrinthe. 6. Pi ege pour un automate Soient une classe L de labyrinthes et une classe A d'automates dont l a tâche est d'explorer les labyrinthes de L. U n pi ege pour un automate A de A est un couple (L h) o u L est un el ement d e L, h une demi-arête de L telle que A ne puisse explorer L a partir de la position que d etermine h. Nous ne faisons que mentionner ici le probl eme de l'arrêt des machines, que nous examinerons au cours du texte chaque fois qu'il se posera, et dont il faut noter qu'il est essentiel dans les strat egies de d ecision.

{ A est dit explorer un R-o u C-grapho de L lorsque pour toute position de d epart h et tout sommet v le comportement correspondant contient une position incidente a v. { A est dit s' echapper de L lorsque son comportement est ni quelle que soit sa position de d epart, c'est-a-dire que quelle que soit cette position initiale, l'automate arrive sur une demi-arête libre. {

  Un 4-automate d eterministe peut explorer tout d edale ni simplement connexe, c'est-a-dire dont le seul obstacle est la fronti ere. Mais l'automate ne s'arrête pas.

	):
	Th eor eme 3 Il n'existe pas de C-automate qui explore t o u t 2D-graphe ni connexe fortement norm e ayant au plus deux faces, et qui s'arrête toujours sur ce t y p e de labyrinthes.
	4.3.2 Pla cons-nous maintenant dans le cadre de l'exploration d e d edales a la Blum
	Proposition 2

  Proposition 4 Pour tout entier k 2 N , Il existe un automate ni avec seulement O(k) etats, qui explore t o u t 2Dcographe L dont l'index de rotation sa-

	tisfait rot(L) k et qui s'arrête apr es O(n 2 :k) pas.
	4.3.4 Exploration du monde: cas particulier d'un graphe in ni
	Proposition 5 Un 4-automate ne saurait explorer le plan Z 2 monocolore, dit monde vide.
	Preuve ou encore le C-graphe in ni, C = fn e s wg, fortement n o r m e d o n t les sommets Nous consid erons donc comme graphe la grille carr ee classique, sont les points a coordonn ees enti eres du plan euclidien, les arêtes les segments horizontaux et verticaux qui les joignent.

L'id ee de la preuve est simple : comme l'automate a un nombre ni d' etats, qu'il ne peut prendre qu'un nombre ni de directions, qu'il n'y a pas d'information particuli ere sur les sommets, son cheminement devient n ecessairement p eriodique apr es un nombre ni de pas qui d epend pr ecis ement d e s o n n o m bre d' etats. En cons equence il va s e d eplacer dans une bande de largeur nie du plan, laissant une in nit e d e p o i n ts a l'ext erieur.

  Remarque 2 Tout automate a k galets peut être simul e p ar un automate a k pointeurs. Mais la r eciproque n'est pas vraie ! 2. D'autres mod eles : Nous signalons pour nir quelques autres types de machines sans r ef erences a leurs performances autres que le tableau nal, issu de Hem89] auquel le lecteur int eress e peut se reporter pour plus de connaissances. { Syst emes de k automates coop erants Ils peuvent être consid er es comme une g en eralisation des automates a p o i n teurs. Ce sont k automates nis qui travaillent s i m ultan ement sur le même grapho de. Chaque automate du syst eme sait quels sont les automates qui ont l a même position que lui. En con guration initiale, tous les automates sont a l a m ême position. Un tel syst eme explore un grapho de si tout sommet est visit e p a r au moins un automate, ceci quelle que soit la position de d epart. Le syst eme s'arrête d es qu'un automate s' echappe. { Automates multi-têtes

  La d e nition d'un RP P et celle de son index de rotation ont et e donn ees au paragraphe 2:3:4:. Dire qu'un tel chemin w = ( p 0 : : : p m ) est clos signi e que p 0 = p m et son index de rotation, alors dit clos, est not e rin(w) e t v aut rin(w) + rin(p m;1 p m p 1 ). En n w est dit simplement clos lorsque deux segments distincts du chemin ne se coupent, eventuellement, qu'en une de leurs extr emit es, ou plus formellement lorsque pour 0 i < j < m , p i p i+1 \p j p j+1 6 = implique soit j = i+1etp i p i+1 \p j p j+1 = fp j g, soit j = m ; 1 i= 0 e t p i p i+1 \ p j p j+1 = fp 0 g = fp m g. Il est alors clair qu'un chemin simplement c l o s s epare le plan en deux r egions, l'une le touche a main gauche, l'autre a main droite. Passons a la preuve proprement dite. On raisonnera modulo m sur les indices des points du chemin que l'on suppose donc simplement clos.

	(x i+2 , y i+2 )	
	(x i , y i )	(x i+1 , y i+1 )
	Proposition 8 Pour tout chemin rectilin eaire simplement clos w, rin(w) = 4 : si la r egion touchant w a main gauche est born ee ;4 : si cette r egion est non born ee, o u rin(w) est l'index de rotation clos de w.
		Bande B	Bande B'
	Chemins simplement clos, avant et après "effacement " d'un sous-chemin d'index de rotation nulle
	{ Rappelons que rin(p i p i+1 p i+2 ) v aut 0 1 ;1 o u ;2. Seuls les cas o u rin(p i p i+1 p i+2 ) v aut 1 ou ;1 s o n t a prendre en compte. En e et, si rin(p i p i+1 p i+2 ) = 0 pour un indice i d'un point d e w, l'as-sertion sera vraie pour le chemin simplement c l o s p 0 : : : p i;1 p i+1 : : : p m . De plus, rin(p i p i+1 p i+2 ) = ;2 n e s e p r esente pas, car cela impliquerait que les segments p i p i+1 et p i+1 p i+2 ont des points int e-rieurs communs.
	{ Les chemins w = p i p i+1 p i+2 p i+3 dont l'indice de rotation rin(w) est nul peuvent être supprim es dans un chemin simplement clos, pour donner des chemins simplement c l o s a yant l e m ême indice de rotation c l o s q u e l e c hemin clos originel. En e et, supposons que l'on aie un tel chemin, et que, par exemple, rin(p i p i+1 p i+2 ) = ;rin(p i+1 p i+2 p i+3 ), avec p i p i+1 ayant la direction est. Il su t en quelque sorte de projeter p i+2 p i+3 sur la droite qui supporte p i p i+1 . Soit p j = ( x j y j ) u n p o i n t d u c hemin clos originel, et un nombre r eel tel que 0 < < 1=2minfj y j ; y k j =0 j k < m g. Consid erons les deux ensembles B = f(x y)=x i+1 x y i+1 ; y y i+2 g et B 0 = f(x y)=x i+1 x y i+1 ; y y i+1 g. O n

Preuve

Un 4-automate est capable de d ecider les motifs qui contiennent un seul rectangle d'une couleur dont les bords sont parall eles a c eux du carr e. M ême

Pourtant d'autres r esultats semblent mettre en lumi ere le contraire. Par exemple le suivant, evoqu e dans BS77], que l'on pourrait traduire brutalement par le fait qu'un automate ni dans un tel plan est universel pour le calcul ! Th eor eme 7 Un automate ni dans le plan de cellules blanches, structur e p ar deux lignes in nies rationnelles de cellules noires qui se coupent (ou syst eme a ne de coordonn ees) peut simuler une machine de Turing universelle.En e et, on sait que toute machine de Turing peut être simul ee par une machine a deux compteurs Fis66], HU79], Min67]. Les distances de l'automate aux axes repr esentent les compteurs. L' evolution de l'automate dans le quart de plan permet de diminuer ou d'augmenter les compteurs, et les axes permettent de d ecider si un compteur est vide.

Automates a galets et quelques autres mod elesAjouter de la m emoire a un automate ni se d epla cant sur une structure dans l'espace peut se r ealiser de bien des mani eres. Cela peut être la possibilit e de poser, reconna^ tre et d eplacer des points de rep eres, des marqueurs sur la structure en question, mais aussi celle de diriger l'automate dans la structure suivant un calcul qui est e ectu e par ailleurs, par exemple sur le ruban d'une machine de Turing, ce qui di ere totalement, dans ce dernier cas des machines de Turing sur un plan. Nous ne nous int eresserons vraiment q u ' a l a p r e m i ere mani ere, les marqueurs introduits etant soit les galets dans les cellules des labyrinthes ou plus g en eralement sur les sommets des graphes, soit des pointeurs (terminologie de Hemmerling qui introduit ce mod ele) sur les demi-arêtes des grapho des.1. Automate a marqueurs:galets sur les sommets, pointeurs sur les demi-arêtes du grapho de sousjacent. L'automate sait reconna^ tre s'il porte un marqueur (soit sur sa position, soit sur le sommet incident a cette position). En principe un el ement du grapho de ne porte qu'un seul marqueur eventuel. L'automate peut d eposer ou reprendre un marqueur. En con guration initiale le grapho de ne porte pas de marqueurs.

Cependant, si l'on se place dans un 2D-incographe norm e le probl eme peut être surmont e grâce au r esultat suivant : Proposition 9 Soit L un 2D-incographe norm e, L 0 le 2D-graphe norm e obtenu a p artir de L en supprimant toutes les arêtes minimum des faces nies de L. Alors il n'y a pas de points isol es dans L 0 et toute face d e L 0 est in nie.

Ainsi, sous l'hypoth ese que L est un 2D-incographe norm e, a partir d'une position donn ee, marqu ee par un galet O, l'automate peut d eterminer un chemin i n n i d e l a f a con suivante : ou bien le sommet sur lequel il arrive n'est situ e q u e sur des faces nies ou bien il existe une face in nie qui le contient. Dans ce dernier cas, l'automate suivra cette face. Dans le premier cas, l'automate parcourra toutes les faces suivant un certain ordre, puis s' echappera en s'interdisant l'arête minimale de l'une canonique de ces faces, qu'il saura reconna^ tre grâce a deux galets suppl ementaires, comme on l'a vu dans le cas ni.

Grâce a deux autres galets et a s e s etats internes, l'automate est en mesure de simuler deux compteurs suivant u n e p r o c edure qui ne sera pas d etaill ee ici. Remarque 5 Nous n'avons pas explicit e dans ce r apport la comparaison entre automates a galets distingu es et non distingu es, car cette comparaison conduit n ecessairement a discuter la question des simulations, que nous abordons plus pr ecis ement dans DM97] o u nous prouvons l'existence d'automates a galets intrins equement universels pour certains types de simulations . La plupart des simulations sont ad hoc et le plus g en eralement implicites. L'oublier peut conduire a d e s c onfusions sinon a des contradictions.

Mais

Automates dans les labyrinthes in nis

{ Les R-incographes plans cubiques peuvent-ils être explor es par un R-automates avec un nombre ni de marqueurs (distingu es ou non)?