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This report presents our work for the design, model and implementation of a 3D air ow s i m ulation software using the singularity method. The aim was the computation of the performance parameters of a wing at di erent s p e e d s ( b e t ween 10-60 km/h) with perfect uncompressible uid and permanent o w h ypothesis in order to help out with the design of paragliders. Sections 1 and 2 presents the model, design and the implementation and the results we obtained are in section 3.

condition, due a Joukowsky, et bien connue en ecoulement bidimensionnel parfait incompressible (continuit e des pressions et des vitesses au bord de fuite), traduisant le fait que le uide ne contourne pas le bord de fuite, mais se raccorde bien derri ere celui-ci. Pour traduire cette condition (Fig. 1), on intercale une petite facette entre le bord de fuite et le sillage, dans le plan bissecteur pour chaque bande, et on lui applique une condition de glissement. Cette facette porte la même densit e ; k de doublets normaux que la facette du sillage pour la bande k. P ar la suite, nous appellerons sillage ( ) l'ensemble des facettes que nous cr eons derri ere le bord de fuite.
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Fig. 1 -Bord de fuite et sillage de l'aile Nous consid erons donc toujours un probl eme de Neumann ext erieur, mais sur un domaine l eg erement modi e ( a j o u t a l'aile de facettes de Joukowsky), a n d'estimer la RFA. On conserve l e s m êmes conditions aux limites, mais sur la fronti ere du nouveau domaine. De plus ce domaine comporte des densit es surfaciques de doublets dans son int erieur (sillage), contrairement au probl eme de Neumann ext erieur de base (cas bidimensionnel sans sillage, par exemple).

Cette m ethode, appel ee m ethode des singularit e s , a et e d evelopp ee dans les ann ees 60-70. Les principes de celle-ci ont et e formalis es par J.L. Hess et A.M.O. Smith 4]. A l' epoque, cette m ethode etait la plus accessible pour les calculs a erodynamiques en trois dimensions, car elle utilise une r epartition surfacique des inconnues, ce qui conduit a une r eduction consid erable des temps de calcul par rapport a u n e m ethode totalement tridimensionnelle. Elle etait cependant exclusivement r eserv ee aux grands groupes de l'a eronautique (Mac Donnell Douglas,Boeing), qui poss edaient les ordinateurs les plus puissants. Avec l'augmentation des moyens de calcul, on lui a ajout e d i v erses am eliorations, comme un mod ele de couche limite ou de sillage adaptatif. Ce dernier permet de d e nir un sillage suivant p l u s d element les lignes de courants r e e l l e s . C e m o d ele est meilleur que celui que nous venons de d ecrire, mais il n ecessite un processus it eratif coûteux en temps. Dans les ann ees 80, cette m ethode a commenc e a être utilis ee par des equipes aux moyens plus r eduits, et son champ d'application s'est ainsi etendu (application a la construction navale, a la conception des voitures de course, et même au d eveloppement du TGV) [START_REF] Hess | Calculation of Potentiel Flow about Arbitrary Bodies[END_REF][START_REF] Bousquet | M ethode des singularit es[END_REF].

Aujourd'hui, elle est a l a p o r t ee des micro-ordinateurs. Une petite entreprise peut donc l'utiliser, sans investir dans un mat eriel sp eci que et coûteux.

M ethode des singularit es 1.2.1 Mise en equation

Pour un ecoulement quelconque, les equations de quantit e de mouvement e t d e c o n tinuit e prennent l a forme (avec constant) : 2 > > > > < > > > > : d ; ! V dt = @ ; ! V @t + ;! rot ; ! V ^; ! V + ;;! grad 0 @

; ! V 2 2 1 A = ; ;;! grad p + ; ! F div ; ! V = 0

Si les forces massiques d erivent d ' u n p o t e n tiel A tel que ; ! F = ;;! gradA, et si, a l'instant initial le rota- tionnel du vecteur vitesse est nul, la nullit e du rotationnel reste acquise aux instants ult erieurs (th eor eme de Lagrange). Dans ces conditions, si on d esigne par le potentiel des vitesses (tel que ; ! V = ;;! grad ) alors l' equation de continuit e prend la forme : = 0 (1) On peut remarquer que dans l' equation de quantit e d e m o u v ement, les d eriv ees spatiales et temporelles commutent, elle prend donc la forme:

;;! grad 0 @ @ @t + ; ! V 2 2 + p ; A 1 A = ; ! 0 D'o u, apr es int egration, l' equation de Bernoulli g en eralis ee : p = ; @ @t ; ; ! V 2 2 + A + F(t) On se place dans le cas d'un ecoulement stationnaire, les d eriv ees partielles par rapport au temps sont donc nulles et la fonction F est une constante :

p = ; ; ! V 2 2 + A + cste
On suppose que les forces massiques se r eduisent aux forces de pesanteur, on a donc A = ;gy, e n supposant l'acc el eration de la pesanteur constante, parall ele et de direction oppos ee a l'axe Oy. ;! V M = ;;! grad( M ) M : potentiel au point M: Si on se place dans le cas ou l' ecoulement est parall ele au plan de sym etrie de l'aile avec une incidence i

et une norme V 1 : M = (V 1 cos i) x + ( V 1 sin i) y | {z } potentiel dû a l 0 ecoulement infini + M |{z} potentiel de perturbation
Le probl eme revient donc a trouver un potentiel harmonique ( ) dans D e avec comme conditions aux limites:

{ Une condition de glissement sur l'aile et les facettes de Joukowsky. { A l'in ni, le potentiel global doit être egal a celui engendr e par l' ecoulement permanent, le potentiel de perturbation doit donc être nul. D'o u l'expression nale du probl eme a r esoudre, qui est en fait un probl eme de Neumann ext erieur :

8 > > > > > > > < > > > > > > > :
= 0 d a n s D e @ @ = ; ;! V 1 :~ sur l'aile et les facettes de Joukowsky avec ~ normale ext erieure a l'aile lim M!1 = 0 1.2.2 R esolution int egrale du probl eme La solution de notre probl eme de Neumann ext erieur peut s' ecrire comme le produit de convolution de la distribution solution de base de l' equation harmonique avec la somme de deux distributions surfaciques de support inclus dans la fronti ere de D e (une de simple couche et une de double couche ), soit : 

P = ; 1 4 ZZ S M 1 k ;;! MPk dS M ; 1 4 ZZ S M @ @ M 1 k ;;! MPk ! dS M (2) 
Pour traduire la condition de glissement sur l'aile, il nous faut exprimer la vitesse en un point de celle-ci. I l a et e d emontr e 1] que la condition de glissement sur l'aile se traduit par :

; Z S M 4 @ @ P 1 r MP dS M + P 2 + Z S M 4 @ @ P @ @ M 1 r MP dS M = ; ;! V 1 : ; ! P (4)

Discr etisation des equations int egrales

L'aile est d'abord divis ee en bandes, et chaque bande en facettes (Figure 2). Sur chaque facette de l'aile, on suppose que la distribution de sources et de doublets normaux est constante.

Si l'on e ectue un bilan des inconnu e s e t d e s equations dont nous disposons, nous remarquons que nous avons un d e cit d' equations. En e et, l'aile comportant K N facettes, nous avons donc autant d e distributions de sources a d eterminer. En consid erant aussi les K facettes de Joukowsky, nous avons K(N +1) distributions de doublets normaux inconnues. Ceci nous donne donc K(2N +1) inconnues. En ce qui concerne les equations, nous disposons de K(N + 1) conditions de glissement, qui fournissent a u t a n t d ' equations. Il nous manque donc KN equations. Comme nous disposons d'une r epartition de sources sur l'aile pour r ealiser les conditions aux limites, nous avons la libert e d'imposer la densit e de doublets normaux sur l'aile selon une loi simple li ee a la circulation ; k 1]. Nous choisissons pour chaque bande k, la densit e suivante pour une facette j : k j = F(k j) ; k O u F est la distance entre le bord d'attaque et la projection du point d e c o n trôle de la facette sur la corde locale, divis ee par 2 fois la corde locale. F etant une fonction positive pour les facettes de l'extrados et n egative pour les facettes de l'intrados (Figure 3).
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x Cord e loca le, c F(k,j)= Fig. 3 -Fonction F(k,j) Nous avons maintenant K(N + 1) inconnues, autant q u e d ' equations. Il existe d'autres m ethodes, notamment l a m ethode dite de minimisation 7], dont le principe est de minimiser les variations de distribution d'une facette a l'autre d'une même bande. Cette m ethode est l eg erement meilleure, pour un nombre de facettes donn e, mais elle augmente le nombre d' equations au lieu de r eduire le nombre d'inconnues, ce qui double la taille du syst eme. Cette perte de temps engendr ee ne nous a pas paru justi ee, nous ne retenons donc pas cette m ethode. On pourrait aussi estimer la r epartition de doublets normaux sur chaque bande grâce a un calcul bidimensionnel. Mais cette m ethode oblige a i m p l ementer un code 2D, et elle ne garantit pas de meilleurs r esultats.

Les facettes de Joukowsky ont une longueur de 0:5% de corde locale et les facettes du sillage 10 fois la corde locale (Fig 4 et 5). D'apr es 1], une longueur de 3 a 4 fois la corde locale devrait être su sante, mais dans notre cas, apr es plusieurs essais, nous avons remarqu e que la RFA v arie encore quand on augmente la longueur du sillage. Il faut atteindre environ 6 fois la corde locale pour obtenir la convergence. Par prudence, nous avons x e la taille a 10 fois la corde locale pour pallier a d ' eventuelles formes de voiles qui n ecessiteraient des sillages plus longs. Nous pensons que cette di erence de r esultats vient du fait que l'aile a un fort caract ere 3D, dû au fait qu'elle n'est pas plane, mais poss ede un di edre important (les bords de l'aile sont v erticaux !) Si on note i j et i j , respectivement, les in uences en termes de distributions unitaires de sources et de doublets normaux de la facette j sur le point d e c o n trôle de la facette i suivant la vitesse normale a la facette, l' equation 4 discr etis ee donne : 2 Impl ementation L'impl ementation peut se d ecomposer en quatre parties ind ependantes. Il est tout d'abord n ecessaire de pouvoir evaluer l'in uence d'une facette portant u n e r epartition de sources et de doublets normaux en un point de l'espace (2.2).Dans un deuxi eme temps, on remplit la matrice et le second membre du syst eme (2.3). La matrice repr esente les interactions des facettes les unes sur les autres. Le syst eme etant d etermin e, on le r esout a l'aide d'une routine standard (2.4). Une fois les distributions connues, les vitesses sont evalu ees aux di erents points de contrôle de l'aile grâce aux formules d'in uences (2.5). Puis, a l'aide de la solution, des variables caract eristiques de l' ecoulement s o n t c a l c u l ees (2.6).

8P i 2 (s ) X P j 2s j6 =i i j Pj + Pi 2 + X Pj2(S ) i j j = ; ;! V 1 : ;! Pi (5) 
2.1 Moyens mat eriels et logiciels de d eveloppement L'int egralit e d u d eveloppement d u c o d e a et e e ectu ee au LIP (Laboratoire de l'Informatique du Parall elisme) a l'ENS (Ecole Normale Sup erieure) de Lyon, sur des stations de travail SUN (SPARC 5) fonctionnant sous un syst eme d'exploitation Unix (SunOS). Le langage de programmation retenu est le C, car c'est celui qui nous donne la plus grande portabilit e e n tre un PC et une station de travail, le Fortran ou le Pascal etant mal repr esent es sur l'une ou l'autre de ces machines. Pour rendre le code le plus evolutif possible, la parall elisation sur un r eseau de PC etant e n visageable, le C++ a et e ecart e car il n'est pas disponible a l'heure actuelle sur la plupart des calculateurs parall eles. Le portage sur PC ne sera pas evoqu e, car il s'e ectuera apr es la r edaction de ce document.

Calcul des in uences dues aux facettes

La fonction pr epond erante dans ce code, est la suivante : \Savoir d eterminer le potentiel et la vitesse cr e es en un point par une facette du maillage en fonction de sa densit e de sources et de sa densit e de doublets normaux".

Il faut noter que ces deux calculs sont simpli e lorsque les quadrilat eres formant le maillage surfacique sont plans. Or, le maillage que nous fournit ITV n'est pas compos e de facettes exactement planes. Le potentiel cr e e par un el ement vrill e etant di cile a exprimer, il nous faut le transformer en el ement plan, par projection de ses quatre sommets dans le plan m edian. Cette transformation de la surface initiale en un ensemble de facettes planes, même disjointes, se r ev ele meilleure pour la mise en uvre de la m ethode que l'utilisation d' el ements triangulaires, laquelle n'assure pas g en eralement l a c o n tinuit e de la direction normale 1]. Elle a par contre l'inconv enient de demander quatre fois plus de points pour d ecrire une voile, les facettes n'ayant plus de sommets communs. Mais ceci n'est pas gênant, car il ne faut qu'environ 1000 points (c.-a-d. 3000 r eels ou 12 Kilo octets en simple pr ecision) pour d ecrire le maillage initial.

Dans le cas particulier d'une facette a c o n tour carr e, portant une distribution de sources constante, nous avons e ectu e le calcul du potentiel engendr e e n u n p o i n t de l'espace. Ce calcul correspond aux formulations plus compl etes dues a G. Coulmy 8], que nous rappelons maintenant.

Champ g en er e par un polygone plan avec une distribution de sources constante

Le potentiel cr e e par une surface S portant une distribution de sources constante q est donn e par la formule g en erale suivante: q = ;1 

8 > > > > > > > < > > > > > > > : 0 x q = ; 1 4 (S 12 Q 12 + S 23 Q 23 + S 34 Q 34 + S 41 Q 41 ) 0 y q = 1 4 (C 12 Q 12 + C 23 Q 23 + C 34 Q 34 + C 41 Q 41 ) 0 z q = 1
4 sign (z) ( ; J 12 ; J 23 ; J 34 ; J 41 )

On peut remarquer que 0 z q tend bien vers q 2 quand P tend respectivement v ers les faces sup erieures ou inf erieures de la facette.

Champ g en er e par un polygone plan avec une distribution de doublets normaux constante

Le champ cr e e par une r epartition constante de doublets normaux sur le polygone ABCD (Fig. 7) est identique a celui engendr e par un anneau de tourbillons form e p a r ;! AB, ;! BC, ;! CD, ;! DA) 1 ]. La circulation de ces tourbillons etant i d e n tique a , le gradient d u c hamp peut donc être evalu e en appliquant a ces quatre tourbillons, la formule de Biot-Savart.

La vitesse induite par le segment ;! AB au point P est donc :

;

! V = 1 4 ;! AB ^;! BP j ;! AB ^;! BPj 2 2 4 ;! AB 0 @ ;! AP j ;! APj ; ;! BP j ;! BPj 1 A 3 5
Quant au potentiel induit, il se pr esente sous la forme suivante :

= ; 1 4 Z S @ @z 1 r dS
Il se d eduit donc facilement, grâce a l'expression de 0 z induit par une r epartition de sources. Le remplissage de la matrice du syst eme se fait a partir de la formule 5. Si l'on note K le nombre de bandes total de l'aile, et N le nombre de facettes par bande, l' equation devient, pour tout P de s :

K X k=1 N X j=1 | {z } avec P6 2fPk Pjg P k j k j + P 2 + K X k=1 N+2 X j=1 P k j k j = ; ;! V 1 : ; ! P
L' aile etant s y m etrique, les r epartitions de sources et de doublets sur deux facettes sym etriques seront egales. Le syst eme d' equations peut donc être r eduit sur une demi-aile, et sa taille est alors divis ee par 4 ce qui est loin d'être n egligeable pour les coûts de calcul. En notant sym(k j) la facette sym etrique de (k j), on obtient : ; k = ; ;! V 1 : ; ! P [START_REF] Katz | Low-speed A erodynamics From Wing Theory to Panel Methods[END_REF] La matrice du probl eme est donc de la forme:

0 B B B B B B B B B B B B B B B @ 1 2 1 1 1 2 : : : 1 1 K=2 N N+2 X j=1 1 1 1 j + 1 1 sym(1 j) F 1 j : : : N+2 X j=1 1 1 K=2 j + 1 1 sym(K=2 j) F K=2 j . . . . . . . . . . . . . . . . . . k 0 j 0 1 1 k 0 j 0 1 2 : : : k 0 j 0 K=2 N N+2 X j=1 k 0 j 0 1 j + k 0 j 0 sym(1 j) F 1 j : : : N+2 X j=1 k 0 j 0 K=2 j + k 0 j 0 sym(K=2 j) F K=2 j . . . . . . . . . . . . . . . . . . K=2 N+1 1 1 K=2 N+1 1 2 : : : K=2 N+1 K=2 N N+2 X j=1 K=2 N+1 1 j + K=2 N+1 sym(1 j) F 1 j : : : N+2 X j=1 K=2 N+1 K=2 j + K=2 N+1 sym(K=2 j) F K=2 j 1 C C C C C C C C C C C C C C C A
Les lignes de la matrice parcourent les points de contrôle sur l'aile et , s o i t K 2 (N + 1) lignes. Les KN 2 premi eres colonnes repr esentent l'in uence de l'aile en terme de sources sur les points de contrôle. En n, l'in uence, en terme de doublets, de l'aile et du sillage sur les points de contrôle est donn ee par les K 2 derni eres colonnes.

Pour une voile classique, par exemple une MERAK, K = 4 4 e t N = 40. La matrice est donc de taille 902 902 ce qui repr esente 3.25 Mo de m emoire en simple pr ecision.

Le second membre est quant a lui beaucoup plus simple: avons choisi une routine de la biblioth eque d'outils math ematiques LAPACK 9], disponible au LIP, utilisant cette m ethode. Pour des raisons de commodit e, la matrice est stock ee dans un vecteur de longueur K 2 (N + 1) 2 =4, ce qui permet une allocation dynamique des donn ees. La fonction de r esolution etant impl ement ee en Fortran, il faut prendre quelques pr ecautions pour son utilisation, notamment pour le remplissage de la matrice. Bien que le langage de programmation soit le C, elle doit être d ecrite par colonnes, pour optimiser les acc es en Fortran dans la fonction de r esolution. De plus tous les param etres doivent être pass es par adresses.

0 B B B B B B B B B B B B B B @ ; ;! V 1 : ; ! 1 1 . . . ; ;! V 1 : ; ! 1 N+1 . . . ; ;! V 1 : ; ! k j . . . ; ;! V 1 : ; ! K=2 N+1 1 C C C C C C C C C C C C C C A

Calcul des vitesses

La vitesse de l' ecoulement e n u n p o i n t de l'espace est fonction de la r epartition des sources et des doublets normaux (Cf. paragraphe 2.2).

Vitesse due aux sources

Pour calculer la contribution des sources a la vitesse en un point il su t de sommer toutes les contributions des facettes de l'aile. Ces contributions ont et e calcul ees dans la section 2.2.1.

Vitesse due aux doublets

La contribution des doublets est un peu plus complexe. En e et la composante normale de la vitesse par rapport a la facette in uente, obtenue en appliquant (2.2.2), est correcte. Par contre, les vitesses tangentielles ne sont pas parfaitement utilisables 1]. Nous avons cependant tenu a mettre en evidence ce probl eme. Di erents tests sur des facettes a g eom etries diverses ont et e e e c t u es a n de comparer les vitesses tangentielles calcul ees par G. Coulmy 8 ] et les vitesses d eduites du potentiel par di erences nies. Nous n'avons trouv e aucun cas de discordance entre les r esultats. Nous nous en sommes cependant t e n us aux calculs par di erences nies.

Le calcul des vitesses tangentielles se d ecompose donc en deux etapes : { Le calcul du potentiel engendr e par les doublets aux di erents points de contrôle.

{ L a d etermination des vitesses tangentielles a l'aile par di erences nies. On note ; ! u n les vecteurs unitaires partant d u p o i n t de contrôle vers l'un des points de contrôle voisins et ; ! t 1 , ; ! t 2 deux vecteurs unitaires orthonorm es tangents a l'aile (Fig. 8). On a alors le syst eme suivant : 8 > > > < > > > : @ @u m = @ @t 1

;! u m : ; ! t 1 + @ @t 2 ;! u m : ; ! t 2 @ @u n = @ @t 1 ; ! u n : ; ! t 1 + @ @t 2 ; ! u n : ; ! t 2 dont l a r esolution donne :

8 > > > > > > > < > > > > > > > : @ @t 1 = 1 D @ @u m
; ! u n : ; ! t 2 ; @ @u n ;! u m : ; ! t 2 @ @t 2 = 1 D ; @ @u m ; ! u n : ; ! t 1 ; @ @u n ;! u m : ; ! t 1 D = ;! u m : ; ! t 1 ; ! u n : ; ! t 2 ; ;! u m : ; ! t 2 ; ! u n : ; ! t 1 En a ectant successivement a m et n les valeurs 1 2 3 4 e t 2 3 4 1 on obtient quatre valeurs pour les vitesses tangentielles dont on prend la moyenne 1] (Fig. 8). La projection de la RFA sur le vecteur directeur de l' ecoulement in ni nous donne R x , l a t r a ^ n ee de l'aile, de laquelle on d eduit le coe cient C x .

{ Centre de pouss e, CP :

Il est possible de d eterminer le cent r e d e p o u s s ee de la voile, qui est l'intersection de la droite de moment n ul pour la RFA avec la corde centrale (car l'aile est sym etrique). La connaissance du lieu du cent r e d e p o u s s ee permet entre autre le positionnement du pilote, pour assurer un equilibre correct.

{ Incidence globale, i :

C'est l'angle entre l' ecoulement in ni et la corde centrale de l'aile.

R esultats locaux

Les r esultats pr ec edents (la portance, la RFA...) caract erisent l'aile, mais ne donnent que peu d'informations sur l'in uence de la g eom etrie de l'aile.

{ R esultante des forces a erodynamiques locale, RF A locale :

Nous avons calcul e p o u r c haque bande la RF A locale , uniquement e n g e n d r ee par les forces agissant s u r celle-ci. On l'exprime dans le rep ere propre de la bande (Fig. 9). On peut alors d e nir un centre de pouss ee pour chaque bande, de la même mani ere que pour le cas global.

{ Coe cient de pression, C P :

La repr esentation graphique de celui-ci fournit des informations importantes sur les performances d'un pro l. Lorsque le C P vaut 1 en un point du pro l cela signi e que la vitesse de l' ecoulement est nulle. Le point correspondant est le point d ' a r r êt, l a o u la pression est la plus importante. C'est une information qui a son importance dans la conception d'un parapente, elle permet en particulier de positionner la bouche de gon age du pro l au bon endroit.

{ Portance et tra^ n ee locales, R z et R x :

Une portance ainsi qu'une tra^ n ee locales sont calcul ees. Pour cela, on projette la RFA locale et le vecteur directeur de l' ecoulement in ni dans le plan m edian de la bande (Fig. 9). Les R x et R z locaux sont alors d e nis de la même mani ere que pr ec edemment, par rapport a ces deux vecteurs. On peut comparer la somme des R z locaux avec le R z global et ainsi estimer la perte de portance due au di edre de la voile.

{ Coe cients de portance et de tra^ n ee locaux, C z et C x :

Pour d eterminer les C x et C z locaux, nous avons choisi la vitesse de l' ecoulement in ni. Cela permet de tenir compte des pertes dues a l ' ecoulement l a t eral.

{ Incidence locale, i : L'incidence locale est calcul ee. C'est l'angle entre la projection de l' ecoulement in ni dans le plan m edian (Fig. 9 Voici un exemple d'une sortie du programme pour une MERAK 31 volant a 1 0 m=s avec une incidence de 6.5 degr es. Cx total = 0.0190616 (surface projet ee cumul ee). Centre pouss ee global : x = -0 . 1 1 9 9 4 9 y = 0 . 2 0 1 5 1 4 s o i t 2 8 . 3 8 % d e c o r d e c e n t r a l e . Surface projet ee cumul ee : 31.7402 m.

Coût en temps

Soit n, l e n o m bre de facettes du maillage. Le coût en temps de la r esolution du syst eme, a l'aide de la routine de LAPACK, est en n 3 . Les calculs d'in uence, qui constituent l'essentiel de l'activit e du processeur, n ecessitent un parcours de toutes les facettes de l'aile, et sont donc en n 2 .

Les mesures de performances en temps ont et e e e c t u ees a l'aide d'ailes de pro l NACA sur une station de travail SPARC 10 (Fig. 10). La complexit e apparente en n 2 fournie par les simulations s'explique par le coût relatif faible de l'inversion de matrice par rapport a son coût de remplissage pour la taille des maillages utilis es dans notre application.

Validation et R esultats

Au cours du d eveloppement du code, que nous appellerons Th es ee (en r ef erence a Icare, code de CAO d'ITV), nous avons e ectu e quelques tests simples, permettant d e v alider nos impl ementations (3.1). Ensuite, nous avons cr e e des maillages d'ailes a r epartition elliptique, pour plusieurs allongements (3.2), a n de comparer nos r esultats a l a t h eorie de l'aile elliptique 10]. L'allongement le plus grand nous permet de consid erer l'envergure comme in nie. On peut donc comparer les valeurs de Cp sur la bande centrale avec celles donn ees par les codes 2D d'ITV (3.3). Il nous reste ensuite a v eri er la coh erence des r esultats pour un parapente, compte tenu de notre connaissance actuelle de l'a erodynamique du parapente (3.4).

Validations des calculs internes

A n de remplir la matrice du probl eme, et ensuite de calculer la vitesse autour du pro l, de nombreux calculs de potentiel et de vitesse cr e es en un point par une facette sont n ecessaires. Il est donc important d e tester le plus compl etement possible les fonctions e ectuant ces calculs. Nous avons utilis e deux m ethodes de validation.

Calcul par int egration num erique

Le potentiel cr e e par une surface S portant une distribution de sources constante q s' ecrit : = ;q 4 Z S dS r Par d erivation, on obtient les trois composantes de la vitesse induite en un point M (x y z) :

V x = q 4 Z S (x ; )dS r 3 V y = q 4 Z S (y ; )dS r 3 V z = q 4 Z S zdS r 3
O u r 2 = ( x ; ) 2 + ( y ; ) 2 + z 2 :

On suppose, pour l' ecriture de la vitesse, que la facette inductrice appartient a u p l a n ( Oxy), et donc que dS = dxdy. On ecrit aussi sous forme int egrale le potentiel cr e e par une surface S portant une distribution de doublets constante ;, ainsi que les composantes de la vitesse induite, avec : = ;; ; f ; x 1 i j y 1 i j s 1 i j + f ; x 2 i j y 2 i j s 2 i j O u x 1 i j et y 1 i j sont les coordonn ees du centre de gravit e d'un triangle appartenant a l ' el ement (i,j), et s 1 i j son aire. Il en va d e m ême pour x 2 i j , y 2 i j et s 2 i j , qui sont rattach es au même el ement, mais a l'autre triangle. Cette m ethode d'int egration simple nous permet d'obtenir les valeurs du potentiel et de la vitesse en tout point de l'espace, engendr es par une facette plane de (Oxy), s'apparentant a celle de la gure 11. Nous pouvons ensuite les comparer a celles fournies par les fonctions du code. Nous avons choisi de les calculer sur une surface carr ee discr etis ee, appartenant au plan d' equation z = 0 :5 et situ ee au dessus de la facette (Figure 12). Les r esultats sont tout a fait satisfaisants (Table 1).

Calcul par di erences nies

A n de v eri er la coh erence des fonctions de calcul du code, nous avons impl ement e un petit programme qui calcule la vitesse, par di erences nies a l'aide du potentiel. Ainsi, pour un point M(x y z), on ecrit :

8 < : V (M) x = ( ( x + h y z) ; (x ; h y z)) =(2h) V (M) y = ( ( x y + h z) ; (x y ; h z)) =(2h) V (M) z = ( ( x y z + h) ; (x y z ; h)) =(2h)
Ainsi, on obtient les composantes de la vitesse, a l'aide de la fonction calculant le potentiel. On peut ensuite les comparer a celles donn ees par la fonction calculant la vitesse.

Ces r esultats sont egalement satisfaisants (Table 2). 

Comparaison avec la th eorie

A n de v eri er le bon comportement du code, nous avons e ectu e des tests sur des ailes a r epartition elliptique ( gure 13). La th eorie de Prandtl 10] p r evoit les relations suivantes :

C x = C 2 z (8) i = C z O u
est l'allongement e t i l'angle induit. Ainsi, vu du bord d'attaque l' ecoulement a une incidence de : i = i 0 + C z et non plus i 0 . N o u s s a vons egalement que le coe cient de portance (C z ) a u n c o m p o r t e m e n t lin eaire en fonction de l'incidence 10], avec un gradient de portance ( @C z @i ) t r es peu d ependant du pro l de l'aile. Un simple changement d e v ariable nous permet donc d'obtenir (sachant q u e 1 @C z @i ' 2) :

C z = C z1 1 + 2 (9) 
Pour une incidence de 5 et une vitesse de l' ecoulement in ni de 10 m=s, nous obtenons : C x C z C 2 z =C x 5 0.0217 0.5615 14.53 15.70 20 0.0123 0.7819 49.70 62.80 La relation 8 est donc approximativement v eri ee, du moins pour un allongement d e 5 . D es l'allongement de 20, la formule n'est plus correctement suivie. Nous pensons donc que notre code surestime l eg erement l a tra^ n ee. Ses r esultats sont cependant satisfaisants pour un parapente, dont l'allongement est environ de 5. Soit une erreur de 7:2% pour un allongement de 5 et de 2% pour un allongement de 20. La th eorie de Prandtl n'est valable que pour des allongements su samment grands (> 4) 10]. On peut donc consid erer l'allongement de 5 comme etant une valeur limite pour la v eri cation. La relation 9 est donc assez bien v eri ee. 

Comparaison avec les r esultats bidimensionnels

Bien que les r esultats que nous obtenons semblent corrects, il nous faut trouver une r ef erence a n de les v eri er quantitativement. Malheureusement n o u s n ' a vons pas r eussi a obtenir de r esultats en trois dimensions dans le domaine public. Nous avons donc dû nous contenter des r esultats en deux dimensions fournis par les codes d'ITV (Vortex 11], Panda). Pour obtenir la comparaison la plus juste possible entre les trois codes, nous devons utiliser un pro l d e ni analytiquement. En e et, les trois codes n'utilisent p a s t o u t a f a i t l e même format de description du pro l, et il faut être capable de fournir, a c hacun d'eux, des points de contour se situant tous sur le même pro l. Dans ces conditions, notre choix s'est port e sur un pro l de type NACA 12]. Le NACA 2415 est par exemple un pro l type de parapente. A n de comparer des r esultats 3D a d e s r esultats 2D, nous devons utiliser une voile de pro l NACA 2415, d'allongement su samment important pour annuler les e ets tridimensionnels. Les r esultats obtenus autour du pro l central de l'aile, pourront alors être consid er es comme bidimensionnels, et compar es aux r esultats des codes 2D.

On e ectue cinq simulations pour chaque code, aux incidences 0, 2.5, 5, 7.5 et 10 degr es. Les C p sont calcul es sur le pro l, et ramen es sur une corde de 1 m. La th eorie pr evoit que le C z pr esente une evolution rectiligne dans une gamme d'incidences mod er ees 10], ce que nous observons ( gure 16). Si notre mod ele avait permis la mod elisation du d ecollement, nous aurions pu pousser les tests plus loin. Nous aurions alors observ e une diminution du C z a partir d'une certaine incidence due a l a c hute de la d epression sur l'extrados engendr ee par le d ecollement ( d ecrochage).

La valeur de l'incidence de portance nulle est n egative, on peut en conclure que notre pro l est cambr e 10].

La repr esentation du C x en fonction du C z pour di erentes incidences (Fig. 17) s'appelle la polaire de l'aile (nom donn e p a r E i e l ) . E n j o i g n a n t u n p o i n t M de la polaire a l'origine de coordonn ees (0 0), on d e t e r m i n e u n v ecteur ;;! OM qui repr esente (au facteur 1 2 V 2 1 S pr es) la grandeur et la direction de la RF A a l'incidence correspondante. En e et RF A 2 = R 2 z + R 2 x = 1 2 V 2 On a repr esent e les courbes de C P pour la bande 22 de la voile (bande quasi centrale) pour di erentes incidences ( g. 18). On remarque que c'est l'extrados qui contribue enti erement l e p l u s s o u v ent a la portance de l'aile. L'intrados ne devient porteur (C P positif dans le cas de l'intrados) qu' a partir d'une incidence de 7:5 , a vant celle-ci l'aile est aspir ee vers le bas. On peut egalement noter un point d'arrêt (C P = 1 ) t r es proche du bord d'attaque.

Conclusion

Nous avons d ecrit dans ce rapport la conception et la mise au point d'un logiciel de simulation d' ecoulement de uide parfait autour d'un pro l.

Les contraintes en temps de d eveloppement et de calcul (PCs) sont atteintes et nous pr esentons les r esultats d'exploitation correspondant a u n c a s r eel dans la soci et e ITV WIND CONCEPT. L'utilisation de la m ethode des singularit es pour ce genre de probl emes ( uides parfait, faible vitesse) est ainsi valid e.

Nos travaux futurs concernent la parall elisation d'un tel code pour son utilisation interactive lors du ra nement du "maillage" ou de la r esolution du probl eme inverse. 

  correspond a la pouss ee d'Archim ede, qui se compense avec le poids de l'air contenu d a n s l a voile. Cette consid eration nous permet de nous ramener a des forces massiques nulles dans notre cas. Cette formule permettra de d e d u i r e l e c hamp de pression en fonction du champ de vitesse, puis l'e ort exerc e p a r le uide sur l'aile (de surface S) en utilisant : , le domaine ext erieur d elimit e par l'aile et son sillage. Le but du probl eme est donc de d eterminer le potentiel des vitesses en tout point M de D e .

M

  etant le point courant sur les surfaces S et (sillage de l'aile), P le point o u est evalu e le potentiel. En prenant le gradient de l'expression 2 et en compl etant du fait que les sources sont n ulles sur le sillage, la vitesse en un point P n'appartenant pas a S o u s ' ecrit :

Fig. 2 -

 2 Fig. 2 -Bande compl ete du maillage

Fig. 4 -Fig. 5 -

 45 Fig. 4 -Une demi-aile et son sillage ramen e a 200% de corde locale, vue de dessus

6 Fig. 6 -

 66 Fig.[START_REF] Bousquet | M ethode des singularit es[END_REF] -Sources r eparties sur un quadrilat ere plan Le plan (O x y) c o ncide avec le plan du polygone, lui-même d e ni par ses quatre sommets ( i i 0). Dans ces conditions, on peut ecrire : q = ; 1 4 ( 12 + 23 + 34 + 41 ; j zj )

Fig. 7 -

 7 Fig. 7 -Doublets a axe normal r epartis sur un quadrilat ere p l a n 2.3 Ecriture du syst eme

  P sym(k j) k j + P sym(P) sym(k j) k j = ; ;! V 1 : ; ! P De plus, sur une bande k, k j = F k j ; k ainsi: P sym(k j) k j + P sym(P)

  De même pour l'inconnue du probl eme : 0 B B B B B B B B B B B B B B B B B C C C C C C C C C C C C C C C A 2.4 R esolution Bien que la matrice ne soit pas a diagonale strictement d o m i n a n te, elle ne pose pas de di cult e p o u r l a r esolution. Cette matrice est malheureusement pleine et sans aucune sym etrie. Sa taille etant m o yennement importante, nous avons opt e pour une m ethode de r esolution utilisant l a d ecomposition LU qui est une m ethode directe et performante pour ce probl eme. Ainsi une m ethode it erative n'est pas n ecessaire. Nous

Fig. 8 -

 8 Fig. 8 -D etermination des composantes tangentielles de r 2.6 D etermination des param etres d'analyse En sortie, le programme nous fournit les vitesses de l' ecoulement e n c haque point d e c o n trôle. A partir de celles-ci, nous pouvons d eduire plusieurs param etres utiles dans l'exploitation des r esultats. 2.6.1 Informations globales d eduites de la vitesse { R esultante des forces a erodynamiques, RFA : La formule de Bernoulli (cf. 1.2.1) permet d'obtenir la pression, qui est calcul ee en chaque point d e contrô l e . A p a r t i r d e c e c hamp de pression, on peut en d eduire la R esultante des Forces A erodynamiques. Si on consid ere la pression P constante au voisinage de chaque facette dS, la force exerc ee sur cette facette vaut ; ! dF = ;(P ; P 1 ) ; ! dS. L e v ecteur ;;;! RFA est la somme de toutes ces contributions. C'est la force exerc ee par le uide sur l'aile. { Portance, R z , et coe cient de portance, C z : La projection sur la normale a l ' ecoulement fournit la portance R z , e t l e c o e c i e n t C z . { Tra^ n ee, R x , et coe cient d e t r a ^ n ee, C x :

  ) de la bande et sa corde locale. { Angle de d erapage (sweep) : C'est l'angle entre le plan m edian et l' ecoulement in ni, il permet donc de quanti er l' ecoulement lat eral. { dS S et corde locale c : Le rapport dS S en pourcentage (rapport des surfaces projet ees bande/aile) et la longueur de la corde moyenne d'une bande. Le plan m edian d'une bande est le plan passant par le milieu O du segment reliant le bord d'attaque des 2 pro ls et dirig e par les vecteurs ;! Ox (vecteur directeur de la corde locale) et ;! Oy (produit vectoriel du vecteur unitaire d e ni par les milieux des cordes des 2 pro ls avec le vecteur ;! Ox ). On d e nit par ailleurs ;

Fig. 9 -

 9 Fig. 9 -Repr esentation du plan m edian d'une bande.Voici un exemple d'une sortie du programme pour une MERAK 31 volant a 1 0 m=s avec une incidence de 6.5 degr es.

Fig. 10 -

 10 Fig. 10 -Temps de calcul en fonction de nombre d e f a c ettes par bande -Nombre d e b andes : 20 Ces temps ne sont d o n n es qu' a titre d'exemple, le probl eme associ e a u n e v oile compl ete prenant d e 8 a 10 minutes dans les mêmes conditions.La complexit e apparente en n 2 fournie par les simulations s'explique par le coût relatif faible de l'inversion de matrice par rapport a son coût de remplissage pour la taille des maillages utilis es dans notre application.

  facette etant pour nous un quadrilat ere, il est facile de la d ecouper en n n el ements, eux mêmes d ecompos es en deux triangles (par exemple T 1 et T 2 sur la gure 11). L'int egrale R S f(x y)dS est donc approch ee par :

  Fig. 11 -D ecoupage d'une facette

Fig. 12 -

 12 Fig. 12 -In uence d'une facette sur un plan a 0 . 5 m d e c ote

Fig. 13 -

 13 Fig. 13 -Demi-aile elliptique avec u n p r o l NACA 2415

Fig. 14 -Fig. 15 - 7 : 3 = 7 : 8 La

 14157378 Fig. 14 -Coe cients de pression pour un pro l NACA 2415 avec une incidence d e 7 . 5 d e gr es

3 . 4 .

 34 c o e c i e n t de viscosit e dynamique de l'air. De la même mani ere, on obtient les Reynolds pour tous les types de suspentes : Diam etre (mm) Reynolds 1ef erant au rapport 15], on remarque que ces Reynolds correspondent a u n C x suspentes de 1Tra^ n ee de forme et frottement Le pro l d'une MERAK se rapproche d'un NACA 2415. Notre code donne un C z local de 0.6 en moyenne sur les bandes pour une incidence de 6:5 . Les tables donnent alors C x forme frott = 0 :011 pour un etat de surface avec des irr egularit es d'environ 2 mm (ce qui correspond a ce que l'on peut trouver sur une surface de MERAK : coutures, renforts...). Soit: R x forme frott = 1:225 100 31:74 0Tra^ n ee induite C'est la tra^ n ee que donne Th es ee : R x induite = 3 :77 Kg En ajoutant toutes ces contributions, on obtient : R x = R x pilote + R x suspentes + R x forme frott + R x induit = 3:74 + 4:30 + 2:17 + 3:77 = 13:98 Kg Ce r esultat est tout a fait comparable au calcul th eorique : R x = 1 3 :8 Kg.

  Fig. 16 -C z en fonction de l'incidence p our une MERAK31 a 1 0 m / s , d ' a p r es Th es ee 8 < : 45:42N 828:93N 0 Soit RFA = 8 4 :62 Kg. Le rapport C z C x est egal a la nesse. Plus la nesse est grande, plus faible est la tra^ n ee pour une sustentation donn ee.On a repr esent e les courbes de C P pour la bande 22 de la voile (bande quasi centrale) pour di erentes incidences ( g. 18). On remarque que c'est l'extrados qui contribue enti erement l e p l u s s o u v ent a la portance de l'aile. L'intrados ne devient porteur (C P positif dans le cas de l'intrados) qu' a partir d'une incidence de 7:5 , a vant celle-ci l'aile est aspir ee vers le bas. On peut egalement noter un point d'arrêt (C P = 1 ) t r es proche du bord d'attaque.

Fig. 18 -

 18 Fig.17 -Cx en fonction de C z pour une MERAK31 a 10 m/s Liste des symboles utilis es C M Coe cient de moment C P Coe cient de pression C x Coe cient d e t r a ^ n ee C z Coe cient de portance D e Domaine ext erieur a l'aile F Fonction de r epartition des doublets normaux J k Facette de Joukowsky de la bande k K Nombre de bandes N Nombre de facettes par bande P Pression P 1 Pression a l'in ni RFA R esultante des Forces A erodynamiques R e Nombre de Reynolds R x Tra^ n ee R z Portance R x forme frott Tra^ n ee de forme et de frottement R x induite Tra^ n ee induite R x pilote Tra^ n ee due au pilote R x suspentes Tra^ n ee des suspentes S Surface de l'aile V 1 Vitesse de l' ecoulement a l'in ni ; k Circulation de la vitesse autour de la bande k Potentiel des vitesses Sillage de l'aile k Sillage de la bande k j In uence normale de la facette i sur le point d e c o n trôle j en terme de sources j In uence normale de la facette i sur le point d e c o n trôle j en terme de doublets normaux Lieu des points de contrôle des facettes de Joukowsky â Assiette de la voile ê Angle de plan e î Incidence de l' ecoulement i n n i P

  La tra^ n ee totale est la somme de plusieurs tra^ n ees, d'origines vari ees : { La tra^ n ee du pilote, mod elis e par une plaque rectangulaire orthogonale a l ' ecoulement d e 0 :6m 2 13, 1 4 ] . { L a t r a ^ n ee des suspentes, calculable d'apr es les r esultatsde 15]. { Le tra^ n ee de forme, qui est due au pro l, ainsi que la tra^ n ee de frottement, qui est li ee a l ' etat de surface de l'aile. Ces deux termes sont n uls dans le cadre d'un ecoulement de uide parfait, notre programme ne peut donc pas les evaluer. Des exp erimentations sur des pro ls NACA nous permettent d'en d eterminer la valeur 12]. { La tra^ n ee induite par la portance. La perte de charge due a l'allongement p r o voque une variation de l'incidence vue par le pro l. Les axes des portances induites par chaque bande ne sont plus colin eaires, d'o u l'existence d'une projection non nulle. C'est la seule tra^ n ee evalu ee par Th es ee. Longueur totale des suspentes en fonction de leur diam etre. Il est n ecessaire de d eterminer le C x suspentes correspondant. En prenant un diam etre de 1:3mm, o n obtient le Reynolds suivant :

	1. Tra^ n ee du pilote En uide parfait ou visqueux, le C x d'une plaque plane orthogonale a l ' ecoulement v aut 1. Si on assimile le pilote et son equipement a une plaque rectangulaire de 0:6m 2 , on obtient i m m ediatement:
	R x pilote = 1 0:5 1:225 100 0:6 9:81	= 3 :74 Kg
	2. Tra^ n ee des suspentes Le tableau de suspentage du parapente (tableau 3) nous fournit les longueurs des suspentes.
	Diam etre (mm) longueur (m) 1.1 320.22 1.3 85.20 1.4 82.44 1.7 65.90	
	Tab. 3 -	
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