
HAL Id: hal-02101921
https://hal-lara.archives-ouvertes.fr/hal-02101921v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Explicit Pure Type Systems for the Lambda-Cube
Romain Kervarc, Pierre Lescanne

To cite this version:
Romain Kervarc, Pierre Lescanne. Explicit Pure Type Systems for the Lambda-Cube. [Research
Report] LIP RR-2004-08, Laboratoire de l’informatique du parallélisme. 2004, 2+45p. �hal-02101921�

https://hal-lara.archives-ouvertes.fr/hal-02101921v1
https://hal.archives-ouvertes.fr


Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Explicit Pure Type Systems for the λλλ-Cube

Romain KERVARC
Pierre LESCANNE

February nd, 

Research Report No 2004-08

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip@ens-lyon.fr



Explicit Pure Type Systems for the λλλ-Cube

Romain KERVARC
Pierre LESCANNE

February nd, 

Abstract

Pure type systems are a general formalism allowing to represent many
type systems – in particular, Barendregt’s λ-cube, including Girard’s
system F , dependent types, and the calculus of constructions. We built
a variant of pure type systems by adding a cut rule associated to an
explicit substitution in the syntax, according to the Curry-Howard-
de Bruijn correspondence. The addition of the cut requires the addi-
tion of a new rule for substitutions, with which we are able to show
type correctness and subject reduction for all explicit systems. More-
over, we proved that the explicit λ-cube obtained this way is strongly
normalizing.

Keywords: λ-calculus, explicit substitutions, pure type systems, higher order types,
calculus of constructions, λ-cube, strong normalization.

Résumé

Les sytèmes de types purs sont un formalisme général permettant de
représenter de nombreux systèmes – en particulier, le λ-cube de Baren-
dregt, incluant le système F de Girard, les types dépendants et le calcul
des constructions. Nous avons construit une vatiante des systèmes de
types purs en ajoutant une règle de coupure associée à une substitution
explicite dans la syntaxe, selon la correspondance de Curry-Howard-
de Bruijn. L’adjonction de la règle de coupure impose d’ajouter une
nouvelle règle pour les substitutions, avec laquelle nous pouvons mon-
trer la correction des types et la réduction du sujet pour tous les sys-
tèmes explicites. En outre, nous avons montré que le λ-cube explicite
obtenu de cette manière est fortement normalisant.

Mots-clés: λ-calcul, substitutions explicites, systèmes de types purs, types d’ordre
supérieur, calcul des constructions, λ-cube, forte normalisation.



Contents

I Introduction 3

II The λλλ-cube in pure type systems 4

1 Pure type systems 4

2 Construction of the λλλ-cube 5

3 Properties of the λλλ-cube systems 5

III Explicit pure type systems 7

1 Syntax and reduction 7

2 Typing 8

3 The “pseudo-sort” type 12

4 The (xxxpand) rule 12

IV Properties of explicit PTS 14

1 Type derivation lemmas 14

2 Type correctness and subject reduction 15

V Strong normalization for the explicit λλλ-cube 16

1 Preliminaries 16

2 First step 17

3 Second step 19

4 Strong normalization theorem 20

VI Conclusion 21

VII Appendix A: Proofs 22

VIII Appendix B: System FFFxxx 35



1 λλλ-calculus with explicit substitutions 35

2 Reduction 36

3 Saturated sets 36

4 Type System 37

5 Typing 37

6 Subject reduction 39

7 Interpretations 40

8 Strong normalisation 42

IX Bibliography 44
R



Part I

Introduction
The calculus of constructions was designed by Coquand and Huet [1] as an extension of Gi-
rard’s system F [2] in order to provide a very general typed language for proof assistants
based on λ-calculus. Its main feature is that it admits several kinds of dependency between
types and terms, namely types depending on types, terms depending on types and types
depending on terms. Thanks to the Curry-Howard isomorphism, this yields a very gen-
eral constructive logic with several kinds of quantifications. Whereas the calculus of con-
structions was designed as a monolithic framework, Barendregt [3] proposed a hierarchical
presentation: the so-called cube starting from the simply typed λ-calculus adding axioms
between sorts and culminating at the calculus of construction. In Barendregt’s cube each
vertex corresponds to a kind of dependency given by axioms telling constraints over sorts.
The systems that occur in building the cube are called pure type system (PTS in short).

As we said the cube is based on the λ-calculus. As it is, this approach misses two key
points. On the computational side, the λ-calculus does not give a complete account of the
process of substitution since substitutions are not part of the calculus: instead substitutions
are described in the meta-theory. Making substitution first-class citizen yields calculi known
under the generic name of calculi of explicit substitution which themselves fork into two main
families, namely with de Bruijn indices [4, 5] and with explicit names [6, 7]. On the logical
side, the traditional cube misses the important cut rule, which comes naturally as the typ-
ing rule for explicit substitution. Unlike Verstergaard and Wells [8] who advocate for de
Bruijn indices when dealing with cut, we have chosen to consider the calculus of explicit
substitution with explicit names λx due to Bloo and Rose [6].

Following Bloo [9], we are going to describe a variant of pure type systems that he and we
call explicit pure type systems (EPTS in short) despite our system contains one more rule than
Bloo’s. First EPTS replace implicit substitutions in rules by explicit ones, this is specifically
the case for the rule (Π-E). Second, EPTS contain the cut rule, basically the same as Bloo’s rule
substitution but different. In addition, EPTS contain a new rule called xpand, the introduction
of which was made necessary by the need to insure subject reduction. It is an avatar of a
rule previously introduced in λx under the name drop by Lengrand et al. [10]; xpand allows
proving a type judgment, the term part of which is a closure, i.e. a term with an explicit
substitution on the top. So with all the rules taken together, we are able to prove correctness
and subject reduction for explicit pure type systems. With axioms on sorts we are able to build
a cube similar to Barendregt’s cube for lambda calculus. Thus the main result of this paper is
a proof of the strong normalization of the calculi that correspond to the vertices of that cube.

Related works Other approaches considering cuts are Di Cosmo and Kesner [11] and
Di Cosmo, Kesner and Polonovski [12], Verstergaard and Wells [8] and Herbelin [13]. In [14],
Muñoz studies dependent types and explicit substitutions. Those approaches do not con-
sider the whole cube and they are all but [13] and part of [12] in the framework of de Bruijn
indices. Note also that Lengrand et al. [10], speak about cut. Anyway the closest work re-
lated to ours is this of Bloo [15, 9], but he considers only explicit substitution in terms, not in
types.

R



Part II

The λλλ-cube in pure type systems
We shall here introduce the notion of pure type system. Those type systems present the
interest of being a general systematic and elegant presentation of various systems, among
which very interesting systems, such as Barendregt λ-cube (cf. figure 1 below).

In order to get more information about type systems for the λ-calculus with usual implicit
substitution, the reader may have a look at Barendregt’s paper [3].

1 Pure type systems

Pure type systems are defined the following way:
Definition 2.1: Pure type system

A pure type system is a triple T = (S, A, R), where the elements of S ar called sorts, those of
A ⊆ S2, axioms and those of R ⊆ S3, rules.

Definition 2.2: λT-calculus
Let T = (S, A, R) be a pure type system. For all sort σ ∈ S , let Uσ be an infinite countable
set of variables of nature σ. The set E(T) of T-expressions is the set defined by the following
grammar:

E ::= σx | σ | EE | λσx:E.E | Πσx:E.E
σx ∈ Uσ

σ ∈ S
Bound variables, free variables and α-conversion are defined as usual.
In all the following, we will forget the sort annotations on variables and consider the set

U of all variables. Moreover we shall apply Barendregt’s convention that a variable does not
appear both free and bound in the same term, and that two distinct bound variables do not
have the same name.

Definition 2.3: β-reduction in implicit PTS

β-reduction is induced by the following rule: (λx:A.B)C
β→ B[x:=C].

Definition 2.4: Typing in implicit PTS
A type assertion is a couple of expressions, denoted so: M : N , the first and second elements
of which are called its subject and its predicate.
A typing context is a finite sequence – and not a set – of type assertions, the subjects of which
are distinct variables. Its domain, denoted dom(Γ) is the set of the subjects of the assertions
in which it consists; its support is the sorted sequence of them. The empty context is denoted
by (). Context concatenation is denoted by a comma and one assumes that two concatenated
contexts have distinct domains.
A type judgement is an expression of the form Γ �M : N obtained by derivation from the
inference rules of table 1. M and N are respectively called subject and predicate of the judg-
ment.

Definition 2.5: Strong normalization
Let T be a pure type system. T is said to be strongly normalizing if it satisfies the following
property:



(σ, τ) ∈ A
� σ : τ

(axiom-A)

Γ � A : ρ Γ, x : A � B : σ (ρ, σ, τ)∈R
Γ � Πx:A.B : τ

(Π-R)

Γ � A : σ
Γ, x : A � x : A

(hypothesis)

Γ � A : B Γ � C : σ x/∈dom(Γ)
Γ, x : C � A : B

(weakening)

Γ � (Πx:A.B) : σ Γ, x : A �M : B
Γ � λx:A.M : (Πx:A.B)

(Π - I)

Γ �M : (Πx:A.B) Γ � N : A
Γ �MN : B[N/x]

(Π - E)

Γ �M : A Γ � B : σ A
β≡B

Γ �M : B
(conversion)

Table 1: Typing rules for (implicit) PTS

Let Γ be a typing context, and A, B two expressions such that Γ � �A : B. Then A and B do
not admit any infinite reduction with respect to the β-reduction.

2 Construction of the λλλ-cube

The following definitions allow to construct the λ-cube in a systematic and elegant way:
Definition 2.6: Non-empty, elementary, full PTS

An elementary rule is a rule of the form (σ, τ, τ), denoted shortly by [σ, τ ]. Given a set S of
sorts, the set of the elementary rules involving sorts of S is denoted R e

S .
A pure type system is said to be non-empty if it contains at least one rule. A pure type
system (S, A, R) is said elementary if R ⊆ Re

S and full if R = Re
S .

All λ-cube pure type systems have the same sets of sorts and axioms: Sc = {∗, �} and
Ac = {∗ : �}. Their rules are element of Re

Sc
= {[∗, ∗], [∗, �], [�, ∗], [�, �]}.

λ→ contains the only rule [∗, ∗]. Then, following an upward arrow adds the rule [�, ∗];
a rightward arrow, the rule [∗, �] and a backward arrow, the rule [�, �]. So λF, λω and λP
contain two elementary rules; λP2, λPω and λFω, three; and λC is the full system.

3 Properties of the λλλ-cube systems

Barendregt established in [3] that pure type systems of the λ-cube satisfy the following prop-
erties:

Theorem 2.1: Type correctness
Let k ∈ N, Γ be a context andA,B be two terms such that Γ � A : B. Then ∃σ ∈ S, Γ � B : σ
or B = σ.



λ 2λ F λ P 2

λωλ Fω λPω λC

=

= =

λ λ P

λω λ Pω

Figure 1: Barendregt’s λλλ-cube

Theorem 2.2: Subject reduction

Let Γ be a context and A, A′, B three terms such that Γ � A : B and A
β→A′. Then Γ � A′ : B.

In fact the two theorems above hold for any pure type system. On the contrary, the
following one is not always satisfied, but this is the case in the λ-cube.

Theorem 2.3: Strong normalization
The λ-cube pure type systems are strongly normalizing.

R



Part III

Explicit pure type systems
In this section, a notion of pure type system with explicit substitution will be introduced,
and the properties of these objects studied.

1 Syntax and reduction

The basic definition of pure type systems remains unchanged: a pure type system is a triple
(S, A, R) of sorts, axioms and rules.

Definition 3.1: λTx-calculus
Let T be a pure type system and U an infinite countable set of variables.
The set Ex(T) of expressions with explicit substitutions – or more simply expressions – of T is
defined by the following algebraic grammar:

E ::= σx | σ | EE | λσx:E.E | Πσx:E.E | E〈σx:=E〉
σx ∈ Uσ

σ ∈ S
One defines upon Ex(T) the relation αx≡ of αTx-equivalence inductively as follows:

• if M = x ∈ U , M αx≡N if N = x;

• if M = σ ∈ S , M αx≡N if N = σ;

• ifM = λx:A.P ,M αx≡N ifN = λy:B.RwithAαx≡B and P [x:=z]αx≡R[y:=z] for all z except
a finite number;

• ifM = Πx:A.P ,M αx≡N ifN = λy:B.RwithAαx≡B and P [x:=z]αx≡R[y:=z] for all z except
a finite number;

• if M = PQ, M αx≡N if N = RS with P αx≡R and Qαx≡S;

• if M = P 〈x:=Q〉, M αx≡N if N = R〈y:=S〉, with Q
αx≡S and P [x:=z]αx≡R[y:=z] for all z

except a finite number.

This relation is an equivalence relation, and one can therefore define the quotient set ΛTx =
Ex(T)/αx≡ , the elements of which are the terms of the λTx-calcul. All the operations of Ex(T)
can be canonically extended to ΛTx.
In the rest of this section, we will forget about sort decoration for variables.

Definition 3.2: Bound, free, available variables
The set bv(M) of the bound variables of a term M is inductively defined as follows:

• bv(x) = bv(σ) = ∅;

• bv(λx:L.M)=bv(Πx:L.M)=bv(L)∪bv(M)∪{x};

• bv(M N) = bv(M) ∪ bv(N);

• bv(M〈x:=N〉) = bv(M) ∪ bv(N) ∪ {x}.



The set fv(M) of the free variables of a term M is inductively defined as follows:

• fv(x) = {x}; fv(σ) = ∅;

• fv(λx:L.M)=fv(Πx:L.M)=(fv(M)\{x}) ∪ fv(L);

• fv(M N) = fv(M) ∪ fv(N);

• fv(M〈x:=N〉) = (fv(M) \ {x}) ∪ fv(N).

The set av(M) of the available variables of a term M is inductively defined as follows:

• av(x) = {x}; av(σ) = ∅;

• av(λx:L.M)=av(Πx:L.M)=(av (M)\{x}) ∪ av(L);

• av(M N) = av (M) ∪ av(N);

• av(M〈x:=N〉)=
{

(av(M)\{x})∪av(N) ifx∈av(M)
av(M) ifx/∈av(M).

Available variables were introduced in [10]; they are more relevant than free variables for
terms with substitution.

In what follows we shall again consider terms up to α-conversion and use Barendregt’s
convention.

The notion of reduction can now be defined:

Definition 3.3: βx-reduction in explicit PTS
One considers the following reduction rules:

(B) (λx:A.B)C B−→ B〈x:=C〉
(quant) (Πy:A.B)〈x:=C〉 X−→ Πy:A〈x:=C〉.B〈x:=C〉

(abs) (λy:A.B)〈x:=C〉 X−→ λy:A〈x:=C〉.B〈x:=C〉
(app) (AB)〈x:=C〉 X−→ A〈x:=C〉B〈x:=C〉

(subst) x〈x:=N〉 X−→ N
(var) y〈x:=N〉 X−→ y if x �= y
(gc) M〈x:=N〉 X−→ M if x /∈ av(M)

The x-reduction, denoted x−→, is defined as the relation induced by X−→. The βTx-reduction,
βx−→, is defined as the relation induced by X−→ and B−→.

Here we make use of the (gc) rule instead of the (var) rule on its own. In fact the two
systems – with and without (gc) – are equivalent.

2 Typing

We introduce now a few slight modifications to the notions of typing in pure type systems,
and discuss the pertinence of these modifications.

Definition 3.4: Typing in explicit PTS
A type assertion is a couple denoted M : N where M , the subject, belongs to ΛTx and N , the
predicate, belongs to ΛTx = ΛTx  {∫ }. The additionnary

∫
element, named pseudo-sort, is

a special type introduced in the frame of explicit substitutions for reasons explained after-
wards.



A typing context is a finite sequence of type assertions, the subjects of which are distinct vari-
able and the predicates of which are types of ΛTx. Its domain, denoted dom(Γ) is the set of
the subjects of the assertions in which it consists; its support is the sorted sequence of them,
i.e. the image of the context through the first canonical surjection. The empty context is de-
noted by (). Context concatenation is denoted by a comma and one implicitely assumes that
two concatenated contexts have distinct domains.
Type judgement are of the form Γ � �M : N . They are obtained by derivation from the infer-
ence rules enounced in table 2 below. Index T will be omitted in non-ambiguous cases.

Remark:
Like in implicit pure type systems, typing contexts are ordered sequences, and not sets.

Notation:
If Γ = (xi : Ai)1�i�n, then:

i. Γ, xn+1 : An+1 denotes (xi : Ai)1�i�n+1;

ii. Γ \ y denotes (xi : Ai)i∈ I , where I={i∈[[1, n]]/xi �=y}.

Notation:
S is the distinct union S  {∫ } and A is the distinct union A ∪ {(σ, ∫

) /σ ∈ S}.

(σ, τ) ∈ A
� σ : τ

(axiom)

Γ �A:ρ Γ, x:A �B:σ (ρ, σ, τ)∈R;x/∈dom(Γ)
Γ � Πx:A.B : τ

(rule)

Γ � A : σ x /∈ dom(Γ)
Γ, x:A � x:A (hypothesis)

Γ � A : B Γ � C : σ x /∈ dom(Γ)
Γ, x : C � A : B

(weakening)

Γ � (Πx:A.B):σ Γ, x:A �M :B x /∈ dom(Γ)
Γ � λx:A.M : (Πx:A.B)

(Π - I)

Γ �M : (Πx:A.B) Γ � N : A
Γ �MN : B〈x:=N〉 (Π - E)

Γ, x : A �M : B Γ � N : A
Γ �M〈x:=N〉 : B〈x:=N〉 (cut)

Γ �M :B ∆ � N :A P 〈x:=N〉 x→M

Γ � P 〈x:=N〉 : B
(xpand)

Γ �M : A Γ � B : σ A
βx≡B

Γ �M : B
(conversion)

Table 2: Typing rules for EPTS



Explicit PTS contain two new rules with respect to PTS.
The (cut) rule corresponds to Bloo’s (substitution) rule in [15] with substitution in both sub-
ject (i.e. term expression) and predicate (i.e. type expression). It is the version with explicit
names of Muñoz’s (ClosΠ) rule in [14].
The (xpand) rule is a not so straightforward generalization of the (drop) rule introduced in
[10].

In all the following we shall try and respect the following writing convention: small
latine letters denote variables; capital latine letters denote terms; small greek letters denote
sorts, and, if overlined, sorts or

∫
; capital greek letters denote typing contexts.

In order to be able to make inductive reasoning upon derivation trees, it will be useful to
introduce a notion of height or depth. This notion will moreover have to take into account
the fact that some rules do not change the structure of the subject of the judgment, whereas
others do. Therefore we introduce the following complexity notion:

Definition 3.5: Complexity

Let
...

Γ � A:B be a type derivation. This derivation’s complexity is the integer computed using
the rules shown in table 3.
The complexity of a type judgement Γ � A : B, denoted κ(Γ � A : B), is defined as the least
integer k such that Γ � A : B admits a derivation of complexity k.

Notation:
One shall label a tree node by [k] to indicate that its complexity is equal to k and by ((k)) to
indicate that it is at most k. One also adopts the same notation for type judgments.
This complexity notion is introduced for technical reasons.

Definition 3.6: Well-formed context
Let Γ = (x1 : A1, . . . , xn : An) a typing context.
Γ is said to be well-formed, which is denoted Γ � , if for all i ∈ [[1, n]], there exists σi ∈ S
such that (x1 : A1, . . . , xi−1 : Ai−1) � Ai : σi.

Notation:
Let Γ = (xi : Ai)1�i�n and ∆ = (xi : Bi)1�i�n be two contexts of same support.

(i) Let R−→ be an reduction relation upon ΛTx. One shall write Γ R−→ ∆ if there exist
i ∈ [[1, n]] such that Ai

R−→ Bi and for all j ∈ [[1, n]] \ {i}, Aj = Bj .

(ii) Let R≡ be an equivalence relation upon ΛTx. One shall write Γ R≡ ∆ if for all i ∈ [[1, n]],
Ai

R≡ Bi.

Notice that the notions of reduction and equivalence defined above are preserving the well-
formedness of contexts.

Definition 3.7: Relationships between contexts
Let Γ = (ei)1�i�m and ∆ = (fj)1�j�n be two contexts.

• Γ is said to be a sub-context of ∆, and ∆ a super-context of Γ, denoted Γ � ∆, if Γ is a
subsequence of ∆, i.e. there exists a strictly monotonic application ϕ : [[1, m]]→[[1, n]]
such that for all i ∈ [[1, m]], ei=fϕ(i);

• Γ is said to be a restriction of ∆, and ∆ an extension of Γ, denoted Γ ⊆ ∆, if any assertion
of Γ also belongs to ∆, i.e. there exists an injection ϕ : [[1, m]]→[[1, n]] such that for all
i ∈ [[1, m]], ei=fϕ(i);



(σ, τ) ∈ A
� σ : τ [0]

(axiom)

Γ�A:ρ [i] Γ, x:A�B:σ [j] (ρ, σ, τ)∈R;x/∈dom(Γ)
Γ � Πx:A.B : τ [1+max{i, j}]

(rule)

Γ � A : σ [k] x /∈ dom(Γ)
Γ, x : A � x : A [k+1]

(hypothesis)

Γ � A : B [i] Γ � C : σ [j] x /∈ dom(Γ)
Γ, x : C � A : B [i]

(weakening)

Γ � (Πx:A.B):σ [i] Γ, x:A �M :B [j] x/∈dom(Γ)
Γ � λx:A.M : (Πx:A.B) [1+max{i, j}]

(Π - I)

Γ �M : (Πx:A.B) [i] Γ � N : A [j]

Γ �MN : B〈x:=N〉 [1+max{i, j}]
(Π - E)

Γ, x : A �M : B [i] Γ � N : A [j]

Γ �M〈x:=N〉 : B〈x:=N〉 [1+max{i, j+1}]
(cut)

Γ �M : B [i] ∆ � N : A [j] P 〈x:=N〉 x→M

Γ � P 〈x:=N〉 : B [max{i, j+1}]
(xpand)

Γ �M : A [i] Γ � B : σ [j] A
βx≡B

Γ �M : B [max{i, j+1}]
(conversion)

Table 3: Complexity of derivations

• Γ is said to be an prefix context of ∆, and ∆ a prolongation of Γ, denoted Γ ≺ ∆, if m � n
and for all i ∈ [[1, m]], ei=fi.

Remark:
If Γ is a context such that there exist A and B with Γ � A : B, then Γ is well-formed.

Definition 3.8: Complexity of terms
The complexity of a term A in the well-formed context Γ typing A, denoted κΓ(A), is induc-
tively defined as follows:

• if A = σ ∈ S , κΓ(A) = 0 ;

• if A = x, necessarily Γ = Γ1, x : B, Γ2 and one sets κΓ(A) = κΓ1(B), which is defined
because Γ is well-formed;

• if A = λx:C.D, κΓ(A) = 1 + κΓ(C) + κΓ, x:C(D)

• if A = Πx:C.D, κΓ(A) = 1 + κΓ(C) + κΓ, x:C(D)

• if A = CD, κΓ(A) = 1 + κΓ(C) + κΓ(D)

• if A = C〈x:=D〉, κΓ(A) = 1 + κΓ, x:B(C) + κΓ(D)



Remark:
The complexity of a term only depends on the complexity of its free variables. In particular,
if ∆ be a well-formed extension of Γ, κ∆(A) = κΓ(A).

3 The “pseudo-sort” type

The need for the extra pseudo-type
∫

comes from the fact that in λTx, we apply substitu-
tions not only to term expressions, but also to type expressions – whereas for instance Bloo,
in [15], only applies explicit substitution to assertion subjects (i.e. term expressions), and not
to assertion predicates (i.e. type expressions). This choice implies the possible apparition of
types of the form e.g. σ〈x1:=N1〉 . . . 〈xk:=Nk〉, and we therefore wished to extend the PTS
(conversion) rule:

Γ �M : A Γ � B : σ A
βx≡B

Γ �M : B
(conversion)

in order to be able to swap types A and B in case they both represent (i.e. are βx-equivalent
to) a same sort σ.

The premise Γ � B : σ of the (conversion) rule ensures that only correct types are used.
The problem is how to extend it enough to allow to swapA andB and nevertheless preserve
the correctness.

We considered two proposals to extend Γ � B : σ. The first one was (Γ � B : σ)∨(B ∈ S).
The problem with this rule is that it is not flexible enough, as it says that if B is not typable
by a sort, then it has to be syntactically equal (not convertible) to an element of S (e.g. ∗, �
in the cube). This is too strong.
The second one was to say that if B is not typable by a sort, it has to be convertible to
an element of S . But the corresponding premise (Γ � B : σ) ∨ (B

βx≡τ) is too loose, since
from Γ �M : σ, it would be possible to derive Γ �M : σ〈x:=ωω〉, which is not strongly
normalizing.

Therefore we went to replace B
βx≡τ by something similar but with a strict control on the

convertibility of B to τ , accepting any B of the form τ〈x1:=N1〉 . . . 〈xk:=Nk〉 provided that
all Ni should be typable.

As a solution we introduce the pseudo-sort
∫

, which intuitively means “disguised sort”.
But this pseudo-sort

∫
should not be included in the set of sorts, because it is well-known

that type systems with the sort of all the sorts are not consistent. We will manipulate
∫

like
a sort using (axiom) and (xpand), but we insist that

∫∫∫
is no sort, since it appears nowhere in

the the set of rules and never as a predicate of a context type assertion. Moreover, it allows
type correction and satisfies the following statement, which is all that we wish.

Proposition 3.1: Restricted use of
∫

For all context Γ and term M such that Γ �M :
∫

, there exist σ ∈ S , x1, . . . , xk ∈ U ,
N1, . . . , Nk ∈ ΛTx such that M = σ〈x1:=N1〉 · · · 〈xk:=Nk〉.

4 The (xxxpand) rule

The introduction of this rule answers a specific identification problem linked with explicit
substitutions.



On the one hand, this rule generalizes the (drop) rule (cf. [10]), which enables to type
some terms like yz〈x:=zy〉.

On the other hand, and this is the main reason of introduction of this rule, it solves the
following problem.

It is sometimes needed to invert the order in which two hypotheses are discarded. E.g.,
having typed in context Γ, y : D, x : A the term (λx:A.B)〈y:=C〉, and willing to type
the term λx:A〈y:=C〉.B〈y:=C〉 – to ensure subject reduction – one needs to use first hy-
pothesis y : D then hypothesis x : A. But y may well have free occurences in A. In the
case of implicit substitutions, a subsitution lemma solves the problem by establishing that if
Γ, y : D, ∆ �M : N and Γ � C : D, then Γ, ∆[C/y] �M [C/y] : N [C/y]. So it is possible
to invert the order of two hypotheses and afterwards discard the hypotheses of ∆. But this
lemma does not hold for explicit substitutions, because if M is e.g. an abstraction λx:P.Q,
the terms (λx:P.Q)〈y:=C〉 and λx:P 〈y:=C〉.Q〈y:=C〉 are not syntactically equal – whereas
they would be with implicit substitutions. It is therefore necessary to lift the substitutions,
and the (xpand) rule does it.

In particular, (xpand) allows us to prove the subject reduction for general pure type
systems with explicit substitution, unlike Bloo [15, 9], who has a counter-example:

(λx:a.(λz:a.z)x)〈a:=b〉 β�x−→→ λx:b.((λz:a.z)x)〈a:=b〉.
One could object that the following rule is not satisfactory from the point of view of

type inference, because it performs a kind of subject expansion. But in fact this is not the
case, as for type inference rules must be read upward: this rule simply allows to “push”
the explicit substitution inward enough to be able to type the term – which solves Bloo’s
problem. Moreover, this corresponds to the intuitive perception of explicit systems as lazy
systems, where substitutions are not performed when not needed.

In the conclusion of [14], Muñoz writes about problems related to a rule that he calls
(ClosΠ), which is in the framework of λσ-like calculi of explicit substitution our cut rule. The
problems he mentions are solved bu (xpand).

R



Part IV

Properties of explicit PTS
In this section we will study the properties of our explicit pure type systems and show espe-
cially that they verify type correctness and subject reduction.

1 Type derivation lemmas

Lemma 4.1: Free variables
Let Γ = x1 : X1, . . . , xn : Xn be such a context and A, B be two terms such that Γ � A : B.
Then:

i. fv(A) ∪ fv(B) ⊆ dom(Γ) ;

ii. ∀ i ∈ [[1, n]], fv(Xi) ⊆ {xj / 1 � j < i}.

Lemma 4.2: Compose
Let A, B, C be three terms and x, y be two variables such that x, /∈ av (B) ∪ av(B).
Then A〈x:=B〉〈y:=C〉 x≡A〈y:=C〉〈x:=B〈y:=C〉〉
(note that the former condition is ensured by Barendregt’s convention).

Lemma 4.3: Initialization
Let Γ be a well-formed context. Then:

i. if (σ : τ) ∈ A, then Γ � σ : τ [0];

ii. if (x : A) ∈ Γ, then Γ � x : A [1+�Γ(A)].

Lemma 4.4: Weakening
Let Γ and ∆ be two contexts such that Γ ⊆ ∆. Let A, B be two such terms of ΛTx that
Γ � A : B [k]. Then ∆ � A : B ((k)).



Lemma 4.5: Generation
Let Γ be a context, A and B be two terms of ΛTx such that Γ �M : T . Then:

(i) M = σ∈S
⇒ ∃ τ∈S, T βx≡τ ∧ (σ : τ)∈A

(ii) M = x∈U
⇒ ∃ τ∈S,∃U∈ΛTx,Γ � U : τ ((k−1))

∧(x : U)∈Γ ∧ T βx≡U
(iii) M = Πx:A.B

⇒ ∃ (ρ, σ, τ)∈R,Γ � A : ρ ((k−1))

∧Γ, x : A � B : σ ((k−1)) ∧ T βx≡τ
(iv) M = λx:A.B

⇒ ∃σ∈S,∃C∈ΛTx,Γ � (Πx:A.C) : σ ((k−1))

∧Γ, x : A � B : C ((k−1)) ∧ T βx≡Πx:A.C
(v) M = AB
⇒ ∃C, D∈ΛTx,Γ � A : (Πx:C.D) ((k−1))

∧Γ � B : C ((k−1)) ∧ T βx≡D〈x:=B〉
(vi) M = A〈x:=B〉

⇒ ∃C∈ΛTx, D∈ΛTx,Γ, x : C � A : D ((k−1))

∧Γ � B : C ((k−1)) ∧ T βx≡D〈x:=B〉
∨ ∃∆,∃C, D, E∈ΛTx,Γ � E : D ((k−1))

∧∆ � B : C ((k−1)) ∧A〈x:=B〉 x−→E ∧ T βx≡D

Lemma 4.6: Substitution
Let Θ and Ξ be three contexts, v be a variable and P , Q, R, S be four terms such that Θ, v :
S, Ξ � P : Q and Θ � R : S. Then Θ,Ξ〈v:=R〉 � P 〈v:=R〉 : Q〈v:=R〉.

2 Type correctness and subject reduction

In this section, we are going to state two fundamental results needed for a type system to
be “appropriate”. Type correctness theorem ensures that only terms having a meaning as a
type – i.e. sorts and terms typable by a sort – may be used as type in dervations.

Theorem 4.7: Type correctness
Let k ∈ N be an integer, Γ be a context, A, B be two terms of ΛTx such that Γ � A : B [k].
Then ∃σ ∈ S, Γ � B : σ ((k)).

Theorem 4.8: Subject reduction
Let Γ, Γ′ be contexts and A, A′, B be three terms of ΛTx such that Γ � A : B, Γ βx−→→ Γ′ and
A

βx−→→ A′. Then Γ′ � A′ : B.
Remark:

The dual property, subject expansion, is not satisfied.
R



Part V

Strong normalization for the explicit λλλ-cube
Here we show that the explicit pure type systems of the λ-cube are strongly normalizing.
For this, it is enough to show that λCx is, as:

Lemma 5.1:
Let T be an explicit pure type system of the λ-cube.
Let Γ, A, B be such that Γ ��A : B. Then Γ �λCxA : B.

The proof of strong normalization in λCx will be achieved through a two-step reduction:

(i) show that λCx is strongly normalizing if λωx is;

(ii) show that λωx is strongly normalizing if Fx is.

Fx is an adaptation to λx of Girard’s system F (cf. [16]), which we defined in a former
work [17] and which we proved to be strongly normalizing.
And hence the theorem will hold.

In all the following, we will only consider pure type systems from the λ-cube, that is, with
the following sorts and axioms: S = {∗, �} and A = {∗ : �} – and, of course, S = {∗, �,

∫ }
and A = {∗ : �, ∗ :

∫
, � :

∫ } – and rules included in Re
S = {[∗, ∗], [∗, �], [�, ∗], [�, �]}.

1 Preliminaries

In this proof, we are going to introduce for technical reasons many fresh auxiliary variable,
e.g. Ø, ø, þ, ς , ß, æ on specific purpose.

Now we are going to define some notions which shall be useful in both steps of the proof.
One introduces a useful classification on expressions by the means of the notion of degree:
Definition 5.1: Degree of an expression

The degree δ(E) of a λ-cube expression E is inductively defined as follows:

• δ(
∫

) = 4; δ(�) = 3; δ(∗) = 2;

• δ(σx) = δ(σ) − 2;

• δ(λσx:A.B) = δ(Πσx:A.B) = δ(B〈σx:=A〉) = δ(B A) = δ(B).

Notation:
For I ⊆ N, let ∆I denote the set {M ∈ ΛTx / δ(M) ∈ I}.

Definition 5.2: (Hereditary) compatibility of a statement
A statement A : B is said to be compatible if δ(A) + 1 = δ(B).
It is said to be hereditarily compatible if it is compatible and all its substatements occuring after
a binder – λ or Π – are compatible.

Lemma 5.2: Properties of the degree
The following properties hold:

(i) Γ �λCxM : U
βx≡� implies δ(M) = 2;

(ii) if M is typable in λCx, then M βx−→M ′ implies δ(M) = δ(M ′);



(iii) if Γ �λCxA : B (B �= ∫
), then A : B and the statements of Γ are hereditarily compatible;

(iv) if (λx:A.B) is typable in λCx, then δ(x) = δ(A).

(v) if B〈x:=A〉 is typable in λCx and x ∈ av(B), then δ(x) = δ(A).

2 First step

In this proof, we are going to introduce three maps: �·, �· and [[·]]. Our purpose here is
to reduce the strong normalization in λCx into λωx by showing that if Γ �λCxA : B then
�(Γ) �λωx[[A]] : �B andA βx−→A′ implies [[A]] βx−→+[[A′]]. The map �· will ensure type correctness.

We define a map � : ∆{2, 3} −→ ΛTx as follows:

• �∗ = �� = �
∫

= ∗;

• �(Πx:A.B) = �A→�B if δ(A) = 2
= �B else;

• �(λx:A.B) = �(BA) = �(B〈x:=A〉) = �B.

Intuitively this map “flattens” terms.
It is clear that if δ(M) = 2, 3 then �M is defined and, moreover, fv(�M) = ∅
Lemma 5.3:

The following propositions hold:

i. Γ �λCxA : U and U
βx≡� imply �λωx�A : �;

ii. let A be a term of ∆2, 3 and A βx−→B; then �A = �B.

In the following, we introduce special variables, terms and context:

• a term Ø = Π�x : ∗.x;

• a variable �ø with ø : ∗;

• a variable ∗þ with þ : Ø;

• a context Θ = [ø : ∗, þ : Ø];

• indexed terms ÞM defined as follows:

if– Γ�λωxM :∗, then ÞM=þM ;

if– Γ�λωxM :� and M=∗, then ÞM=ø;

if– Γ�λωxM :� and M=A→B, then ÞM=λx:A.ÞB .

Lemma 5.4:
If Γ �λωxM : σ, then Θ, Γ �λωx ÞM : M .

We can now define the next map � : ∆{1, 2, 3}→ΛTx as follows:

• � ∗ = �� = �
∫

= ø;

• ��x =� x;



• � (Πx:A.B) = Πx:�A.� A→�B if δ(A) = 2
Πx:� A.�B if δ(A) = 1
�B else;

• � (λx:A.B) = λx:�A.�B if δ(A) = 2
�B else;

• � (BA) = �B if δ(A) = 0
�B �A else;

• � (B〈∗x:=A〉) = �B;
� (B〈�x:=A〉) = �B 〈x:=�A〉.

The map � can be extended to contexts as follows: define
� ′ : (∗x : A) �→ ∗x : �A

(�x : A) �→ �x : �A, ∗x : � A, then � (Γ) = Θ, � ′(Γ).
(By induction upon the structure of A ∈ ∆{1, 2, 3}, it follows that �A is defined and

∗x /∈ fv(� A).)
Lemma 5.5:

The following properties hold:

i. if A βx−→B, then � A βx−→→ �B;

ii. let Γ �λCxB : U
βx≡� or B

βx≡�;
then Γ �λCxA : B implies � (Γ) �λωx� A : �B.

Now we can define a last map [[·]] : ∆{0, 1, 2} −→ ΛTx as follows:

• [[∗]] = Þø;

• [[�x]] = [[∗x]] = ∗x;

• [[Πx:A.B]] =
Þø→ø→ø[[A]]([[B]]〈�x:=Þ�A〉〈∗x:=Þ� A〉) if � A = 2
Þø→ø→ø[[A]]([[B]]〈∗x:=Þ� A〉) else;

• [[λx:A.B]] =
(λ∗ð : ø.λ�x:�A.λ∗x:� A.[[B]])[[A]] if �A=2
(λ∗ð : ø.λ∗x:� A.[[B]])[[A]] else;

• [[BA]] = [[B]]� A[[A]] if � A �= 0
[[B]][[A]] else;

• [[B〈∗x:=A〉]] = [[B]]〈∗x:=[[A]]〉;
[[B〈�x:=A〉]] = [[B]]〈�x:=� A〉〈∗x:=[[A]]〉

where ∗ð above is a fresh variable.
Lemma 5.6:

The following properties hold:

(i) if A βx−→B, then [[A]] βx−→+[[B]];

(ii) Γ �λCxA : B implies � (Γ) �λωx[[A]] : �B.

Proposition 5.7:
λCx is strongly normalizing if λωx is.



3 Second step

Let us first recall briefly system Fx.
We denote here by Λx the set of the λ-terms with explicit substitution, the elements M

of which are defined by the following algebraic grammar, where V is a set of term variables
(denoted by small latin letters):

M ::= x | λx.M |M M |M 〈x:=M〉 (x ∈ V).

Fx is a type system for Λx. The type set Φ is defined by the following algebric grammar, Υ
been a set of type variables (denoted as types by small greek letters):

τ ::= α | ∀α.τ | τ→τ (α ∈ Υ).

The inference rules of Fx are presented in table 4 below.

Γ, x : σ � x : σ
(hypothèse)

Γ, x : σ �M : τ
Γ � λx.M : σ→τ

(→ - I)
Γ �M : σ→τ Γ � N : σ

Γ �MN : τ
(→ - E)

Γ �M : τ α ∈ Υ non libre dans Γ
Γ �M : ∀α.τ (∀ - I)

Γ �M : ∀α.τ σ ∈ Φ
Γ �M : τ [α:=σ]

(∀ - E)

Γ, x : σ �M : τ Γ � N : σ
Γ �M〈x:=N〉 : τ

(coupure)
Γ �M : τ ∆ � N : σ x /∈ av(M)

Γ �M〈x:=N〉 : τ
(largage)

Table 4: Typing rules for Fx

We recall the following result of [17]:
Theorem 5.8:

Fx is strongly normalizing.

Let us define two maps : | · | : ∆{0,1} −→ Λx and � : ∆{1,2} −→ Φ such that, on the first
hand, if Γ �λωxA : B then �Γ �F |A| : �B, and, on the second hand, if A βx−→A′ then |A| βx−→|A|′.
These maps is to reduce strong normalization in λωx into this in Fx.

We set aside in Υ a special type variable of Υ which should never be used except in the
special cases that we are going to specify. Let us call it ς . Moreover, we also set aside two
special term variables, namely ß and æ.

We define | · | as follows:

• |σ| = ß

• |σx| = xσ (note that xσ is a term variable for any σ);

• |Πσx:A.B| = (λß.(λxσ.|B|)æ)|A|;
• |λσx:A.B| = (λß.λxσ.|B|)|A| if δ(σx) = δ(B)

(λß.|B|)|A| else;

• |BA| = |B| |A| if δ(B) = δ(A)
(λß.|B|)|A| else;



• |B〈σx:=A〉| = |B| 〈xσ:=|A|〉.
Lemma 5.9:

If M βx−→M ′ then |M | βx−→+|M ′|.
As far as predicate terms are concerned, one can easily show by induction that a term ty-

pable by a sort is the closure of either a sort or a variable or a Π-abstraction or an application
like (λ�x:A.B)C . So with the type correctness theorem � need not be defined but on terms
of the former aspect; we therefore define it the following way:

• �σ = ς

• ��x = ξ (one assumes that V can be injected in Υ, and this injection is denoted by
replacing a latin letter by the corresponding greek letter)

• �Πσx:A.B = �A→�B if δ(B) = δ(A)
∀ξ.�B else;

• �((λ∗x:A.B)C) = �B;

• �((λ�x:A.B)C) = �B[�C/ξ];

• �(B〈∗x:=C〉) = �B;

• �(B〈�x:=C〉) = �B[�C/ξ].

Lemma 5.10:
If A, B are predicate terms (i.e. terms typable by a sort) such that A

βx≡B, then �A = �B.
We introduce now special type judgements in order to be able to translate contexts:

• ⊥ will be an abbreviation for the type ∀ξ.ξ and one will have æ : ⊥;

• the translations of sorts will correspound: ∗ð : ς ;

• for this purpose, a particular typing context is defined: Ξ = {æ : ⊥, ∗ð : ς}.

Given the map �′ defined so: �′(σx : T ) = xσ : �T , we can now extend � to contexts the
following way: �Γ = Ξ, �′(Γ).

Lemma 5.11:
For all type ϕ, Ξ � æ : ϕ.

We can now state that the translation works correctly:
Lemma 5.12:

If Γ �λωxA : B then �Γ �F |A| : �B.
Proposition 5.13:

λωx is strongly normalizing.

4 Strong normalization theorem

We have shown that all pure type systems of the λ-cube are strongly normalizing if and only
if λCx is, that λCx is strongly normalizing if λωx is and that λωx is strongly normalizing if
Fx is, which is the case. Therefore:

Theorem 5.14: Strong normalization for the λx-cube
All pure type systems of the explicit λ-cube are strongly normalizing.

R



Part VI

Conclusion
We have studied explicit pure type systems (EPTS) which are an extension of pure type
systems (PTS) where λ-calculus is replaced by the calculus of explicit substitution λx.

We have defined in these EPTS an equivalent of Barendregt’s λ-cube and we have proven
that the explicit pure type systems of this cube are strongly normalizing.

In particular, we think that we have answered Muñoz’s request in [14] when he writes:
“work is necessary to understand the interaction with dependant types and meta-variables”
in the context of explicit substitution.

R



Part VII

Appendix A: Proofs

I - Introduction

II - The λλλ-cube in pure type systems

2.1, 2.2, 2.3 These are proved by Barendregt in [3].

III - Explicit pure type systems

3.1 Easy by induction upon judgement derivation.

IV - Properties of explicit PTS

4.1 By induction upon the derivation of Γ � A : B.

4.2 By structural induction upon A.

4.3 By inductive application of the (weakening) rule.

4.4 By induction upon the derivation of Γ � A : B.

• (axiome):
(σ, τ) ∈ A

� σ : τ
Let ∆ be a well-formed extension of (), i.e. a well-formed context. By the initialization

lemma (4.3), ∆ � σ : τ [0].

• (rule):
Γ�A:ρ Γ, x:A�B:σ (ρ, σ, τ)∈R;x/∈dom(Γ)

Γ � Πx:A.B : τ
Let ∆ be a well-formed extension of Γ. By induction hypothesis, ∆ � A : ρ ((k−1)). So

∆, x : A is well-formed and ∆, x : A � B : σ ((k−1)) by induction hypothesis. So by
(rule) ∆ � Πx:A.B : τ ((k)).

• (hypothesis):
Γ � A : σ x /∈ dom(Γ)

Γ, x : A � x : A
Let ∆ be a well-formed extension of Γ, x : A. ∆ is a well-formed context containing
(x : A), so, by the initialization lemma (4.3) ∆ � x : A [1+�∆(A)]. Now κ∆(A) = κΓ(A) =
k − 1.

• (weakening):
Γ � A : B Γ � C : σ x /∈ dom(Γ)

Γ, x : C � A : B
A well-formed extension ∆ of Γ, x : C is also a well-formed extension of Γ so, by

induction hypothesis, ∆ � A : B ((k)).



• (Π - I):
Γ�(Πx:A.B):σ Γ, x:A�M :B x/∈dom(Γ)

Γ � λx:A.M : (Πx:A.B)
Obvious by induction hypothesis – same as for (rule).

• (Π - E):
Γ�M : (Πx:A.B) Γ�N : A

Γ�MN : B〈x:=N〉
Obvious by induction hypothesis.

• (cut):
Γ, x : A �M : B Γ � N : A

Γ �M〈x:=N〉 : B〈x:=N〉
Obvious by induction hypothesis.

• (xpand):
Γ �M : B ∆ � N : A P 〈x:=N〉 x→M

Γ � P 〈x:=N〉 : B
Obvious by induction hypothesis.

• (conversion):
Γ �M : A Γ � B : σ A

βx≡B
Γ �M : B

Obvious by induction hypothesis.

4.5 The last rule applied in the derivation can only be (weakening), (conversion), or the
expected rule – respectively, from (i) to (vii): (axiom), (hypothesis), (rule), (Π-I), (Π-E), (cut)
or (xpand). It is easy to show by induction that the results hold with a restriction of Γ, and
one can afterwards conclude with the weakening lemma (4.4).

4.6 This lemma is not used in the proof of 4.7; it will be proved together with 4.8.

4.7 By induction upon the derivation of Γ � A : B.

• (axiom):
(σ, τ) ∈ A
� σ : τ [0]

Obvious with (axiom), as (τ ,
∫

) ∈ A.

• (rule):
Γ�A:ρ Γ, x:A�B:σ (ρ, σ, τ)∈R;x/∈dom(Γ)

Γ � Πx:A.B : τ [k]

Obvious with (axiom), as (τ ,
∫

) ∈ A.

• (hypothesis):
Γ � A : σ x /∈ dom(Γ)

Γ, x : A � x : A [k+1]

Obvious.

• (weakening):
Γ � A : B Γ � C : σ x/∈dom(Γ)

Γ, x : C � A : B [k]

Obvious by induction hypothesis and (weakening).

• (Π - I):
Γ�(Πx:A.B):σ Γ, x:A�M :B x/∈dom(Γ)

Γ � λx:A.M : (Πx:A.B) [k+1]

Obvious.



• (Π - E):
Γ �M : (Πx:A.B) Γ � N : A

Γ �MN : B〈x:=N〉 [k+1]

By induction hypothesis, there exists τ such that Γ�(Πx:A.B):τ ((k)). By the generation

lemma (4.5), there exists a sort σ such that Γ, x : A � B : σ ((k−1)). So, as Γ � N :
A, one obtains with (cut) that Γ � B〈x:=N〉 : σ〈x:=N〉 ((k)). As σ〈x:=N〉 βx≡σ and, by
the initialization lemma (4.3), Γ � σ :

∫
[0], one can apply the (conversion) to obtain

Γ � B〈x:=N〉 : σ ((k)).

• (cut):
Γ, x : A �M : B Γ � N : A
Γ �M〈x:=N〉 : B〈x:=N〉 [k+1]

By induction hypothesis, there exists σ in S such that Γ, x : A � B : σ ((k)). Moreover,
Γ � N : A, so, with (cut), Γ � B〈x:=N〉 : σ〈x:=N〉 ((k)). As σ〈x:=N〉 βx≡σ ∈ S and, by
the initialization lemma (4.3), Γ � σ :

∫
[0], one can apply the (conversion) to obtain

Γ � B〈x:=N〉 : σ ((k)).

• (xpand):
Γ �M : B ∆ � N : A P 〈x:=N〉 x→M

Γ � P 〈x:=N〉 : B [k]

Obvious by induction hypothesis.

• (conversion):
Γ �M : A Γ � B : σ A

βx≡B
Γ �M : B ((k+1))

Obvious.

4.8 & 4.6 For these we are going to show the following stronger property: let k ∈ N, Σ,
Σ′, Θ, Ξ, v, W , X, X ′, Y , Z be such that Σ �X : Y ((k)), Σ βx−→Σ′, X βx−→X ′, Σ = Θ, v : W, Ξ,
Θ � Z : W ((k−1)); then:

(i) Σ �X ′ : Y ((k));

(ii) Σ′ �X : Y ((k));

(iii) Θ, Ξ〈v:=Z〉 � X〈v:=Z〉 : Y 〈v:=Z〉 ((k)).

This property shall be shown by induction on the pair (k, n), where n is the number of
inferences in the derivation of Σ �X : Y ((k)), with the lexicographic sorting.

The three properties are obvious for all derivations of pair (0, 1): The derivation is bound
to be (axiom):
(σ, τ) ∈ A
� σ : τ [0]

and σ, () are βx-irreductible, v /∈ dom(Σ).

One assumes the properties be true for all derivations the pair of which is strictly less
than (k, n).
The last applied rule is considered:

• (rule):
Γ�A:ρ Γ, x:A�B:σ (ρ, σ, τ)∈R;x/∈dom(Γ)

Γ � Πx:A.B : τ ((k))

For (i): X = Πx:A.B so X ′ = Πx:A′.B′ with either A = A′ and B
βx−→B′, or A βx−→A′ et

B = B′. In both cases, Γ, x : A′ � B′ : σ ((k−1)) (by induction hypothesis (i) in the first
case, (ii) in the second). Moreover, Γ � A′ : ρ ((k−1)) (by induction hypothesis (i) in the
first case, obvious in the second). So, by application of (rule), Γ �X ′ : τ ((k)).
For (ii): by induction hypothesis (ii), Γ′ � A : ρ ((k−1)) and Γ′, x : A � B : σ ((k−1)) so, by



application of (rule), Γ′ � Πx:A.B : τ ((k)).
For (iii): by induction hypothesis (iii), Θ, Ξ〈v:=Z〉 � A〈v:=Z〉 : ρ〈v:=z〉 ((k−1)) and
Θ,Ξ〈v:=Z〉, x:A〈v:=Z〉�B:〈v:=Z〉:σ〈v:=z〉 ((k−1)). As by the initialization lemma (4.3)
Θ, Ξ〈v:=Z〉 � ρ :

∫
[0] and Θ,Ξ〈v:=Z〉, x:A〈v:=Z〉�σ:

∫
[0], one gets by (conversion) that

Θ, Ξ〈v:=Z〉 � A〈v:=Z〉 : ρ ((k−1)) et Θ, Ξ〈v:=Z〉, x : A〈v:=Z〉 � B : 〈v:=Z〉 : σ ((k−1)).
So, by application of (rule), one gets Θ, Ξ〈v:=Z〉 � Πx:A〈v:=Z〉.B〈v:=Z〉 : τ ((k)). As
Θ � Z : W ((k)), by application of (xpand), Θ, Ξ〈v:=Z〉 � (Πx:A.B)〈v:=Z〉 : τ ((k)).

• (hypothesis):
Γ � A : σ ((k−1)) x /∈ dom(Γ)

Γ, x : A � x : A ((k))

For (i): x
βx−−−× so the property is obvious.

For (ii): Σ′ = Γ′, x : A ou Γ, x : A′. In the first case, by induction hypothesis
(ii), Γ′ � A : σ ((k−1)) so, by application of (hypothesis), Γ′, x : A � x : A ((k)). In
the second case, by induction hypothesis (ii), Γ � A′ : σ ((k−1)), so with (hypothesis),
Γ, x : A′ � x : A′ ((k)). Moreover, by induction hypothesis (i), Γ � A′ : σ ((k−1)); so by
(weakening), Γ, x : A′ � A : σ ((k)). So the (conversion) rule can be applied, as A

βx≡A′.
The result is Γ, x : A′ � x : A ((k)).
For (iii): If Ξ = (), then v = x and the property is obvious by (cut). Else Ξ = Ξ1, x : A.
Then by induction hypothesis (iii) Θ, Ξ1〈v:=Z〉 � A〈v:=Z〉 : σ〈v:=Z〉 ((k−1)), and by
(conversion), Θ, Ξ1〈v:=Z〉 � A〈v:=Z〉 : σ ((k−1)), so by application of (hypothesis),
Θ, Ξ〈v:=Z〉 � x : A〈v:=Z〉 ((k)).

• (weakening):
Γ�A:B ((k)) Γ�C:σ ((h)) x/∈dom(Γ)

Γ, x : C � A : B ((k))

For (i): let A′ be such that A βx−→A′. By induction hypothesis (i) Γ � A′ : B ((k)). More-

over, Γ � C : σ. So by (weakening) Γ, x : C � A′ : B ((k)).
For (ii): let ∆ be such that Γ, x : C βx−→∆. Either ∆ = Γ′, x : C with Γ βx−→Γ′, or ∆ =
Γ, x : C ′ with C βx−→C ′. In the first case, by induction hypothesis (ii) Γ′ � A : B ((k)) and
Γ′ � C : σ. So by (weakening) Γ′, x : C � A : B ((k)). In the second case, Γ � A : B ((k))

and by induction hypothesis (i) Γ � C ′ : σ. So by (weakening), Γ, x : C ′ � A : B ((k)).

• (Π - I):
Γ�(Πx:A.B):σ ((k−1)) Γ, x:A �M :B ((k−1))

Γ � λx:A.M : (Πx:A.B) ((k))

For (i): X = λx:A.B so X ′ = λx:A′ : B′ with either A = A′ et B βx−→B′ or A βx−→A′

and B = B′. In both cases, Γ � Πx:A′.B′ : σ ((k−1)) by induction hypothesis (i) and
Γ, x : A′ �M : B ((k−1)) (Obvious in the first case, by induction hypothesis (ii) in
the second). So, by application of (Π - I), Γ �X ′ : Πx:A′.B ((k)), which we want
to prove in the first case. Moreover, in the second case, Γ � Πx:A.B : σ ((k−1)) and
Πx:A′.B

βx≡Πx:A.B so one can apply (conversion). In both cases, Γ �X ′ : Πx:A.B ((k)).
For (ii): the property is obvious by induction hypothesis (ii) – as x /∈ dom(Γ) – and
use of (Π-I). For (iii): by induction hypothesis (iii), Θ, Ξ〈v:=Z〉 � (Πx:A.B)〈v:=Z〉 :
σ〈v:=Z〉 ((k−1)) and Θ, Ξ〈v:=Z〉, x : A〈v:=Z〉 �M〈v:=Z〉 : B〈v:=Z〉 ((k−1)). Apply-
ing the induction hypothesis (i) and (conversion) to the first judgement yields the
judgement Θ,Ξ〈v:=Z〉�(Πx:A〈v:=Z〉.B〈v:=Z〉):σ〈v:=Z〉 ((k−1)). So by (Π - I), one obtains
that Θ,Ξ〈v:=Z〉�λx:A〈v:=Z〉.M〈v:=Z〉 : (Πx:A〈v:=Z〉.B〈v:=Z〉) ((k)). The use of rules
(xpand) and (conversion), as by (conversion) Θ,Ξ〈v:=Z〉�(Πx:A.B)〈v:=Z〉 : σ ((k−1)),
yields the expected result Θ, Ξ〈v:=Z〉 � (λx:A.M)〈v:=Z〉 : (Πx:A.B)〈v:=Z〉 ((k)).



• (Π - E):
Γ �M :(Πx:A.B) ((k−1)) Γ � N :A ((k−1))

Γ �MN : B〈x:=N〉 ((k))

For (i): X=MN so X ′ may take the following forms:

(a) X′ = M ′N with M βx−→M ′;

(b) X ′ = MN ′ with N βx−→N ′;

(c) X ′ = Q〈x:=N〉 where M = λx:P.Q.

Case (a) and (b) are analogous to (Π - I).
In case (c), by the generation lemma (4.5), as Γ � λx:P.Q : (Πx:A.B) ((k−1)), there exist
τ ,R such that Γ � (Πx:P.R) : τ ((k−2)), Γ, x : P � Q : R ((k−2)) and (Πx:P.R)

βx≡(Πx:A.B).
This last assertion implies A

βx≡P and B
βx≡R. Γ � (Πx:P.R) : τ ((k−2)), so by the gener-

ation lemma (4.5), there exist ρ and σ such that Γ � P : ρ ((k−3)) and Γ, x : P � R :
σ ((k−3)). As A

βx≡P , this is enough to apply (conversion) to Γ � N : A, ce qui donne
Γ � N : P ((k−1)). Γ, x : P � Q : R ((k−2)) and Γ � N : P ((k−1)) so with (cut) Γ � Q〈x:=N〉 :
R〈x:=N〉 ((k)). Moreover, Γ, x : P � R : σ ((k−3)) and Γ � N : P ((k−1)) so by (cut) and
(conversion), Γ � R〈x:=N〉 : σ ((k)). As B〈x:=N〉 βx≡R〈x:=N〉 (because B

βx≡R), this al-
lows to apply (conversion) to Γ � Q〈x:=N〉 : R〈x:=N〉 ((k)), and hence Γ � Q〈x:=N〉 :
B〈x:=N〉 ((k)).
For (ii): the property is obvious by induction hypothesis (ii) and use of (Π - I).
For (iii): by induction hypothesis (iii), Θ, Ξ〈v:=Z〉 �M〈v:=Z〉 : (Πx:A.B)〈v:=Z〉 ((k−1))

and Θ, Ξ〈v:=Z〉 � N〈v:=Z〉 : A〈v:=Z〉 ((k−1)). Moreover, Γ �M : (Πx:A.B) ((k−1)) so,
by the type correction theorem (4.7), there exists τ such that Γ � (Πx:A.B) : τ ((k−1)) –
this type cannot be of type

∫
because it is no sort. So by the generation lemma (4.5),

there exist a rule (ρ, σ, τ) such that Γ � A : ρ ((k−2)), Γ, x : A � B : σ ((k−2)). By in-
duction hypothesis (iii) and (conversion), one gets that Θ,Ξ〈v:=Z〉�A〈v:=Z〉:ρ ((k−2))

and Θ,Ξ〈v:=Z〉, x:A〈v:=Z〉�B〈v:=Z〉:σ ((k−2)) and so by the application of (rule) one
obtains that Θ,Ξ〈v:=Z〉�Πx:A〈v:=Z〉.B〈v:=Z〉:τ ((k−1)). So using (conversion) on the
first of the two former results; hence Θ,Ξ〈v:=Z〉�M〈v:=Z〉:Πx:A〈v:=Z〉.B〈v:=Z〉((k−1)).
Moreover using (Π - E) on the second of those two result yields the expected judgement
Θ,Ξ〈v:=Z〉�M〈v:=Z〉N〈v:=Z〉:B〈v:=Z〉((k)).

• (cut):
Γ, x : A �M : B ((k−1)) Γ � N : A ((k−2))

Γ �M〈x:=N〉 : B〈x:=N〉 ((k))

For (i): X=M〈x:=N〉 so X ′ may take several forms:

(a) X′=M ′〈x:=N〉 with M βx−→M ′;
(b) X ′=M〈x:=N ′〉 with N βx−→N ′;
(c) X ′=Πy:P〈x:=N〉.Q〈x:=N〉 where M=Πy:P.Q;
(d) X ′=λy:P〈x:=N〉.Q〈x:=N〉 where M=λy:P.Q;
(e) X ′=P 〈x:=N〉Q〈x:=N〉 where M=PQ;
(f) X ′=N where M=x;
(g) X ′=y where M=y �=x.
(We have here made use of the (var) rule instead of (gc): in fact, the theorems obtained
with either rules are equivalent and the use of (gc) would make the demonstration
much more technical but unchanged in the idea.)

Case (a) and (b) are analogous to (Π - I).



In case (c), by the generation lemma (4.5), as Γ, x : A � Πy:P.Q : B ((k−1)), there exist a
rule (ρ, σ, τ) such that Γ, x : A, � P : ρ ((k−2)), Γ, x : A, y : P � Q : σ ((k−2)) and B

βx≡τ .
Γ, x : A, � P : ρ ((k−2)) and Γ � N : A ((k−2)) so by (cut) Γ � P 〈x:=N〉 : ρ〈x:=N〉 ((k))

and by (conversion) – as Γ � ρ :
∫

[0] by the initialization lemma (4.3) – Γ � P 〈x:=N〉 :
ρ ((k)).

In case (d), by the generation lemma (4.5), as Γ, x:A � λy:P.Q : B ((k−1)), there exist
a σ and a term R ∈ LTx such that Γ, x:A � (Πy:P.R) : σ ((k−2)), Γ, x:A, y:P � Q :
R ((k−2)) and B

βx≡Πy:P.R. Now Γ � N : A ((k−2)) so by induction hypothesis (iii),
Γ � (Πy:P.R)〈x:=N〉 : σ ((k−1)) et Γ, y : P 〈x:=N〉 � Q〈x:=N〉 : R〈x:=N〉 ((k−1)). The
application of induction hypothesis (i) to the first of these results yields the judgement
Γ � Πy:P 〈x:=N〉.R〈x:=N〉 : σ ((k−1)). With these two judgements, one gets by (Π - I)
Γ �X ′ : Πy:P 〈x:=N〉.R〈x:=N〉 ((k)), and, by (conversion) – as by the type correction
theorem (4.7) Γ � B〈x:=N〉 : υ ((k)) – Γ � X ′ : B〈x:=N〉 ((k)).

In case (e), by the generation lemma (4.5), as Γ, x:A � PQ : B ((k−1)), there exist R and
S such that Γ, x:A � P : (Πy:R.S) ((k−2)) and Γ, x:A � Q : R ((k−2)) and B

βx≡S〈y:=Q〉. In
order to respect Barendregt’s convention, one chooses for y a fresh variable, in particu-
lar y must neither belong to av(N) nor to av(N). As Γ � N :A ((k−2)), induction hypoth-
esis (iii) yields Γ � P 〈x:=N〉:(Πy:R.S)〈x:=N〉 ((k−1)) and Γ � Q〈x:=N〉:R〈x:=N〉 ((k−1)).
By the type correction theorem (4.7), Γ�(Πy:R.S)〈x:=N〉:σ ((k−1)) so by induction hy-
pothesis (i), Γ � Πy:R〈x:=N〉.S〈x:=N〉 : σ ((k−1)). Therefore with rule (conversion),
Γ � P 〈x:=N〉 : Πy:R〈x:=N〉.S〈x:=N〉 ((k−1)). And so applying rule (Π - E) yields
Γ � P 〈x:=N〉Q〈x:=N〉 : S〈x:=N〉〈y:=Q〈x:=N〉〉 ((k)). Besides, as y /∈ av(N) ∪ av(Q)
because of Barendregt’s convention, one can apply the compose lemma (4.2) to get
S〈x:=N〉〈y:=Q〈x:=N〉〉 βx≡ S〈y:=Q〉〈x:=N〉 βx≡ B〈x:=N〉. As by the type correction the-
orem (4.7), Γ � B〈x:=N〉 : τ ((k)), one can apply (conversion), which yields the expected
result: Γ � P 〈x:=N〉Q〈x:=N〉 : B〈x:=N〉 ((k)).

In case (f), M = x so (x : B) ∈ Γ, x : A. So A = B. Moreover, av(A) ⊆ dom(Γ), so x /∈
av(A), so B〈x:=N〉 βx≡B = A. As Γ �M〈x:=N〉 : B〈x:=N〉 ((k)), by the type correction
theorem (4.7), (conversion) can be applied with B〈x:=N〉 βx≡A to Γ � N : A ((k−1)), and
hence Γ � N : B〈x:=N〉 ((k)).

In case (g), M = y so (y : B) ∈ Γ, x : A so (y : B) ∈ Γ. So av(B) ⊆ dom(Γ) so x /∈
av(B) so B

βx≡B〈x:=N〉. Besides, by the type correction theorem (4.7), Γ � B : σ ((k−1)).
So, applying (conversion) to Γ �M : B ((k−1)), Γ �M : B〈x:=N〉 ((k−1)).

For (ii): the property is obvious by induction hypothesis (ii).

For (iii): by induction hypothesis (iii), Θ,Ξ〈v:=Z〉, x:A〈v:=Z〉�M〈v:=Z〉:B〈v:=Z〉((k−1))

and Θ,Ξ〈v:=Z〉�N〈v:=Z〉:A〈v:=Z〉 ((k−2)). Therefore using induction hypothesis (iii),
one gets Θ, Ξ〈v:=Z〉 �M〈v:=Z〉〈x:=N〈v:=Z〉〉 : B〈v:=Z〉〈x:=N〈v:=Z〉〉 ((k−1)).
By the compose lemma (4.2), M〈v:=Z〉〈x:=N〈v:=Z〉〉 x≡ M〈x:=N〉〈v:=Z〉 and hence
Θ,Ξ〈v:=Z〉�M〈x:=N〉〈v:=Z〉:B〈v:=Z〉〈x:=N〈v:=Z〉〉 ((k−1)) by (xpand) and induction hy-
pothesis (i). By the compose lemma (4.2), B〈v:=Z〉〈x:=N〈v:=Z〉〉 βx≡ B〈x:=N〉〈v:=Z〉.
Moreover, by the type correction theorem (4.7), Γ, x:A � B:τ ((k−1)) so by use of induc-
tion hypothesis (iii) twice and (conversion), Θ,Ξ〈v:=Z〉 � B〈x:=N〉〈v:=Z〉 : τ ((k−1)).
And so, by (conversion), Θ,Ξ〈v:=Z〉 �M〈x:=N〉〈v:=Z〉 : B〈x:=N〉〈v:=Z〉 ((k)).



• (xpand):
Γ�M :B ((k−1)) ∆�N :A((k−2)) P〈x:=N〉 x→M

Γ � P 〈x:=N〉 : B ((k))

For (i): X ′ = M and the property is obvious.
For (ii): obvious by induction hypothesis (ii).
For (iii): obvious by induction hypothesis (iii).

• (conversion):
Γ�M :A((k−1)) Γ�B:σ ((k−2)) A

βx≡B
Γ �M : B ((k))

All properties are obvious by induction hypothesis.

V - Strong normalization for the explicit λλλ-cube

5.1 Obvious with the definition of the cube.

5.2
(i) By easy induction.
(ii) By easy induction.
(iii), (iv): By simultaneous induction upon the derivation of Γ � A : B:

• (axiom):
(σ, τ) ∈ A

� σ : τ
Then σ = ∗ and τ = � and (iii) is obvious. Besides (iv) is vacuously true.

• (rule):
Γ�A:ρ Γ, x:A�B:σ (ρ, σ, τ)∈R;x/∈dom(Γ)

Γ � Πx:A.B : τ
We are in the cube, so τ = σ. By induction hypothesis, δ(τ) = δ(σ) = δ(B) + 1 =
δ(Πx:A.B) + 1.
Besides (iv) is vacuously true.

• (hypothesis):
Γ � A : σ x /∈ dom(Γ)

Γ, x : A � x : A
δ(σx) + 2 = δ(σ) = δ(A) + 1 by induction hypothesis.
Besides (iv) is vacuously true.

• (weakening):
Γ � A : B Γ � C : σ x /∈ dom(Γ)

Γ, x : C � A : B
(iii) is clear – similarly to (hypothesis).
(iv) is obvious by induction hypothesis.

• (Π - I):
Γ�(Πx:A.B):σ Γ, x:A�M :B x/∈dom(Γ)

Γ � λx:A.M : (Πx:A.B)
By induction hypothesis, δ(λx:A.M) + 1 = δ(M) + 1 = δ(B) = δ(Πx:A.B).
For (v) the subject does not have an appropriate form.

• (Π - E):
Γ �M : (Πx:A.B) Γ � N : A

Γ �MN : B〈x:=N〉
By induction hypothesis, δ(MN) + 1 = δ(M) + 1 = δ(Πx:A.B) = δ(B) = δ(B〈x:=N〉).
For (iv), by induction hypothesis (iii), substatement x:A and statement N :A are hered-
itarily compatible, so δ(x) + 1 = δ(A) and δ(N) + 1 = δ(A), so δ(x) = δ(N).



• (cut):
Γ, x : A �M : B Γ � N : A

Γ �M〈x:=N〉 : B〈x:=N〉
δ(M〈x:=N〉) + 1 = δ(M) + 1 = δ(B) = δ(B〈x:=N〉) by induction hypothesis.

Besides (iv) is vacuously true.

• (xpand):
Γ �M : B ∆ � N : A P 〈x:=N〉 x→M

Γ � P 〈x:=N〉 : B
(iii) is obvious by induction hypothesis (iv).

Besides (iv) is vacuously true.

• (conversion):
Γ �M : A Γ � B : σ A

βx≡B
Γ �M : B

(iii) is obvious by induction hypothesis (iv). (iv) is obvious by induction hypothesis.

(v) by easy induction upon the derivation of Γ � λCxB〈x:=A〉 : T : somewhere in Γ there is an
x : U and somewhere in the derivation tree there is an A : U – because as x ∈ av(B) there
must be a (cut) – and one can then conclude by (iii).

5.3 (i) by easy induction upon the derivation of Γ � λCxA : U .
(ii) by easy induction upon relation βx−→.

5.4 If σ = ∗, then ÞM = þM and the property clearly holds. If σ = �, then the result
follows by induction upon M .

5.5 (i) by easy induction upon the relation βx−→.
(ii) by induction upon the derivation of Γ � λCxA : B:

• (axiom):
(σ, τ) ∈ A

� σ : τ
True because �σ = ø : ∗ = �τ belongs to Θ.

• (rule):
Γ�A:ρ Γ, x:A�B:σ (ρ, σ, τ)∈R;x/∈dom(Γ)

Γ � Πx:A.B : τ
True by induction hypothesis for all possible rules.

• (hypothesis):
Γ � A : σ x /∈ dom(Γ)

Γ, x : A � x : A
Obvious by induction hypothesis (necessarily x =� x because of � is not defined on

terms of degree 0).

• (weakening):
Γ � A : B Γ � C : σ x /∈ dom(Γ)

Γ, x : C � A : B
By induction hypothesis, � (Γ) � � A : �B and � (Γ) � � C : ∗.
If x =∗ x, the property is obvious with (weakening). If x =� x, the property follows
from two uses of (weakening).

• (Π - I):
Γ�(Πx:A.B):σ Γ, x:A�M :B x/∈dom(Γ)

Γ � λx:A.M : (Πx:A.B)
By assumption of the theorem, σ = �.
1st case: δ(A) = 2. Then by induction hypothesis: τΓ � (Πx:�A.�A→�B) : ∗ and



τΓ, �x:�A, ∗x:�A � �M : �B. ∗x occurs neither in �B nor in �M so, using the former
two equation with the substitution lemma (4.6) using Þ� A and (conversion) and the
subject reduction thorem, one gets: �Γ, �x:�A � �M : �B, and hence �Γ � (λx:�A.�M) :
(Πx:�A.�B) = �(Πx:A.B) since as �B is closed, (Πx:�A.�B) = �A→�B.
2nd case: δ(A) = 1. Similarly.

• (Π - E):
Γ �M : (Πx:A.B) Γ � N : A

Γ �MN : B〈x:=N〉
If δ(N) = 0 the proposition is obvious by induction hypothesis.

δ(N) = δ(A) − 1 = δ(σ) − 2 where Γ � A : σ by the generation lemma (4.5). So if
δ(N) �= 0, δ(N) = 1 and σ = �. Then the induction hypothesis can be applied to
Γ � N : A and the result follows from the use of (Π - E).

• (cut):
Γ, x : A �M : B Γ � N : A

Γ �M〈x:=N〉 : B〈x:=N〉
1st case: x = ∗x. By induction hypothesis, �Γ, ∗x:� A � �M : �B. ∗x occurs neither in
�B nor in �M so, using the former equation with the substitution lemma (4.6) using
Þ� A and (conversion) and the subject reduction thorem, one gets: �Γ � �M : �B.
2nd case: x = �x. By the type correction theorem (4.7) Γ � A : σ and by considerations
of degree σ = � or A

βx≡� so, by induction hypothesis, �Γ � �N : �A. Moreover, by
induction hypothesis, �Γ, �x:�A, ∗x:�A � �M : �B. ∗x occurs neither in �B nor in
�M so, using the former equation with the substitution lemma (4.6) using Þ� A and
(conversion) and the subject reduction thorem, one gets: �Γ, �x:�A, � �M : �B and by
(cut) it follows that �Γ � �M〈x:=�N〉 : �B.

• (xpand):
Γ �M : B ∆ � N : A P 〈x:=N〉 x→M

Γ � P 〈x:=N〉 : B
One discriminates upon the form of P .
In all cases it is easy to show that � (P 〈x:=N〉) x−→→ �M , and the result follows.

• (conversion):
Γ �M : A Γ � B : σ A

βx≡B
Γ �M : B

Obvious because �A = �B.

5.6 (i) By induction upon the generation of A βx−→B.
The only non-obvious case is the case of the (B) rule: (λx:A.M)N βx−→M〈x:=N〉.
1st case: x = ∗x. Then:
[[(λx:A.M)N ]] = (λ∗ð : ø.λ∗x:�A.[[M ]])[[A]][[N ]]

βx−→+ [[M ]]〈∗x:=[[N ]]〉 = [[M〈∗x:=N〉]]
2nd case: x = �x. Then:
[[(λ�x:A.M)N ]] = (λ∗ð : ø.λ�x:�A.λ∗x:�A.[[M ]])[[A]]� N [[N ]]

βx−→+ [[M ]]〈�x:=�N〉〈∗x:=[[N ]]〉 (since ∗ð /∈ fv([[M ]]))
= [[M〈x�:=N〉]]

(ii) By induction upon the derivation of Γ � λCxA : B.

• (axiom):
(σ, τ) ∈ A

� σ : τ
δσ � 2 so (σ, τ) = (∗, �) so * ([[σ]], � τ) = (Þø, ø). By lemma 5.4, � [] = Θ � λωxÞø : ø.



• (rule):
Γ�A:ρ Γ, x:A�B:σ (ρ, σ, τ)∈R;x/∈dom(Γ)

Γ � Πx:A.B : τ
We are in the cube so τ = σ.
1st case: ρ = ∗. Then x =∗ x and � (Γ, x:A) = �Γ, x:� A.
So with the substitution lemma (4.6) �Γ � λωx[[B]]〈x:=Þ� A〉 : ø, so by (Π - E) twice:
�Γ � λωxÞø→ø→ø[[A]]([[B]]〈x:=Þ� A〉) : ø.
2nd case: ρ = �. Then x =� x and � (Γ, x : A) = �Γ, �x : �A, ∗x : � A.
So with the substitution lemma (4.6) �Γ � λωx[[B]]〈�x:=Þ�A〉〈∗x:=Þ� A〉 : ø, hence by
applying rule (Π - E) twice: �Γ � λωxÞø→ø→ø[[A]]([[B]]〈�x:=Þ�A〉〈∗x:=Þ� A〉) : ø.

• (hypothesis):
Γ � A : σ x /∈ dom(Γ)

Γ, x : A � x : A
Obvious by lemma 5.5.

• (weakening):
Γ � A : B Γ � C : σ x /∈ dom(Γ)

Γ, x : C � A : B
Similar to (hypothesis).

• (Π - I):
Γ�(Πx:A.B):σ Γ, x:A�M :B x/∈dom(Γ)

Γ � λx:A.M : (Πx:A.B)
By the generation lemma (4.5) there is some such sort τ that Γ � λCxA : τ and Γ, x :
A � λCxB : σ. By induction hypothesis, one has: � (Γ, x : A) � λωx[[M ]] : �B and
� (Γ) � λωx[[A]] : ø. By lemma 5.5, one has � (Γ) � λωx�A : ∗. and � (Γ, x : A) � λωx�B : ∗.
Then one can treat two cases: τ = ∗ and τ = �. By the use of appropriate inference
rules, one obtains in both cases that �Γ � λωx[[λx:A.M ]] : � (Πx:A.B).

• (Π - E):
Γ �M : (Πx:A.B) Γ � N : A

Γ �MN : B〈x:=N〉
By induction hypothesis, �Γ � [[M ]] : � (Πx:A.B) and �Γ � [[N ]] : �A.
1st case: δ(N) + 1 = δ(A) = 2 (and so by degree argument x =� x). Then the two
equations above become �Γ � [[M ]] : Πx:�A.�A→�B and �Γ � [[N ]] : �A. Moreover
�Γ � �N : �A. So with (Π - E) twice: �Γ � [[M ]]�N [[N ]] : �B〈x:=�N〉〈∗ð:=[[N ]]〉, and
with (conversion) �Γ � [[M ]]�N [[N ]] : �B〈x:=�N〉, since ∗ð /∈ av(�B〈x:=�N〉).
2nd case: δ(N) + 1 = δ(A) = 1. Then the first of the two equations above becomes
�Γ � [[M ]] : Πx:�A.trucB. Moreover �Γ � �N : �A. And one can conclude with a
similar argument.

• (cut):
Γ, x : A �M : B Γ � N : A

Γ �M〈x:=N〉 : B〈x:=N〉
1st case: x =∗ x. By induction hypothesis �Γ, ∗x : � A � [[M ]] : �B and �Γ � [[N ]] : � A so
with (cut) �Γ � [[M ]]〈∗x:=[[N ]]〉 : �B〈∗x:=�N〉, and by (conversion), since ∗x /∈ av (�B),
�Γ � [[M ]]〈∗x:=[[N ]]〉 : �B.
2nd case: x =� x. By induction hypothesis �Γ, �x : �A, ∗x : �A � [[M ]] : �B and
�Γ � [[N ]] : �A. As by lemma 5.5 – as for degree reason A is not typable by sort ∗ –,
�Γ � �N : �A, with (cut) twice �Γ � [[M ]]〈∗x:=[[N ]]〉〈�x:=�N〉 : �B〈∗x:=�N〉〈�x:=�N〉,
and as ∗x /∈ av (�B), by (conversion) �Γ � [[M ]]〈∗x:=[[N ]]〉〈�x:=�N〉 : �B〈�x:=�N〉.

• (xpand):
Γ �M : B ∆ � N : A P 〈x:=N〉 x→M

Γ � P 〈x:=N〉 : B
One discriminates upon the form of P .



In all cases it is easy to show that [[P 〈x:=N〉]] x−→→ [[M ]], and the result follows.

• (conversion):
Γ �M : A Γ � B : σ A

βx≡B
Γ �M : B

Obvious because [[A]]
βx≡[[B]].

5.7 With the type correction theorem (4.7) it is enough to show that if Γ � λCxM : T then
M is strongly normalizing. Consider a reduction starting at M : M βx−→M ′ βx−→M ′′ βx−→ . . .. We
have �Γ � λωx[[M ]] : � T and [[M ]] βx−→+[[M ′]] βx−→[[M ′′]] βx−→ . . .. Assuming that λωx is strongly
normalizing, this sequence must be finite, and hence the reduction of M also.

5.8 A proof of this is given in [17] (in French; also translated in English as Appendix B,
available at http://perso.ens-lyon.fr/romain.kervarc/Articles/LICS04).

5.9 By induction upon M having a βx-redex:

• M=Πσx:A.B. Then M ′=Πσx:A′.B′ – either B=B′, A βx−→A′ or A=A′, B βx−→B′. By in-
duction hypothesis |M | = (λß.|B|)|A| βx−→+ (λß.|B′|)|A′| = |M ′|.

• M = λσx:A.B. Analoguous to the former case.

• M = BA. Either the reduction takes place in B or in A or B = λx:P.Q and M ′ =
Q〈x:=A〉. In the first subcase, then the result is obvious by induction hypothesis as in
the two former cases. In the second subcase, |M | = (λß.λxσ.|Q|)|P ||A| βx−→ (λxσ.|Q|)|A|

βx−→ Q〈xσ:=|A|〉 = |M ′|.
• M = B〈σx:=A〉. Obvious by induction hypothesis.

5.10 Easy by induction upon A βx−→B.

5.11 It is an obvious application of rule (∀ - E).

5.12 By induction upon the pair (k, n) where n and k are respectively the number of
inferences and the complexity of the derivation of Γ � λωxA : B.

• (axiom):
(σ, τ) ∈ A
� σ : τ [0]

It is obvious by (hypothesis) that Ξ � ß : ς .

• (rule):
Γ�A:ρ Γ, x:A�B:σ (ρ, σ, τ)∈R;x/∈dom(Γ)

Γ � Πx:A.B : τ
By induction hypothesis, �Γ, x : �A � |B| : ς so by (→ - I), �Γ � λx.|B| : �A→ς . As
by weakening lemma (4.4) and lemma 5.11, �Γ � æ : �A, by (→ - E), one obtains that
�Γ � (λx.|B|)æ : ς . So with (→ - I) and the weakening lemma (4.4), �Γ � λß.(λx.|B|)æ :
ς→ς , and with (→ - E), as by induction hypothesis, �Γ � |A| : ς , one can conclude that
�Γ � (λß.(λx.|B|)æ)|A| : ς .

• (hypothesis):
Γ � A : σ ((k−1)) x /∈ dom(Γ)

Γ, x : A � x : A ((k))

�(Γ, x:A)=�Γ, x:�A and by (hyp) �Γ, x:�A � x:�A.



• (weakening):
Γ � A : B Γ � C : σ x /∈ dom(Γ)

Γ, x : C � A : B
By induction hypothesis, �Γ � |A| : �B and the result holds with the weakening lemma

for Fx.

• (Π - I):
Γ�(Πx:A.B):σ Γ, x:A�M :B x/∈dom(Γ)

Γ � λx:A.M : (Πx:A.B)
By induction hypothesis, �Γ, x : �A � |M | : �B. We distinguish several cases depending

on the degrees:

a. δ(x) = δ(M) = δ(B) − 1 = δ(A) − 1. Then by (→ - I), �Γ � λx.|M | : �A→�B. By
(→ - I) and the weakening lemma (4.4), �Γ � λß.λx.|M | : ς→�A→�B.

b. δ(x) = δ(M) + 1 = δ(B) = δ(A) − 1. Then one can show by easy induction
that since δ(x) > δ(M), x does not occur available in M , and therefore it need
not appear in the typing context. So �Γ � |M | : �B; moreover since contexts are
ordered in pure type systems, ξ may not occur free in �Γ, so by (∀ - I), �Γ � |M | :
∀ξ.�B. Then by (→ - I) and the weakening lemma (4.4), �Γ � λß.|M | : ς→�B.

As Γ � (Πx:A.B) : σ ((k−1)), by the generation lemma (4.5) there is some sort ρ such
that Γ � A : ρ ((k−2)). Therefore by induction hypothesis, �Γ � |A| : ς . So by (→ - E), in
both cases �Γ � |λx:A.M | : �(Πx:A.B).

• (Π - E):
Γ �M : (Πσx : A.B) Γ � N : A

Γ �MN : B〈xσ:=N〉
By induction hypothesis, �Γ � |M | : �(Πσx:A.B) and �Γ � |N | : �A. We distinguish

several cases depending on the nature of (Πσx:A.B):

a. δ(A) − 1 = δ(x) < δ(B). Then �(Πσx:A.B) = �A→�B and |MN | = |M | |N |. So
�Γ � |M | : �A→�B and �Γ � |N | : �A so by (→ - I) �Γ � |M ||N | : �B. One can show
by easy induction that if δ(x) = δ(B) then ξ /∈ fv(�B). So �Γ � |M ||N | : �B[�N/ξ]

b. δ(A) − 1 = δ(x) = δ(B). Then �Π�x:A.B = ∀ξ.�B and |MN | = (λß.|M |)|N |. So
�Γ � |M | : ∀ξ.�B and so by (∀ - E), �Γ � |M | : �B[�N/ξ]. So by (→ - I) and the
weakening lemma (4.4), �Γ � λß.|M | : ς→�B[�N/ξ]. Moreover, one has then that
δ(N) = 2, and one can show by induction that if Γ � λCX : Y and δ(X) = 2 then
Y

βx≡� or
∫

. So �Γ � |N | : �A = ς . So by (→ - E), �Γ � (λß.|M |)|N | : �B[�N/ξ].

In both cases �Γ � |MN | : �B[�N/ξ].

• (cut):
Γ, x : A �M : B Γ � N : A

Γ �M〈x:=N〉 : B〈x:=N〉
By induction hypothesis, �Γ, x : �A � |M | : �B and �Γ � |N | : �A. We distinguish the
same cases (a. and b.) as for the two former rules, and the same proof holds – since up
to βx-reduction, a (cut) is a (→ - I) followed by a (→ - E).

• (xpand):
Γ �M : B ∆ � N : A P 〈x:=N〉 x→M

Γ � P 〈x:=N〉 : B
This result clearly holds by easy structural induction upon P .



• (conversion):
Γ �M : A Γ � B : σ A

βx≡B
Γ �M : B

By induction hypothesis, �Γ � |M | : �A. As by the type correction theorem (4.7) and
the second premise of the inference both A and B are predicate terms, as by the third
premise A

βx≡B, we have that �A = �B by lemma 5.10, and hence �Γ � |M | : �B.

5.13 With the type correction theorem (4.7) it is enough to show that if Γ � λωxM : T
then M is strongly normalizing.
Consider an infinite reduction starting at M : M βx−→M ′ βx−→M ′′ βx−→ . . .. By lemma 5.12, we
have that �Γ � Fx|M | : �T and by lemma 5.9, we obtain that [[M ]] βx−→+[[M ′]] βx−→[[M ′′]] βx−→ . . ..
But by theorem 5.8, this sequence must be finite, and so must be the initial one.

VI - Conclusion

R



Part VIII

Appendix B: System FFFxxx

In this appendix translated from [17], we are going to study the explicit substitution calculus
λx (cf. [6]), and develop for it a type system named Fx – an explicit version of Girard’s
system F (cf. [2, 16]). We shall especially prove that the subject reduction and the strong
normalization hold for our system.

1 λλλ-calculus with explicit substitutions

Definition B.1: λx-calculus
The set Lx of terms is inductively defined upon an infinite variable set V by the following
grammar:

M ::= x | λx.M |M M |M 〈x:=M〉 (x ∈ V)

The relation
αx≡ of αx-equivalence is defined as follows upon Lx, where usual implicit substi-

tution is noted between square brackets:

• if M = x ∈ V , M
αx≡ N if N = x;

• if M = λx.P , M
αx≡ N if N = λy.R with P [x:=z]

αx≡ R[y:=z] for all z except a finite
number;

• if M = PQ, M
αx≡ N if N = RS with P

αx≡ R and Q
αx≡ S;

• if M = P 〈x:=Q〉, M αx≡ N if N = R〈y:=S〉, with Q
αx≡ S and P [x:=z]

αx≡ R[y:=z] for all
z except a finite number.

This relation is an equivalence relation, so one can define the quotient set Λx = Lx/ αx≡, the
elements of which are the λx-terms, to which abstraction, application and substitution are
canonically extended.

Definition B.2: Free, bound, available variables
These notions are defined as in pure type systems.

In the following, we shall make no distinction between a type and its representants, and
we shall apply for the choice of representants Barendregt’s convention that a same variable
does not occur both bound and free in a same term.

We shall adopt the following writing convention: latin small letters denote variables,
latin capital letter, terms, fraktur letters, substitutions. We shall use the abbreviations S for
a sequence of substitutions and T for a sequence of term applications.

Lemma B.1: Variable Conservation
Let M and M ′ be such that M

βx−→M ′.
Then av(M ′) ⊆ av(M).
Proof.
Obvious by definition of available variables. Q.E.D.



2 Reduction

The notion of β-reduction is thus modified for the λx-calculus:
Definition B.3: βx-reduction

βx-reduction is induced by the following rules:

(B) (λx.B)A
βx−→ B〈x:=A〉;

(abs) (λy.B)〈x:=A〉 βx−→ λy.B〈x:=A〉;
(app) (M N)〈x:=A〉 βx−→M〈x:=A〉N〈x:=A〉;
(sbst) x〈x:=A〉 βx−→ A;

(gc) M〈x:=A〉 βx−→M if x /∈ av(M).
The reduction presented here contains the (gc) rule of « garbage collection » rather than

the more elementary (var) rule: y〈x:=A〉 βx−→y (y �= x). Both systems are equivalent in most
aspects.

Notation:
Let A and B be two subsets of Λx.
We set A→B = {M ∈ Λx /∀N ∈ A, MN ∈ B}.

Remark:
Let A, B, C, D be such subsets of Λx that A ⊇ C and B ⊆ D. Then (A→B) ⊆ (C→D).

3 Saturated sets

Definition B.4: X -saturated subsets
Let X be a subset of Λx.
A subset A of Λx is said to be X -saturated if the following assertions are satisfied:

(sat-B) B〈x:=A〉T ∈ A
⇒ (λx.B)AT ∈ A;

(sat-abs) (λy.B〈x:=A〉)ST ∈ A
⇒ (λy.B)〈x:=A〉ST ∈ A;

(sat-comp) B〈y:=C〉〈x:=A〈y:=C〉〉ST ∈ A
⇒ B〈x:=A〉〈y:=C〉ST ∈ A;

(sat-var) AST ∈ A
⇒ x〈x:=A〉ST ∈ A;

(sat-app) (B〈x:=A〉)(C〈x:=A〉) ∈ A
⇒ (BC)〈x:=A〉;

(sat-gc) BST ∈ A, A ∈ X , x /∈ av(B)
⇒ B〈x:=A〉ST ∈ A.

Let satX denote the set of all X -saturated subsets of Λx and SX = satX ∩ P(X ) this of all
X -saturated subsets of X .

Proposition B.2: (Stability of satX )
The following assertions hold:

i. If A ∈ P(Λx) and B ∈ satX , then A→B ∈ satX ;

ii. satX is closed under intersection.



Proof.
This is a consequence of the definition of X -saturated sets. Q.E.D.

Proposition B.3:
Let N be the set of all strongly normalizing terms.
N is N -saturated.
Proof.
This lemma was proven in [7] (lemma 5, p. 16). The calculus and the notion of saturation are
here the same. Q.E.D.

4 Type System

Definition B.5: System F
Let Υ be an infinite set of type variables. The set Φ of formulae is defined as the closure of Υ
by the binary connector → and the quantifier ∀. Upon Φ is defined as follows the relation

α≡
of α-equivalence:

• if ϕ = α ∈ Υ, ϕ
α≡ ψ if ψ = α;

• if ϕ = ρ→σ, ϕ
α≡ ψ if ψ = τ→υ with ρ

α≡ τ and σ
α≡ υ;

• if ϕ = ∀α.σ, ϕ
α≡ ψ if ψ = ∀β.τ and σ[α:=γ]

α≡ τ [β:=γ] for all γ except a finite number.

Just as for terms one defines the quotient set F = Φ/
α≡, the elements of which are the types

of system F , to which → and ∀ are canonically extended.
In the following we shall make no distinction between a type and its representants and

apply also Barendregt’s convention to types. We shall adopt the following writing conven-
tion: greek small letters denote types and type variables.

5 Typing

We can now define the usual typing notions:
Definition B.6: Typing in Fx

A type assertion is an expression of the form M : τ where M and τ are a term and a type,
respectively called subject and predicate of the assertion. A typing context Γ is a set of type as-
sertions, the subjects of which are distinct variables, which form its domain denoted dom(Γ).
A type judgement is an expression of the form Γ �M : τ , obtained by derivation using the
inference rules enounced in table 5. A terme is said to be typable if it is the subject of a valid
judgement.

Notation:
Γ, x : σ stands for Γ ∪ {x : σ} where x /∈ dom(Γ).

The (drop) is not usual. It was introduced in [10], and allows to type more terms – e.g.
yz〈x:=zy〉.

Lemma B.4: Extended weakening
Let Γ,M , τ be such that Γ �M : τ . Let ∆ be a context of disjoint domain with that of Γ. Then
Γ ∪ ∆ �M : τ .
Proof.



Γ, x : σ � x : σ
(hypothesis)

Γ, x : σ �M : τ
Γ � λx.M : σ→τ

(→ - I)

Γ �M : σ→τ Γ � N : σ
Γ �MN : τ

(→ - E)

Γ �M : τ α ∈ Υ not free in Γ
Γ �M : ∀α.τ (∀ - I)

Γ �M : ∀α.τ σ ∈ F
Γ �M : τ [α:=σ]

(∀ - E)

Γ, x : σ �M : τ Γ � N : σ
Γ �M〈x:=N〉 : τ

(cut)

Γ �M : τ ∆ � N : σ x /∈ av(M)
Γ �M〈x:=N〉 : τ

(drop)

Table 5: Typing rules for Fx

Obvious by induction on the derivation of Γ �M : τ . Q.E.D.

Corollary B.5:
Let Γ, ∆, E, M , τ be such that Γ ⊆ ∆ ⊆ E, Γ �M : τ , E �M : τ . Then ∆ �M : τ .

Lemma B.6: Extended strengthening
Let Γ, M , τ be such that Γ �M : τ .
Let ΓX = {(x : σ) ∈ Γ /x ∈ av(X)}.
Then ΓM �M : τ .
Proof.
By induction upon the derivation of Γ �M : τ .

• (hypothesis):
Γ, x : τ � x : τ

Let ∆ = Γ, x : τ . ∆M = {x : τ}, and hence the property holds.

• (→ - I):
Γ, x : ρ � N : σ
Γ � λx.N : ρ→σ

av(M)=av(N)\{x}, so ΓM=ΓN as x/∈dom(Γ). By induction hypothesis (plus the ex-
tended weakening lemma B.4 if x/∈av(N)), ΓN , x:ρ � N :σ, so, with rule (→ - I), one
gets that ΓM � λx.N : ρ→σ.

• (→ - E):
Γ � N : σ→τ Γ � P : σ

Γ � NP : τ
ΓM = ΓN ∪ ΓP , so this is obvious by induction hypothesis with the corollary B.5 of the
extended weakening lemma.

• (∀ - I):
Γ �M : ρ α ∈ Υ not free in Γ

Γ �M : ∀α.ρ
Obvious by induction hypothesis (if α is not free in Γ, a fortiori it is nor free in ΓM ⊆ Γ).

• (∀ - E):
Γ �M : ∀α.ρ σ ∈ F

Γ �M : ρ[α:=σ]
Obvious by induction hypothesis.



• (coupure):
Γ, x : σ � N : τ Γ � P : σ

Γ � N〈x:=P 〉 : τ
x/∈dom(Γ), and either x/∈av (N) or x∈av(N).
In the first case, ΓM = ΓN and, as by induction hypothesis, ΓN � N : τ , with (drop)
one gets that ΓM �M : τ .
In the second case, ΓM = ΓN ∪ ΓP , and by induction hypothesis with the corollary of
the extended weakening lemma B.4, by (cut) one gets that ΓM �M : τ .

• (drop):
Γ � N : τ ∆ � P : σ x /∈ av(N)

Γ � N〈x:=P 〉 : τ
Then ΓM = ΓN and, by induction hypothesis, with (drop), one gets that ΓM �M : τ .

Q.E.D.

6 Subject reduction

Here we will show that reduction preserves typing.
Theorem B.7: Subject reduction

Let Γ, M , M ′, τ be such that Γ �M : τ and M
βx−→M ′. Then Γ �M ′ : τ .

Proof.
By induction upon the derivation of Γ �M : τ .

• (hypothesis):
Γ, x : τ � x : τ

M = x ∈ V , so there is no M ′ such that M
βx−→M ′, and the property holds.

• (→ - I):
Γ, x : ρ � N : σ
Γ � λx.N : ρ→σ

M=λx.N so if M
βx−→M ′, necessarilyM ′=λx.N ′ withN

βx−→N ′. Applying the induction
hypothesis gives Γ, x:ρ � N ′:σ, so by (→ - I) Γ �M ′:ρ→σ.

• (→ - E):
Γ � N : σ→τ Γ � P : σ

Γ � NP : τ

1st case: M ′ = N ′P with N
βx−→ N ′ or M ′ = NP ′ with P

βx−→P ′, respectively. Then by
induction hypothesis, Γ � N ′ : σ→τ , respectively Γ � P ′ : σ, and so, with rule (→ - E),
Γ �M ′ : τ .

2nd case: N = λx.Q and M ′ = Q〈x:=P 〉. So, as Γ � λx.Q : σ→τ , necessarily Γ, x :
σ � Q : τ . Moreover, Γ � P : σ, and so, with rule (cut), Γ �M ′ : τ .

• (∀ - I):
Γ �M : ρ α ∈ Υ not free in Γ

Γ �M : ∀α.ρ
By induction hypothesis, Γ �M ′ : ρ, and so, with rule (∀ - I), Γ �M ′ : ∀α.ρ.

• (∀ - E):
Γ �M : ∀α.ρ σ ∈ F

Γ �M : ρ[α:=σ]
By induction hypothesis, Γ �M ′ : ρ, and so with rule (∀ - E), Γ �M ′ : ρ[α:=σ].



• (cut):
Γ, x : σ � N : τ Γ � P : σ

Γ � N〈x:=P 〉 : τ

1st case: M ′ = N ′〈x:=P 〉 with N
βx−→N ′ or M ′ = N〈x:=P ′〉 with P

βx−→P ′, respectively.
Then by induction hypothesis, Γ, x : σ � N ′ : τ , respectively Γ � P ′ : σ, and so with
rule (cut), Γ �M ′ : τ .

2nd case: N may take several forms.
Subcase a: N = λy.Q and M ′ = λy.Q〈x:=P 〉. Then Γ, x : σ � λy.Q : τ and Γ � P : σ.
The last applied rule to obtain the judgement Γ, x : σ � λy.Q : τ is either (→ - I), or
(∀ - I) or (∀ - E). We will show by recurrence upon the number k of rules (∀ - I) and
(∀ - E) that Γ, x : σ � λy.Q〈x:=P 〉 : τ .

– k=0. Then τ=ξ→χ and
Γ, x:σ, y:ξ � Q:χ
Γ � λy.Q:ξ→χ

And so, as by the extended weakening lemma B.4 Γ, y : ξ � P : σ, with (cut), one
gets that Γ, y : ξ � Q〈x:=P 〉 : χ, and so, with (→ - I), Γ � λy.Q〈x:=P 〉 : ξ→χ = τ .

– Assume that the property be true for k.
For k + 1: according to the last applied rule in the derivation, which can ei-

ther be rule (∀ - I):
Γ � λy.Q : ζ α ∈ Υ not free in Γ

Γ � λy.Q : ∀α.ζ or, respectively, rule (∀ - E):

Γ � λy.Q : ∀α.ϑ η ∈ F
Γ � λy.Q : ϑ[α:=η]

, τ = ∀α.ζ or, respectively, τ = ϑ[α:=η]. By recurrence

hypothesis, Γ � λy.Q〈x:=P 〉 : ζ or, respectively, Γ � λy.Q〈x:=P 〉 : ∀α.ϑ, and so,
with (∀ - I), respectively (∀ - E), one derives Γ � λy.Q〈x:=P 〉 : τ .

Subcase b: N = QR and M ′ = Q〈x:=P 〉R〈x:=P 〉. As for the first subcase, one unfolds
the derivation to the application of rule (→ - E) by eliminating recursively the (∀ - I)
and (∀ - E) rules, and one gets analoguously the expected result.
Subcase c: N = x and M ′ = P . Then Γ, x:σ�N :τ , so τ = σ; now Γ � P : σ.
Subcase d: x/∈av(N) and M ′ = N . Now Γ, x:σ�N :τ , so, as x/∈av(N), Γ � N : τ .

• (drop):
Γ � N : τ ∆ � P : σ x /∈ av(N)

Γ � N〈x:=P 〉 : τ

1st case: M ′ = N ′〈x:=P 〉 with N
βx−→N ′ or M ′ = N〈x:=P ′〉 with P

βx−→P ′, respectively.
Then by induction hypothesis, Γ � N ′ : τ , respectively ∆ � P ′ : σ, and so with (drop),
Γ �M ′ : τ .

2nd case: M ′ = N . Then by induction hypothesis Γ �M ′ : τ .

3rd case: analoguous to the second case of (cut).

Q.E.D.

7 Interpretations

Definition B.7: X -interpretation
Let X be a subset of Λx.
An X -interpretation I is a map from Υ into SX , the set of the X -saturated subsets of X .



Notation:
Let I be an X -interpretation, α ∈ Υ be a type variable and A an X -saturated subset of X .
One denotes by Iα←A the X -interpretation defined by:

Iα←A :
{
α

β �= α

�→
�→

A
I(β)

Definition B.8: X -interpretation of types
An X -interpretation can be canonically extended to a map from F onto satX on the following
way:

• I(ρ→σ) = I(ρ)→I(σ);

• I(∀α.τ) =
⋂
Y ∈�X

Iα←Y(τ).

By a notation abuse, one confuses an interpretation and its extension as a type application.
Lemma B.8: Substitution

Let I be an X -interpretation, α ∈ Υ a type variable and σ, τ ∈ F two types. Then
Iα←I(σ)(τ) = I(τ [α:=σ]).
Proof.
By induction upon τ :

• τ = α. Then Iα←I(σ)(α) = I(σ) = I(α[α:=σ]).

• τ=β∈Υ\{α}. Then Iα←I(σ)(β)=I(β)=I(β[α:=σ]).

• τ = ρ→ξ. Then (by i.h. for the second equality):
Iα←I(σ)(ρ→ξ) = Iα←I(σ)(ρ)→Iα←I(σ)(ξ)

= I(ρ[α:=σ])→I(ξ[α:=σ])
= I(ρ[α:=σ]→ξ[α:=σ])
= I((ρ→ξ)[α:=σ]).

• τ = ∀β.ρ. One can assume that β �= α because of Barendregt’s convention.
Then Iα←I(σ)(τ) =

⋂
Y ∈�(X )

Iα←I(σ), β←Y(ρ) (1)

=
⋂

Y ∈�(X )

Iβ←Y ,α←I(σ)(ρ) (2)

=
⋂

Y ∈�(X )

Iβ←Y(ρ[α:=σ]) (3)

= I(∀β.ρ[α:=σ]) (1)
= I((∀β.ρ)[α:=σ]) (2)

(1) by definition, (2) because α �= β, (3) by induction hypothesis.

Q.E.D.

Lemma B.9: Inclusion
Let I be an N -interpretation.
Then for any type τ ∈ F , I(τ) ⊆ N .
Proof.
Let N0 = {xT /x ∈ Υ, T ∈ N}.
We are going to show by induction upon τ the stronger following result: for all N -interpretation
I , for all type τ ∈ F , N0 ⊆ I(τ) ⊆ N .



In order to do that, we are going to show first some properties of N 0 relatively to N :

i. N0 ⊆ N
ii. N0 ⊆ (N→N0)

iii. (N0→N ) ⊆ N
Proposition i. is obvious as N is closed under application and contains the variables.
Proposition ii. is also obvious by definition of N0.
Proposition iii. will be shown ad absurdum: let T ∈ N0→N , one assumes that T /∈ N .

T admits an infinite derivation T
βx−→T1

βx−→T2
βx−→ . . .. Let x ∈ V ⊆ N0 be a variable; then

T x ∈ N . But T x admits an infinite derivation T
βx−→T1x

βx−→T2x
βx−→ . . .. The result of this is

a contradiction.

If τ = α ∈ Υ, it is obvious that N0 ⊆ N .
If τ = ρ→σ, by induction hypothesis N0 ⊆ I(ρ) and I(σ) ⊆ N . So by iii., I(ρ)→I(σ) ⊆

(N0→N ) ⊆ N . Similarly, by induction hypothesis, I(ρ) ⊆ N and N0 ⊆ I(σ). So by ii.,
I(ρ)→I(σ) ⊃ (N→N0) ⊃ N0.

If τ = ∀α.ρ, I(τ) ⊆ I(ρ) ⊆ N by induction hypothesis, and, by induction hypothesis
again, N0 ⊆ J (ρ) for all N -interpretation J , and especially for the N -interpretations of the
form Iα←Y , so N0 ⊆ I(τ). Q.E.D.

8 Strong normalisation

The aim of this section is to show the strong normalization theorem:
Theorem B.10: Strong normalization

Any Λx-term typable in Fx is strongly normalizing.
In order to do this, we are going to show a theorem stating that the intuition that one has

of an interpretation fits with the reality in the particular case of N -interpretations:
Theorem B.11: Adequation

Let I be an N -interpretation. Let Γ, M and τ be such that Γ �M : τ . Then M ∈ I(τ).
Proof.
We are going to show by induction upon the derivation of Γ �M : τ the stronger following
result:
Set Γ = {x1 : ρ1, . . . , xn : ρn}. Let Ai ∈ I(ρi) (for i ∈ [[1, n]]) be such that ∀ j � 0, xi+j /∈
av(ρi). Let I be an N -interpretation. Then M〈x1:=A1〉 · · · 〈xn:=An〉 ∈ I(τ).

There are several cases according to the last applied rule:

• (hypothesis):
Γ, x : σ � x : σ

There exists i such that M ≡ xi and τ ≡ αi. One applies (i − 1) times the (sat-gc) rule
to get back to xi〈xi:=Ai〉〈xi+1:=Ai+1〉 · · · 〈xn:=An〉 ∈ I(τ), then once the (sat-var) rule
to get back to Ai〈xi+1:=Ai+1〉 · · · 〈xn:=An〉 ∈ I(τ), then (n − i) times the (sat-gc) rule
to get back to Ai ∈ I(τ), which is true by hypothesis.

• (→ - E):
Γ � U : σ→τ Γ � V : σ

Γ � UV : τ
To show that (UV )〈x1:=A1〉···〈xn:=An〉 ∈ I(τ), it is enough with rule (sat-app), to



show that (U〈x1:=A1〉···〈xn:=An〉) (V 〈x1:=A1〉···〈xn:=An〉) ∈ I(τ). Then by induction
hypothesis,U〈x1:=A1〉···〈xn:=An〉 ∈ I(σ→τ) = I(σ)→I(τ) and V 〈x1:=A1〉···〈xn:=An〉
∈ I(σ). So (U〈x1:=A1〉···〈xn:=An〉) (V 〈x1:=A1〉···〈xn:=An〉) ∈ I(τ).

• (→ - I):
Γ, x : ρ � N : σ
Γ � λx.N : ρ→σ

Because of Barendregt’s convention, one can assume that x is not free in any A i. To
show that (λx.N)〈x1:=A1〉···〈xn:=An〉 ∈ I(ρ→σ), it is enough, with (sat-abs), to show
that λx.N〈x1:=A1〉···〈xn:=An〉 ∈ I(ρ→σ) = I(ρ)→I(σ). So let B ∈ I(ρ) be a term,
we want to show that λx.N〈x1:=A1〉···〈xn:=An〉B ∈ I(σ). For this, it is enough to
show that N〈x1:=A1〉···〈xn:=An〉〈x:=B〉 ∈ I(σ) with rule (sat-B). x been free in no Ai,
this is a consequence of the induction hypothesis.

• (∀ - E):
Γ �M : ∀α.ρ σ ∈ F

Γ �M : ρ[α:=σ]
Then by induction hypothesis
M〈x1:=A1〉···〈xn:=An〉 ∈ I(∀α.ρ) =

⋂
Y ∈�N

Iα←Y(ρ) ⊆ Iα←I(σ)(ρ) = I(ρ[α:=σ]).

(Indeed, I(σ) is N -saturated, and by the inclusion lemma B.9, it is included in N .
The last equality is got by the substitution lemma B.8.)

• (∀ - I):
Γ �M : ρ α ∈ Υ non libre dans Γ

Γ �M : ∀α.ρ
Then for all Y ∈ SX , by induction hypothesis applied to Iα:=Y ,
M〈x1:=A1〉···〈xn:=An〉 ∈ Iα:=Y(ρ).
And so M〈x1:=A1〉···〈xn:=An〉 ∈ I(∀α.ρ).

• (cut):
Γ, x : σ � U : τ Γ � V : σ

Γ � U〈x:=V 〉 : τ
Because of Barendregt’s convention, one can assume that x is not free in any A i. In
order to show that U〈x:=V 〉〈x1:=A1〉···〈xn:=An〉 ∈ I(τ), it is enough to show that
U〈x1:=A1〉···〈xn:=An〉〈x:=V 〈x1:=A1〉···〈xn:=An〉〉 ∈ I(τ), with rule (sat-comp). Now
V 〈x1:=A1〉···〈xn:=An〉 ∈ I(σ), by induction hypothesis applied to Γ � V : σ, and so
with the induction hypothesis applied to Γ, x : σ � U : τ , one gets the wished result.

• (drop):
Γ � U : τ ∆ � V : σ x /∈ av(U)

Γ � U〈x:=V 〉 : τ
By induction hypothesis U〈x1:=A1〉···〈xn:=An〉 ∈ I(τ) so, as by induction hypothe-
sis V ∈ I(σ) ⊆ N by the inclusion lemma B.9 and x /∈ av(U), with rule (sat-gc),
U〈x:=V 〉〈x1:=A1〉···〈xn:=An〉 ∈ I(τ).

Q.E.D.

Corollary B.12:
Any Λx-term typable in Fx is strongly normalizing.
Proof.
Just consider the N -interpretation identically equal to N on all type variables. By the ade-
quation lemma B.11, any typable term belongs to the image of its type through this interpre-
tation, and by the inclusion lemma B.9 this image is contained in N . Q.E.D.

R



Part IX

Bibliography

References

[1] COQUAND (Thierry) & HUET (Gérard), « The Calculus of Constructions ». Information
and Computation, 76(2):95–120, .

[2] GIRARD (Jean-Yves), Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur. Thèse de doctorat, Université Paris VII, juin .

[3] BARENDREGT (Hendrik), « Lambda calculi with types ». In S. ABRAMSKY, D.M. GAB-
BAY, & T.S.E. MAIBAUM, éd., Handbook of Logic in Computer Science, volume 2 (Back-
ground: Computational Structures), p. 117–309. Oxford University Press, .

[4] ABADI (Martin), CARDELLI (Luca), CURIEN (Pierre-Louis) & LÉVY (Jean-Jacques), « Ex-
plicit substitutions ». In 17th ACM Symposium on Principles of Programming Languages,
San Francisco, California, U.S.A. (actes), p. 31–46, San Francisco, California, U.S.A., .
ACM.

[5] LESCANNE (Pierre), « From λσ to λv: a journey through calculi of explicit substitu-
tions ». In 21st ACM Symposium on Principles of Programming Languages, Portland, Oregon,
U.S.A. (actes), p. 60–69, Portland, Oregon, U.S.A., . ACM.

[6] BLOO (Roel) & ROSE (Kristoffer Høgsbro), « Preservation of strong normalisation in
named lambda-calculi with explicit substitution and garbage collection ». p. 62–72,
.

[7] DOUGHERTY (Dan) & LESCANNE (Pierre), « Reduction, intersection types and explicit
substitutions ». Mathematical Structures in Computer Science, 13(1):55–85, .

[8] VESTERGAARD (Rene) & WELLS (Joe B.), « Cut rules and explicit substitutions ». Math-
ematical Structures in Computer Science, 11(1):131–168, .

[9] BLOO (Roel), « Pure type systems with explicit substitution ». Mathematical Structures
in Computer Science, 11(1):3–19, février .

[10] LENGRAND (Stéphane), LESCANNE (Pierre), DOUGHERTY (Dan), DEZANI-
CIANCAGLINI (Mariangiola) & BAKEL (Steffen van), « Intersection types for explicit
substitutions ». Information and Computation, 189(1):17–42, .

[11] DI COSMO (R.) & KESNER (D.), « Strong normalization of explicit substitutions via cut
elimination in proof nets ». p. 35–46, Warsaw, Poland, . Warsaw University, IEEEC
Society Press.

[12] DI COSMO (Roberto), KESNER (Delia) & POLONOVSKI (Emmanuel), « Proof nets and
explicit substitutions ». Mathematical Structures in Computer Science, 13(3):409–450, juin
.



[13] HERBELIN (H.), « Explicit substitutions and reducibility ». Journal of Logic and Compu-
tation, 11(3):29–449, .

[14] MUÑOZ (César), « Dependent types and explicit substitutions ». Mathematical Structures
in Computer Science, 11(1):91–129, .

[15] BLOO (Roel), Preservation of Termination for Explicit Substitution. Proefschrift ter
verkrijging van de graad van Doctor, Technische Universiteit Eindhoven, octobre .

[16] GIRARD (Jean-Yves), LAFONT (Yves) & TAYLOR (Paul), Proofs and Types. Cambridge
University Press, .

[17] KERVARC (Romain), « Substitutions explicites dans le λ-cube ». Mémoire de DÉA, École
normale supérieure de Lyon, juillet . LIP DÉA Report Nr. 2002-04.

[18] BARENDREGT (Hendrik), Lambda-calculus, its Syntax and its Semantics. Coll. « Studies
in Logic and the Foundation of Mathematics », Elsevier Science Publishers B.V. (North
Holland), Amsterdam, .

[19] KRIVINE (Jean-Louis), Lambda-calcul, types et modèles. Coll. « Études et recherches en
informatique », Masson, Paris, .


