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Abstract
We study a class of lexicographic rhombus tilings of zonotopes, which are deduced from higher
Bruhat orders relaxing the unitarity condition. We prove that a space of such tilings is a
graded poset with minimal and maximal element.
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Résumé
Nous étudions la classe des pavages rhomboèdriques lexicographiques, qui se trouvent être une
généralisation des ordres de Bruhat supérieurs, obtenue en relâchant la condition d’unitarité.
Nous prouvons que les espaces de pavages induits sont des ordres partiels gradués avec un
élément minimal et un élément maximal.
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Structure of spaces of rhombus tilings in the
lexicograhic case

Eric Rémila ∗

Abstract

We study a class of lexicographic rhombus tilings of zonotopes, which are de-
duced from higher Bruhat orders relaxing the unitarity condition. We prove that a
space of such tilings is a graded poset with minimal and maximal element.

1 Introduction

Rhombus tilings are tilings of zonotopes with rhombohedra. They appear in physics
as a classical model for quasicrystals [16]. We fix a sequence (v1, v2, . . . , vD) of vec-
tors of R

d (such that each subsequence of length d is a basis of R
d) and a sequence

(m1, m2, . . . , mD) of positive integers (called multiplicities). The tiled zonotope Z is the
set {∑αivi 0 ≤ αi ≤ mi}, and each prototile used for T is a rhombohedron constructed
from a subsequence of vectors of length d. If a tiling T contains d+1 rhombic tiles which
pairwise share a facet, then a new tiling Tflip of Z can be obtained just changing the
position of those d + 1 tiles. This operation is called a flip. The space of tilings of Z is
the graph whose vertices are tilings of Z and two tilings are linked by an edge if they
differ by a single flip.

Before this paper, study has been done by Ziegler [18], about higher Bruhat orders.
Those combinatorial structures can be interpreted (via the Bohne-Dress theorem [14]) as
tilings of some specific unitary zonotopes (i.e. all multiplicities are equal to 1). Ziegler
proves that, this case in this the space of tilings can be directed so as to get a graded
poset (with single maximal and minimal element).

In the present paper, we extend the previous result relaxing the unitarity condition.
We first recall how ideas (deletion, minors) issued from matroid theory to get a decompo-
sition method for tilings, and a representation of tilings by black or white points organized
in arrows and lines (see [2, 3] for details). Afterwards, we use this representation to study
that we call lexicographic tilings (extensions with non unitary multiplicities of tilings cor-
respondings to higher Bruhat orders ) We show how each space of lexicographic tilings
can be directed so as to get a graded poset (with single maximal and minimal element),
which implies the connectivity of the space.

∗Laboratoire de l’Informatique du Parallélisme, umr 5668 CNRS-INRIA-UCB Lyon 1-ENS Lyon, 46
allée d’Italie, 69364 Lyon cedex 07, France and IUT Roanne, 20 avenue de Paris, 42334 Roanne cedex,
France. Eric.Remila@ens-lyon.fr
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About related works, Felsner and Weil [8] prove the same result, when d = 2. To our
knowledge, the connectivity problem is still open for the other kinds of zonotopes. We
mention that R. Kenyon [11] has proved the connectivity in dimension 2, for any simply
connected domain.

We have chosen to make an exposition which can be accessible for people who have no
knowledge in oriented matroid theory. This gives some longer proofs, but difficulties are
not hidden in strong theorems about matroids. Nevertheless, since tilings are strongly
related to oriented matroids by the Bohne-Dress Theorem [14], we have also given the
matroid interpretation of the material presented. We also have tried to give precise
references in [1], the most classical book about oriented matroids.

2 Tilings of Zonotopes and Minors

We deal in this paper with a particular case of tilings in R
d, called zonotopal rhombus

tilings (or tight zonotopal tilings). Let us now define the fundamental elements studied
in the following.

The canonical basis of R
d will be noticed (e1, e2, ..., ed). Let V = (v1, ..., vD) be a

sequence of D vectors in R
d such that D ≥ d and each subsequence (vi1 , vi2, . . . , vid) is a

basis of R
d. The parameter c = D − d is called the codimension.

Let M = (m1, ..., mD) be a sequence of D nonnegative integers. mi is associated with
the vector vi and called the multiplicity of vi. The zonotope Z(V, M) associated with the

pair (V, M) is the region of R
d defined by:

{
v ∈ R

d, v =
∑D

i=1 λivi, λi ∈ [−mi, mi]
}

. Thus,

Z(V, M) is the convex hull of the finite set
{
v ∈ R

d, v =
∑D

i=1 λimivi, λi ∈ {−1, 1}
}

.

One can define classically (see for example [17] p. 51-52) its faces, vertices (faces of
dimension 0), edges (faces of dimension 1), and facets (faces of dimension d − 1). The
number: s =

∑D
i=1 mi is the size of the zonotope Z(V, M); we say that Z(V, M) is an

s-zonotope. The zonotope Z(V, M) is said to be unitary if all the multiplicities are equal
to 1 (see Figure 1 for examples).

Figure 1: A 2-dimensional zonotope and a 3-dimensional zonotope both defined on 4
vectors

Let Z(V, M) be a zonotope. The sequence V of vectors is called the type of Z(V, M).
A prototile of V is a unitary zonotope constructed with a subsequence V ′ of d distinct
vectors taken in V . A sequence V of D vectors of R

d induces (D
d ) different prototiles. A

tile t is a translated prototile, i.e. it is defined by a pair (p, w), where p is a prototile
and w a translation vector (formally, we have: t = w + p). Since tiles are some particular
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polytopes, their vertices, edges and facets are defined as well. The type of a tile is the
type of the corresponding prototile.

A tiling T of a zonotope Z(V, M) is a set of tiles constructed with vectors in V , such
that each intersection between tiles is a face of the tiles (i.e. there is no overlap) and the
union of tiles is equal to Z(V, M) (i.e. there is no gap). Two tiles are adjacent if they
share a whole facet. We say that Z(V, M) is the support of the tiling T . If Z(V, M) is an
s-zonotope, we say that T is an s-tiling.

2.1 De Bruijn zones

Definition 1 (lifting, height function) Let Z = (V, M) be a zonotope, with V =
(v1, ..., vD). A lifting of V is a sequence U = (u1, ..., uD) of vectors of R

d+1, for each
integer j such that 1 ≤ j ≤ D, there exists an real αj such that: uj = (vj, αj).

Let T be a tiling of Z(V, M). An associated lifting is a function fT,U which associates
to each vertex of TZ a vector in R

d+1 and satisfies the following property: for any pair
(x, x′) of vertices of T such that x′ = x + 2vi and [x, x′] is an edge of T , we have:
fT,U(x′) = fT,U(x) + 2ui. See Figure 2.

The height function hT,U associated with a lifted tiling fT,U , is the component upon
ed+1 of fT,U .

One easily proves that the definition of lifting of a tiling is consistent since a zonotope
is homeomorphic to a closed disk of R

d.
If fT,U is a given lifting, then each lifting f ′

T,U of T is such that f ′
T,U = fT,U + ked+1,

where k denotes a fixed real number. Thus, if hT,U is a given height function, then each
height function h′

T,U of T is such that h′
T,U = hT,U + k. For convention, in this paper, the

real k is chosen in such a way that the height function does not take negative values and
there exists a vertex v such that h′

T,U(v) = 0.
Notice that fT,U is defined for the set of vertices of Z and, for each vertex v on the

boundary of Z, fT,U does not depend on the tiling T chosen.
The two mostly used lifting functions are the principal lifting function, defined by:

∀vi ∈ V , ui = (vi, 1/2), and the k-located function, where for a fixed integer k, uk =
(vk, 1/2) and ∀i �= k, ui = (vi, 0) . The k-located function has the same value on all
vertices of a tile whose type does not contain vk, and differs by 1 at the endpoints of an
edge of type vk. Therefore, the principal function differs by 1 at the endpoints of each
edge of the tiling.

Now, since height functions have been defined, one may introduce the important
concept of de Bruijn families and zones, widely used in the core of the paper (See [6] for
details). This is the main tool for inductions on tilings.

Definition 2 (de Bruijn zone, family) Let T be a tiling of a zonotope Z(V, M), and
hi the i-located function. The de Bruijn family associated with the vector vi is the set of
tiles having vi in their type. Moreover, the j-th de Bruijn zone is the set of tiles whose
i-located function is j − 1 on one facet, and j on the opposite facet. This zone will be
noted S{vi,j} (see Figure 2).

One sees that a de Bruijn zone S{vi,j} disconnects the tiling into two parts, T+
{vi,j} and

T−
{vi,j}. The first one is composed of tiles whose vertices have i-located function larger
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Figure 2: The 2-located height function and two de Bruijn zones.

than j, and the second corresponds to the tiles whose height function is smaller. Hence,
for j < j′, we have: T−

{vi,j} ⊆ T−
{vi,j′}.

We say that two de Bruijn zones S{vi,j} and S{vk,l} are parallel if vi = vk. The
intersection of a set of d de Bruijn zones of T which are pairwise not parallel is a tile of
T . The intersection of a set of d − 1 de Bruijn zones which are pairwise not parallel is
a set of tiles which can be totally ordered in such a way that two consecutive tiles are
adjacent. Such an intersection is called a de Bruijn line.

2.2 Flips

2.2.1 Tilings of a unitary d+1-zonotope

We first focus on a unitary zonotope of codimension 1. One easily checks that such a
zonotope admits exactly two tilings: Let V = (v1, ..., vd+1) be the sequence of vectors and
p0 be the prototile constructed with the d first vectors: there is a tiling T with a tile t0
of type p0 such that T+

{vd+1,1} is empty and T−
{vd+1,1} = {t0}, and one tiling T ′ such that

T ′+
{vd+1,1} = {t0 + vd+1} and T ′−

{vd+1,1} is empty.
Remark that T and T ′ are symmetrical. Any pair of tiles of T (or T ′) are adjacent,

since they form a whole de Bruijn line of T . The orders in each de Bruijn line are opposite
in T and T ′.

2.2.2 Space of tilings

Those tilings of unitary zonotope of codimension 1 can appear, translated, in tilings of a
larger zonotope Z. Assume that the tiling Tz of a unitary d+1-zonotope z of codimension
1 appears in a tiling T of Z, translated by a vector v (i. e. formally: v + Tz ⊂ T ). We
say that the tiling T ′ of Z, defined by: T ′ = (T \ (v + Tz))∪ (v + T ′

z), is obtained from T
by a geometric flip.

The type of the flip is the type of z. It will be denoted by the set of indexes of vectors
of its support. We have (D

d+1) types of flips; in particular, for D = d+2, we have D types
of flips.
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The space of tilings of a zonotope Z is the symmetric labeled graph whose vertices
are the tilings of Z, and two tilings are linked by an edge if they differ by a geometric
flip. The label of the edge is the type of the corresponding flip.

An important result is that flips induce connectivity between all tilings of zonotopes
for d = 2, i.e. every tiling of a given dimension 2 zonotope Z can be deduced from another
tiling of Z by a sequence of flips (see [4, 7, 11] for details). This is an open question in
the case of larger dimensions.

The point is now to study spaces of zonotopal tilings. Despite the fact that rhombic
tilings are defined for any dimension, the figures are in dimension 2, for convenience.

2.3 Connections with oriented matroid theory

Tilings are connected with oriented matroids via the Bohne-Dress Theorem [14]. In
oriented matroids, we work with sign vectors, i. e. elements of {+,−, 0}n, where n is a
fixed positive integer. Let X be such a sign vector. For 1 ≤ k ≤ n, the kth component
of X is denoted by Xk, and we state X+ = {k, Xk = +}, X− = {k, Xk = −} and
X0 = {k, Xk = 0}.

We do not recall classical definitions, which can be found in the reference book
[1] A motivating example for the matroid notion is given by realisable matroids: Any
sequence V = (v1, v2, ..., vk) of vectors of (Rd)∗ induces the set of covectors L(V ) =
{(sign(c.v1), sign(c.v2), ..., sign(c.vk)), c ∈ R

d} (the product used is the classical scalar
product in R

d).

2.3.1 Oriented matroid induced by a zonotope

For the zonotope Z(V, M), we use the sequence VM of length s, obtained by first repeating
m1 times the vector v1, then repeating m2 times the vector v2, and so on until repeating
mD times the vector vD. The oriented matroid L(Z(V, M)) is the realizable matroid
L(VM). It is a matroid of rank d.

We have a direct interpretation of L(Z(V, M)): for each element X = v′
1, v

′
2, ...., v

′
s)

of L(Z(V, M)) the set ZX =
∑

i∈X0
[−v′

i, +v′
i] +

∑
i∈X+

v′
i −

∑
i∈X− v′

i is a face of Z(V, M)
and, conversely, for each face f of Z(V, M) there exists a unique X of L(Z(V, M)) such
that Zx = f .

2.3.2 Oriented matroid induced by a tiling

Given a tiling T , a sign vector of length s can be associated with each face of a tile of T .
For each pair (vi, j) such that 1 ≤ j ≤ mi, we state k(i, j) =

∑
1≤i′<i mi′ + j. Let f be a

face and Xf denote the sign vector associated with the face f . We have

• Xf
k(i,j) = + when f is contained in T+

{vi,j},

• Xf
k(i,j) = − when f is contained in T−

{vi,j},

• Xf
k(i,j) = 0 otherwise.

The set of all these sign vectors is denoted by O(T ).
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The set L(T ) = {(X, +), X ∈ O(T )} ∪ {(−X,−), X ∈ O(T )} ∪ {(X, 0), X ∈
L(Z(V, M)} is the set of covectors of an oriented matroid of rank d + 1, which will
be called the tiling matroid.

In matroid language, a flip is a specific mutation (see [1] sect. 7. 3) of the tiling
matroids which only involves cocircuits corresponding with tiles (i. e. cocircuits whose
last component is not null).

3 Decomposition and reconstruction

3.1 Deletions

3.1.1 Geometrical deletion

The deletion is a basic operation in matroid theory. We first present it in a geometrical
point of view.

Let T be a tiling of support Z(V, M), and S{vi,j} be a de Bruijn zone of T . One can
remove the tiles of S{vi,j} and translate all the tiles of T+

{vi,j} by the vector −vi. For D > d,

the configuration obtained is a tiling of Z ′ = (V, M ′) where M ′ is defined by: m′
i = mi−1

and ∀k �= i, m′
k = mk (except in the special case when mi = 1, in such a case, we have

Z ′ = (V ′, M ′) with V ′ and M ′ respectively obtained from V and M removing the ith

component). Such an operation defines a deletion relation on zonotope tilings.
The tiling obtained is denoted by D{vi,j}(T ), and for each tile t of T , we state:

D{vi,j}(t) = t for t in T+
{vi,j}, and D{vi,j}(t) = t − vi for t in T+

{vi,j}.
For consistence, the de Bruijn zones of D{vi,j}(T ) according to vi are assumed to be

numbered 1, 2, . . . , j−1, j +1, . . . , mi. By this way, D{vi,j}(t) and t both are in de Bruijn
zones with the same label. We also need this convention for the commutativity below,
when vi = vk.

3.1.2 Deletions in matroid theory

As it has been said above, deletions are classical in matroid theory. If L is a set of
covectors of length n, then for each integer i such that 1 ≤ i ≤ n, the set L/i =
{(X1, X2, ...., Xi−1, Xi+1, ..., Xn), X ∈ L, Xi = 0} i s also a set of covectors.

Thus, in matroid language, the geometrical deletion above consists in constructing
L(T )/k(i, j) from L(T ). Notice that L(T )/(s + 1) = L(Z(V, M)). The Bohne-Dress
theorem [14] claims that the only sets L of covectors of uniform matroids such that
L/(s + 1) = L(Z(V, M)) are tiling matroids.

3.2 Decomposition

Proposition 3.1 (commutativity of deletions) Let T be a tiling of a zonotope Z ,
and two deletions D{vi,j} and D{vk,l}. We have:

D{vi,j}(D{vk,l}(T )) = D{vk ,l}(D{vi,j}(T ))

This proposition is obvious in the matroid framework, but following the principle of
the paper, we give a geometrical proof.

Proof: The tiling T can be partitioned into the five parts below:
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• T−
{vi,j} ∩ T−

{vk ,l}: the tiles of this part remain unchanged by the successive deletions,
taken in any order,

• T+
{vi,j} ∩ T−

{vk ,l}: the tiles of this part are translated by −vi during the successive
deletions, taken in any order,

• T−
{vi,j} ∩ T+

{vk ,l}: the tiles of this part are translated by −vk during the successive
deletions, taken in any order,

• T+
{vi,j}∩T+

{vk ,l}: the tiles of this part are translated by −(vi+vk) during the successive
deletions, taken in any order.

• S{vi,j} ∪ S{vk ,l}: the tiles of this part are removed during the successive deletions,
taken in any order.

Thus the order of deletions does not give any change. This gives the commutativity
result. �

A tiling obtained from T by a sequence of p deletions is called a s−p-minor of T .
The pairs {vi, j} can be totally ordered (using the integer k(i, j), for example). From

this order, the sets {{vi1, j1}, {vi2, j2}, . . . , {vip, jp}} formed by p elements of the type
{vi, j} can also be totally ordered. Therefore, the s−p-minors of T can be totally ordered.
The sequence of s−p-minors of T is given by this order.

Figure 3: Commutativity of deletions.

Proposition 3.2 ((encoding)) Assuming s ≥ d + 2, every tiling is defined by the se-
quence of its s−1-minors.

Proof: Let Z be a zonotope, T one of its tilings. Notice that one can easily compute
the sequence of s−2-minors of T from the sequence of its s−1-minors.

Let {vi, j} and {vi′, j
′} be two distinct pairs, D1 and D2 respectively denote the

corresponding deletions, and D1,2 denote the corresponding double deletion.
For each tile t′ of D1,2(T ), one can easily compute the tiles t1 such that t1 is in D2(T )

and D1(t1) = t′, and t2 such that t2 is in D1(T ) and D2(t2) = t′. Precisely, one can
compute the pair (ε1, ε2) of {0, 1}2 such that t1 = t′ + ε1vi and t2 = t′ + ε2vi′ .

Let t0 be the tile of T such that t1 = D2(t0). From the commutativity, we also have:
t2 = D1(t0) (see Figure 4), in such a way that t′ = D2(D1(t0). Thus there exists a pair
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(ε3, ε4) of {0, 1}2 such that t0 = t1 + ε4vi′ and t0 = t2 + ε3vi. thus by composition, we
obtain: t0 = t′ + ε1vi + ε4vi′ and t0 = t′ + ε2vi′ + ε3vi.

These equalities imply that ε1 = ε3 and ε2 = ε4). when vi �= vi′ . When vi = vi′ , these
equalities are obtained by a case by case analysis according to the relative position of t0
and the considered de Bruijn zones, as in the proof of Proposition 3.1 Thus we have the
equality : t0 = t2 + ε1vi = t′ + ε1vi + ε2vi′ , which proves that t0 can be computed from
the triple (t′, t1, t2).

This gives the result, since for each tile t of T , there are two distinct pairs {vi, j} and
{vi′ , j

′} such that t is out of S{vi,j} ∪ S{vi′ ,j′} (from the hypothesis: s ≥ d + 2). �

The same result can easily be obtained with chirotopes ([1] 3. 5) using matroid theory
(especially the theorem from Lawrence ([1] 3. 5. 5) which characterizes oriented matroids
by chirotopes): the knowledge of minors allows to compute the whole chirotope of the
matroid whose set of covectors is L(T ).

1

0t

12 tt

T

1,2D

D

D

D

D

t’

2

1

2

Figure 4: Proof of Proposition 3.2: computation of some tiles of T from D2(T ) and D1(T ).

Notice that the result is false for: s = d + 1. Each d-minor is reduced to a single tile,
thus the information about the arrangement of tiles is lost.

Iterating the proof for (s− 1)-deletion, one obtains the following result as a corollary
for proposition 3.2 (see Figure 3).

Corollary 3.3 Let s′ be a integer such that d + 1 ≤ s′ ≤ s. Assuming s ≥ d + 2, every
tiling T of zonotope is defined by the sequence of its s′-minors.

In particular, this is true for d+1-minors.

Proof: Obvious by induction. �

Remark that there are two kinds of d+1-minors: those of codimension 0, the forced
minors, which are defined by the tiled zonotopes, and those of codimension 1, the free
minors, which are tilings of unitary zonotopes. Only the free ones contain some informa-
tion, useful to compute T . The encoded by a free minor information can be reduced to
a single bit, corresponding to the tiling chosen (we recall that a d + 1-unitary zonotope
admits two tilings)
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This gives an encoding of zonotope tilings by a word on the alphabet {0, 1} of length∑
1≤i1<i2<...<id≤D mi1mi2 . . .mid (see Figure 5 for an example).

0

0 positions :

11 1100

Figure 5: Coding of tilings with d+1-minors: each tiling of a d + 1-zonotope is given a
bit (above tilings corresponding to 0 bits) and the tiling is given by the sequence of bits
of its minors

We define a set flip as follows: let T and T ′ be two tilings of a same zonotope such
that all their d+1-minors are the same, except one. we say that T and T ′ differ by a set
flip.

Proposition 3.4 let T and T ′ be two tilings of a zonotope Z. T differs from T ′ by an
set flip if and only if T differs from T ′ by a geometric flip.

Proof: It is clear that a geometric flip is a set flip, because it changes locally the
positions of d + 1 tiles. Since only one d+1-minor contains all these tiles, their positions
are changed only in this minor.

For the converse part, we first study how a deletion and a set flip act on a fixed de
Bruijn line dBL. A deletion (which does not remove the whole de Bruijn line dBL) only
removes one tile of dBL and does not change the order in this line for the other tiles.
Thus a set flip changes the order on dBL if and only if dBL contains a pair {t, t′} of
tiles which appear in the flip. Moreover, in this case, the comparison order in dBL is
changed only for the pair {t, t′}, since any other pair of tiles appears in a d+1-minor
unchanged by the flip. Thus, for consistence of the order, the tiles t and t′ necessarily
share a whole facet. Thus the flip is actually geometric. �

This property is a special case of the equivalence between mutations in oriented ma-
troids and flippings in arrangements of pseudospheres ([1] 7. 3) (we recall that the
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combinatorial structure of oriented matroids is equivalent to the topological structure of
arrangement of pseudo sphere from the topological representation theorem from Folkman
and Lawrence ([1] 1.4. 1)).

3.3 Reconstruction

We are interested in the following problem: given a zonotope Z and a sequence of d+1-
tilings (with the good length, and the good vectors), does there exist a tiling T of Z such
that the given sequence is the sequence of its d+1-minors ?

We can obviously solve the problem by constructing the (potential) d+2-minors, then
the d+3-minors, and so on until the searched tiling is found. If there is a contradiction,
the reconstruction is impossible, otherwise the tiling is obtained. But this can give the
answer faster, and the following proposition states that the first step is enough to obtain
the answer.

Proposition 3.5 Let (Zm)m be a sequence of d+1-tilings. There exists a tiling T of a
zonotope Z whose sequence of d+1-minors is exactly (Zm)m if and only if the d+2-minors
are compatible, i.e. the sequence of d+2-minors can be correctly constructed.

Proof: We do the proof by induction on the size s of the zonotope. The case
s = d + 2 is obvious.

Let s > d + 2. Consider the prefix of the sequence (Zm)m formed by d+1-tilings
where the tiles of the (potential) de Bruijn zone {vD, mD} do not appear (since it is
assumed that the deletion D{vD ,mD} has been done). This subsequence is, by assumption,
the sequence of d+1-minors of a tiling T ′ of size s − 1.

On the other hand, for each tile t of T ′, there exists a d+1-tiling Tt containing t and d
tiles of the de Bruijn zone {vD, mD}. Hence t can be assigned a + or − sign, depending
on its position in Tt, relatively to S{vD ,mD} (+ if the D-located height function of t is 1,
− if it is 0). Let T ′+ be the part of T ′ formed by the tiles marked + and T ′− the part
formed by tiles marked −.

Let us now consider a straight line l directed by vD. We claim that, following l in the
sense of vD, one first meets tiles marked −, then tiles marked +. This means that T ′+

and T ′− are convex along vD, i.e. that the new de Bruijn zone can be inserted correctly
in T ′, thus leading to a new tiling T . Two cases may occur:

• l only meets facets and interior parts tiles of T ′. Consider two tiles of T ′, say t1
and t2, which share a facet, and such that t2 follows t1 in the succession of tiles
crossed by l in the direction of vD. There exists a d+2-minor Td+2 containing (tiles
corresponding to) tiles of {vD, mD} and tiles t1 and t2. There are only three possible
sign assignment for (t1, t2), since the assignment: + for t1 and − for t2, is impossible
; otherwise the tile t3 of type {τ}∪{vD} (where τ denotes the set of common vectors
in the types of t1 and t2) cannot be placed in the d+2-minor Td+2 (see Figure 6).

• l meets a face f of the tiling T ′ of dimension lower than d − 1. Then, there are
two tiles t1 and t2 with the same hypothesis as in the previous case, but sharing
only the face f . There exists a parallel line l′, arbitrarily close to l, satisfying the
hypothesis of the previous case, and crossing both t1 and t2 (but t1 and t2 are not
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Figure 6: The three possible sign assignments for t1 and t2, from the possible positions
in the de Bruijn line of Td+2.

necessarily consecutive along l′. See Figure 7). Thus the assignment: + for t1 and
− for t2, is impossible.

l

2
1t

t

l’

Figure 7: A line l crossing a vertex, and the auxiliary line l′

.

Hence T ′+ and T ′− are consistent according to {vD, mD}, allowing to translate the
part T ′+ by vD, in order to insert the de Bruijn zone S{vD ,mD}. The tiling T obtained
(such that T ′+ = T+

{vD ,mD} + vD and T ′− = T−
{vD ,mD}) is the one searched, which ends the

proof. �
The proposition above is very linked with the main axiom of the definition of chiro-

topes ([1] 3. 5. 3), which involves sets of d+2 indexes. An alternative strategy for proving
the proposition is to check that chirotope axioms are satisfied, or, in a more direct way,
to check the local realizability property ([1] 3. 6. 3)

4 Orders and representation

As seen formerly, the zonotopal tilings can be easily encoded by considering their minors.
More precisely, one tiling is defined by the sequence of its (free) d+1-minors. We will now
describe a representation tool for zonotope tilings based on the minor structure and the
reconstruction proposition. But, before doing it, we have to defines the orders induced
by flips, and we need some more knowledge about space of tilings of d+2-zonotopes.
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4.1 Orders on tilings

If we have D vectors, we arbitrarily fix a basic tiling T0 of the unitary D-zonotope. For
each d+1-unitary zonotope, we define the low position as the d+1-tiling of this zonotope
which is a d+1-minor of T0. The other d+1-tiling is the high position.

Usually, the tiling T0 chosen is constructed inductively as follows: given a sequence
(v1, v2, ....vD) of vectors, we define for each integer i such that d ≤ i ≤ D the tiling Ti of
the unitary zonotope Zi constructed on the i first vectors by :

• the tiling Td is the unique tiling of Zd

• for d ≤ i < D, Ti+1 is the unique tiling of Zi+1 such that T+
{vi+1,1} is empty and

D{vi+1,1}(Ti+1) = Ti.

With this definition, flips can be canonically directed: a flip is going upwards if it
transforms a low position in a high position. The directed space of tilings is the space of
tilings whose edges are directed as above. Obviously, it it is acyclic and defines a partial
order relation, denoted by <flip. Given a pair (T, T ′) of tilings, we have T ≤flip T ′ if one
can pass from T to T ′ by a sequence of upwards flips.

We can also define another order relation, denoted by <set. For each tiling T , we
denote the set of its low d + 1-minors by low(T ). Given a pair (T, T ′) of tilings, we have
T ≤set T ′ if low(T ) ≤set low(T ′). Obviously, T ≤flip T ′ yields T ≤set T ′.

We recall that tilings are single elements liftings of the zonotope matroid. By duality,
there is a one-to-one correspondence between these liftings, and single element extensions
of the dual matroid ([1] 3. 4). These extensions are studied in ([1] 7. 1) and can be
canonically ordered. here, we introduce this order with a geometrical point of view.

The higher Bruhat orders are special cases of these orders for unitary zonotopes with
a specific sequence V of vectors, such that, for each subsequence (vi1 , vi2, ..., vid), the
determinant det(vi1 , vi2 , ..., vid) is positive.

4.2 The basic d+2-zonotopes

In dimension d, there exists two basic kinds of d+2-zonotopes of dimension d whose tiling
is not forced: either all vectors have multiplicity 1 (codimension 2), or there is one vector
of multiplicity 2 (codimension 1). We first precisely study these cases. This should have
been done easily in the madroid framework studying single element extensions of very
basic matroids.

4.2.1 The d+2-zonotope of codimension 1

Proposition 4.1 The space of tilings of the zonotope Zi of codimension 1 with the vector
vi of multiplicity 2 (and the d other ones of multiplicity 1) contains three tilings and is a
chain of length 2.

Proof: In each tiling, there exists a unique tile t which is not element of S{vi,1}∪S{vi,2}.
Since T−

{vi,1} ⊆ T−
{vi,2}, we have three tilings:

• one tiling with t ∈ T−
{vi,1},

12



Figure 8: Space of tilings of a codimension 1 zonotope with one duplicated vector.

• one tiling with t ∈ T+
{vi,2},

• one tiling with t ∈ T−
{vi,2} \ T−

{vi,1}.

The directed edges corresponding to flips are obvious (remark that both the free
d+1-minors of Zi are of the same type, which gives the chain) (see Figure 8). �

4.2.2 The unitary d+2-zonotope

We first need more information about the structure of tilings of unitary d+1-zonotopes.
This is given by the lemma below.

Lemma 4.2 Let T be a tiling of unitary d+1-zonotope, and v be a vector not in the type
of Z. We define a tournament G(T,v) on the tiles of T saying that (t1, t2) is an arc of
G(T,v) if the vector v crosses their common facet passing from t1 to t2 (see Figure 9).

The tournament G(T,v) is actually a total order.

Proof: Since all pairs of tiles are linked, we only have to prove that G(T,v) has no
cycle of length 3. We prove it reducing the problem to the case: d = 2, for which the
proof is easy by a case by case analysis.

In higher dimension, notice that, since D = d + 1, the types of three given tiles t1,
t2 and t3 contain (d + 1) − 3 = d − 2 common vectors. Let p denote the orthogonal
projection on the 2-dimensional space which is orthogonal to the d − 2 common vectors.
The projections p(ti) are parallelograms, and we have (ti, tj) in G(T,v) if and only if
(p(ti), p(tj)) is in GH,p(v); where H denotes the hexagon covered by the parallelograms
p(ti) (H is really a hexagon, since otherwise the tiles ti cannot be pairwise adjacent). This
gives the result, since Gp(v) is not a cycle. �

Proposition 4.3 The space of tilings of a unitary d+2-zonotope is a cycle of length
2(d + 2), and each possible label is given to a pair of edges, which are opposite in the
cycle.

Proof: let T be a tiling of the unitary zonotope Z = Z((v1, v2, . . . , vd+2), (1, 1, . . . , 1)).
From the above lemma applied on the support Z ′ of D{vd+2,1}(T ), T−

{vd+2,1} is an initial

segment of the order induced by vd+2 on tiles of D{vd+2,1}(T ).

13



1
3

2

Figure 9: A codimension 1 tiling, the added vector (dashed), and the ordering of tiles
according to this vector.

Conversely, given a tiling T ′ whose support is Z ′, and an initial segment T ′ (according
to the order induced by vd+2), one easily constructs a tiling of Z: tiles which are not in the
initial segment are translated by vd+2, and tiles of S{vd+2,1} are inserted in the remaining
space. There exists d + 2 possible initial segments for a set of d + 1 elements, thus, since
Z ′ admits two tilings, there exists 2(d + 2) tilings of Z.

Now, take a tiling of T , i. e. a tiling T ′ of the zonotope Z ′ and I one initial segment
of it. What are the possible flips from T ? First assume that the initial segment is proper
(i. e. neither empty nor equal to T ′). There are two possible flips, which correspond to
adding or removing one tile in I. No other flip is possible because of the relative position
of tiles given by the order on tiles of T ′ (the flip only using tiles of T ′ is not possible
because of the cut by S{vd+2,1}).

A similar argument holds for the other case. If I is empty, two flips are possible, one
which corresponds to adding the first tile in I, the other one only uses tiles of T ′. If
I = T ′, two flips are possible, one which corresponds to removing the last tile in I, the
other one only uses tiles of T ′. This gives the result, using the symmetry of both tilings
of Z ′ to get the labels of opposite edges. �
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Figure 10: The order associated with a unitary octagon.
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4.3 Tiling diagrams

We can now precisely explain how we represent a fixed tiling T . There exists some
related representations in literature [18] about matroids, which are consequences of the
topological representation theorem for matroids ([1] 1. 4. 1) and of the use of signatures
of single element extensions [1] 7. 1). A specific originality of our representation consists
in the use of arrows, to treat parallelism.

4.3.1 Points

In our representation, each d+1-minor is associated to a point. Each point p is defined
by two parameters. We first have a coordinate vector, element of Z

D, which indicates the
position of the d+1-minor in the sequence of minors: the ith component, denoted by i(p),
of this vector is equal to j if the deletion according to the pair {vi, j} has not been done
to obtain the corresponding d+1-minor; the component i(p) is null if, for each integer j
such that 1 ≤ j ≤ mi, the deletion according to {vi, j} have been done (thus there exists
exactly d + 1 non-null component). The type of the corresponding flip is the support of
the coordinate vector.

Remark that a similar coordinate vector will also be given to each d′-minor whose
support is a unitary zonotope: the only difference is that there are d′ non-null components.

For each such a unitary zonotope Zd′, we define the space of points associated with
Zd′ as the set of points which corresponds to minors of Zd′ . We say that d′ − d− 1 is the
dimension of this space. In particular, for d′ = d + 2, we speak of the line associated
with Zd+2. In order to justify our vocabulary, we can see that each line is defined by two
points (but, unfortunately, each pair of points does not always define a line).

The other parameter is a color, which is white if the d+1-minor is in low position, or
black if in high position.

The important thing for reconstructing a tiling T is the set of coloring constraints
which are given by the sequence of d+2-minors. We now explain how coloring constraints
are expressed.

4.3.2 Arrows

Two points correspond to the pair of minors of a same d+2-minor of T (the support of
this d+2-minor is a d+2-zonotope of codimension 1) if and only if they only differ by one
non-null coordinate.

From what has been seen about these d+2-tilings, there exists exactly three allowed
colorings of such a pair of points, corresponding to tilings of a d+2-zonotope, and a
forbidden coloring corresponding with no tiling.

The forbidden coloring uses both colors. In the diagram, an arrow is placed, linking
these two points, in such a way that the origin of the arrow is white (and the tail is black)
in the forbidden coloring. Thus, the three allowed colorings of the tiled d+2-zonotope
are the fully black one, the fully white one, and the coloring with the origin of the arrow
being black and the tail being white. This gives the first constraint : there is no edge
from a white point to a black point.
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Each arrow is labeled by the index of the coordinate which is different for the points
linked.

The arrows of the diagram give the covering relation: a point p is covered by a point
p′ if there exists an arrow such that p is the origin of the arrow, and p′ its endpoint.

4.3.3 Lines

Now, consider a d+2-minor of T whose support is a unitary d+2-zonotope. A point
corresponds to a d+1-minor of this d+2-tiling if and only if its coordinate vector is
obtained replacing one non-null coordinate of the d+2-minor by 0.

Such points form a line which can be totally ordered in the same way as flips are
ordered in a path between the lowest tiling of the unitary d+2-zonotope to its largest
tiling. (there are two possible opposite possible sequences, but this fact is not relevant,
one of these can be chosen arbitrarily. We will choose later a specific order in a special
case). From what has been seen about tilings of unitary d+2-zonotopes, with the order
convention, the black points have to form a final or initial segment (i. e. a suffix or a
prefix) of the line. This is the second constraint.

Hence, tilings of zonotopes are presented as diagrams on which lines represent unitary
d+2-zonotopes, and arrows represent d+2-zonotopes of codimension 1 (see Figure 11).
Notice that arrows and lines only depend on the support of the tiling, i. e. two tilings
with the same support induce the same sets of lines and arrows. The translation of the
reconstruction theorem gives the following result:

Proposition 4.4 A coloring of points of a diagram induces a tiling if and only if it
respects the two constraints stated above.

Notice that the highest diagram (i. e. with all points black) and the lowest one (i. e.
with all points white) are tilings. We denote the set of black points of the diagram of T
by BT . Hence, for each pair (T, T ′) of tilings, we have T ≤set T ′ if and only if BT ⊆ BT ′ .

(1,2,1,0)

(1,1,0,1)

(1,0,1,1)

(0,2,1,1)

(0,1,1,1)

l : (1,1,1,1)

l’ : (1,2,1,1)

{v2,1}

{v1,1}

{v4,1}

{v3,1}

{v2,2} (1,2,0,1)

(1,1,1,0)

Figure 11: A tiling and the associated diagram (notice the orientation of the arrows,
according to the inversion property).

4.4 Recursivity properties of diagrams

Diagrams have some interesting recursivity properties, which are very useful for induction
arguments.
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4.4.1 Deletions

Let T be a tiling of a zonotope Z, (vi, j) be a pair defining a de Bruijn section of T , and T ′

be the tiling such that T ′ = D{vi,j}(T ). The diagram of T ′ is obtained from the diagram
of T by removing all the points whose ith coordinate is equal to j. The remaining line
and arrow relations are preserved (we take the convention that the tiling T ′

0 = D{vi,1}(TO)
is used to define the sense of flips).

4.4.2 Contractions

Let T be a tiling of a zonotope Z , (vi, j) be a pair defining a de Bruijn section of T . Let
qi be the orthogonal projection on the hyperplane {vi}⊥.

For d > 3, we define the contracted tiling T ′ = C{vi,j}(T ) as follows: T ′ is the
tiling of formed by the set {qi(t), t ∈ S{vi,j}}. The support of this tiling is the zonotope
Z ′ = (V ′, M ′) with V ′ = (qi(v1), qi(v2), ..., qi(vi−1), qi(vi+1), qi(vi+2), ..., qi(vD)) and M ′ =
(m1, m2, ..., mi−1, mi+1, mi+2, ..., mD). Hence, T ′ is a tiling of dimension d−1, codimension
D − d, and size s − mi. The contraction geometrically defined above is also a classical
operation on matroids.

How can we find the diagram of T ′ from the diagram of T ? We have to keep only all
points whose ith coordinate is j. Each line either disappears (if its ith coordinate different
from j) or looses a point. Arrow relations are preserved between all the points which
are kept (for orientation convention, the lowest tiling which defines the low positions is
T ′′

0 = C{vi,1}(T0)).

4.5 Consistence properties of arrows

We now give two propositions about the relative positions of arrows.

4.5.1 Same type property

Proposition 4.5 Let p, p′, p1 and p′1 be four points of a diagram, such that:

• there exists an integer i such that 0 < i(p) < i(p′) and 0 < i(p1) < i(p′1)

• for each integer j of {1, 2, . . . , D} such that j �= i, we have: j(p) = j(p′) and
j(p1) = j(p′1). Moreover, if j(p) = 0, we have j(p1) = 0.

There exists an arrow from p to p′ if and only if there exists an arrow from p1 to p′1.

Proof: This is obvious: the support of the tiling whose minors are p and p′ is a
d + 2-zonotope with mulitiplicity 2 for vi, and it is also the tiling whose minors are p1

and p′1.
The inequalities: i(p) < i(p′) and i(p1) < i(p′1) indicate that p and p1 both give tilings

of minors constructed by the same deletion, as p′ and p′1 also do. �
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4.5.2 Inversion property

Proposition 4.6 (inversion property) Let l = (p1, p2, . . . , pd+2) and l′ = (p′1, p
′
2, . . . ,

p′d+2) be two distinct lines such that there exists a unique integer k such that pk = p′k.
Assume p1 is covered by p′1. For any integer j such that 1 ≤ j < k, pj is covered by

p′j, and for any integer j such that k < j ≤ d + 2, p′j is covered by pj (see Figure 11 for
an illustration of this property).

Of course, a similar property holds when it is assumed that pd+2 is covered by p′d+2.

Proof: With the notations above, the coordinates vectors of l and l′ have the same
positions for non-null coordinates, that we denote by i1, i2, ..... and id+2. Moreover, all
these non-null coordinates are equal except for one position. We denote this unique
position is i0.

Consider the d+2-minor whose sequence of minors corresponds to points pj and p′j .
Its support Z0 has codimension 2, its multiplicity is 2 according to the vector vi0 , and its
multiplicity is 1 according to any vector other vector appearing in the type of at least a
point.

Consider the tiling Twh. of Z0 corresponding to the fully white coloring. This tiling
has two minors of codimension 2 which are obtained by a deletion according to vi. By
definition, both these minors are equal to T0. That means that there is no tile between
both de Bruijn sections according to vi0 of Twh..

By a sequence of flips, one can move the de Bruijn sections in such a way that each
tile (whose type does not contain vi) of the resulting tiling Tinside is between both de
Bruijn sections according to vi0 (see Figure 12).

wh TT inside

Figure 12: The tilings Twh and Tinside.

The set of black points of Tinside is necessarily one of the sets: {p1, p2, . . . , pi−1, p′i+1,
p′i+2, . . . , p′d+2} or {p′1, p′2, . . . , p′i−1, pi+1, pi+2, . . . , pd+2}. But the second set is not possible,
from our assumption about the arrow from p1 to p′1 (if p′1 is black, then p1 is necessarily
black).

Thus the set of black points is {p1, p2, . . . , pi−1, p′d+2, p
′
d+1, . . . , p′i+1}, which forces the

sense of arrows, and gives the result. �
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5 Structures for lexicographic sequences of vectors

We say that sequence (v1, v2, ..., vD) is lexicographic if for each line l, defined by a sub-
sequence of d + 2 vectors, the set of points of l is ordered according to the lexicographic
order of types.

Notice that the operations of contraction and deletion both preserve the lexicographic
property.

We have seen that in codimension 2 , one can assume without loss of generality that
the given sequence is lexicographic. This is not true in the general case.

Nevertheless, we can prove there exists a lexicographic sequence for any value of the
parameters d and D. It suffices to take a sequence (v1, v2, ..., vD) such that, for each
subsequence (vi1 , vi2, ..., vid), the determinant det(vi1 , vi2 , ..., vid) is positive (see details
in Annex). For example, this can be done fixing an increasing sequence (x1, x2, ..., xD)
of positive distinct reals numbers. We define vi by vi = (1, xi, x

2
i , ...., x

d−1
i ). Thus for

each subsequence (vi1 , vi2 , ..., vid), the determinant det(vi1 , vi2 , ..., vid) is a Vandermonde
determinant, which is equal to Π1≤i<j≤d(xj − xi), and, therefore, is positive. In the
unitary case, the order of the directed space of tilings is isomorphic to a higher Bruhat
order [18].

Our main theorem about lexicographic sequences of vectors is stated below. It is a
generalization of a theorem of Ziegler about higher Bruhat orders [18]. The idea is that,
even if Theorem ?? is false in the lexicographic case (Ziegler gives a counterexample in
[18]), there still remains a lot of possibilities to pass from the lowest tiling to the highest
one by a sequence of upwards flips.

Theorem 5.1 Let T be a tiling of a zonotope constructed on an lexicographic sequence of
vectors. There exists a sequence of downwards flips which can be done from T , satisfying
the following properties:

• after the sequence is done, all points are white

• the sequence can be decomposed into two parts, the first part only contains flips
whose type contains vD, and the second part only contains flips whose type does not
contain vD.

5.1 Arrow properties in the lexicographic case

In order to prove the theorem above, we first need the proposition below.

Proposition 5.2 Let p and p′ be two points linked by an arrow from p to p′, labeled by
D. Assume that the last coordinate D(p) of p is lower than the last coordinate D(p′) of
p′. Then, for each pair (p1, p

′
1) such that there exists an arrow from p1 to p′1 labeled by

D, we have D(p1) < D(p′1).

Proof:. For each pair (q, q′) of points, we denote by ∆(q, q′) the number of coordinates
which are null for q and non-null for q′. We use an induction on ∆(p, p1). If ∆(p, p1) = 0,
the result is just Proposition 4.5.
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Otherwise, there exists a coordinate i which is null for p and not for p1, and, in a
symmetric way, a coordinate j which is null for p1 and not for p.

Let p2 (respectively p′2) be the point whose ith coordinate is null, jth coordinate is the
jth coordinate of p, and other coordinates are equal to coordinates of p1 (respectively p′1).
We have ∆(p, p2) = ∆(p, p1) − 1

Let l (respectively l′) be the line passing through p1 and p2 (respectively p′1 and p′2).
These two lines meet each other in a point p0, whose last component is null. Since the
sequence of vectors is acyclic, the point p0 is an endpoint of lines p and p′. Applying
the inversion property, we obtain that there exists an arrow from p2 to p′2 labeled by D,
Thus, by induction hypothesis, we have D(p2) < D(p′2), i. e. D(p1) < D(p′1) �

From the above proposition, up to symmetry, it can be assumed that, for each arrow
labeled by D, the last coordinate of the origin point of the arrow is lower than the last
coordinate of its tail point.

5.2 Secondary arrows

We now introduce some other arrows, which will be called secondary arrows, as follows:
let l = (p1, p2, ..., pD+2) be a line. We assume that the point p1 is the point of lowest label
in l. This point is called the directing point of l.

• if p1 is black in T , then we have a secondary arrow from pi to pi+1, for each integer
i such that 1 ≤ i < D + 2,

• if p1 is white in T , then we have a secondary arrow from pi+1 to pi, for each integer
i such that 1 ≤ i < D + 2.
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1346

2346
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1456

3456

1356 2356

2456

Figure 13: orientation of lines for a tiling of a lexicographic unitary zonotope of codimen-
sion 3 and dimension 3 (non-null coordinates are given for each point).

Secondary arrows are not labeled. They strongly depend on the tiling T , at the
opposite of the primary arrows introduced previously. They encode a sense for each

20



line. Notice that the arrow constraint is still satisfied: there is no (secondary) arrow
starting in a white point and finishing in a black point. A primary arrow links two points
corresponding to tilings of the same zonotope, while a secondary arrow links two points
corresponding to tilings of different zonotopes.

To avoid confusion, we say that the diagram with secondary arrows is the enriched
diagram.

Proposition 5.3 Let T be a tiling. Each directed cycle of black points in the enriched
diagram of T is reduced to a single point.

Proof The proof is done by induction on the size s of the zonotope. The result is obvious
for s ≤ d: there is no line in the diagram, thus the result directly comes from Proposition
4.5. This gives the initialization. Now, we assume that the size of the zonotope is at
least d + 1. We have two cases. In each of them, we introduce a partition of points
according to the two last de Bruijn zones.

1) if mD ≥ 2 , we define:

• A0 = {p |D(p) ≤ mD − 2}
• A1 = {p |D(p) = mD − 1}
• A2 = {p |D(p) = mD}

If a black directed cycle remains in A0 ∪ A1, then it can be seen as a cycle of the
diagram of D{vD ,mD}(T ) which gives the result by induction. Otherwise, Let p2 be a point
in A2 : there is no primary arrow from p2 to any point p outside of A2, since such an arrow
should be labeled by D, this would contradict Proposition 5.2. On the other hand, each
line passing though p2 has its directing point in A0. Thus, if a black directed cycle has
a point in A2, then the cycle is necessarily contained in A2 (since there is no possibility
to have an arrow, in the cycle, starting in A2 and finishing out of A2). Thus this cycle
can be seen as a cycle of the diagram of D{vD ,mD−1}(T ) which gives the result by induction.

2) if mD = 1, we define:

• A0 = {p | (D − 1)(p) < mD−1 and D(p) = 0}
• A1 = {p | (D − 1)(p) = mD−1 and D(p) = 0}
• A2 = {p | (D − 1)(p) < mD−1 and D(p) = 1}
• A3 = {p | (D − 1)(p) = mD−1 and D(p) = 1}

Let p2 be a point in A2: there exists exactly one line passing though p2 whose directing
point is a point p1 of A1. The other lines passing through p2 all have their directing points
in A0. Let p3 be a point in A3: all the line passing though p3 have their directing points
in A1.
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Figure 14: The two possible cases, induced by the choice of the color of p0. The color of
p′1 is forced by colors of other points

Thus, If a black directed cycle has a point in A0∪A1 then it remains in A0∪A1 (since
there is no way for the cycle to pass from A2 ∪A3 to A0 ∪A1). Thus this cycle it can be
seen as a cycle of cycle of the diagram of D{vD ,1}(T ) which gives the result by induction.

Now take a directed black cycle contained in A2 ∪A3. let. p2 be a point of A2 in this
cycle. Assume that the point p1 of A1, such that there exists a line l0 passing through p1

and p2, is white. Le p′2 the successor of p2 in the cycle. By definition of line orientations,
p′2 cannot be a point of l0, thus p′2 is element of A2. Let p′1 be the point of p1 of A1 such
that there exists a line l′0 passing through p′1 and p′2. There exists a line l2 passing through
p2 and p′2, thus, by an elementary counting of same coordinates, we see that there exists
a line l1 passing through p1 and p′1. Moreover, l1 and l2 have a common directing point
p0 in A0, and p1 is between p0 and p′1 if and only if p2 is between p0 and p′2 (see figure
14). If this last condition is realized, then p0 is necessarily black; otherwise, p0 is white.
The disposition above ensures that, in any case, the point p′1 is white (there are two cases
according to the color of p0).

Assume that the cycle has (at least) a point in A2 and a point in A3. The cycle has
to pass at least once from A3 to A2, which forces that there exists a point p2 satisfying
the hypothesis above. Thus, by induction, the following points in the cycle all are in A2,
which is is a contradiction. Thus we have two alternatives, described below :

• either the cycle is contained in A2. Thus it is a cycle of the enriched diagram of
D{vD−1,mD−1}(T ) (notice that all the lines used by the cycle are contained in A2∪A0,
thus they are lines of D{vD−1,mD−1}(T )),

• or the cycle is contained A3, Thus it is a cycle of the enriched diagram of
C{vD−1,mD−1}(T ) (notice that all the lines used by the cycle are contained in A3∪A1,
thus, for such a line, a line of C{vD−1,mD−1}(T )) with the same directing point is ob-
tained by removing the second (in the lexicographic order) point ).

In any case, we can apply an induction process. �

5.3 End of the proof

We now have the tools to easily prove Theorem 5.1
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Proof: (Th. 5.1) Let (p, p′) be a pair of points, on the same line l, such that the type
of p does not contain vD and the type of p′ contains vD. Assume that p′ is black. The
point p is necessarily the directing point of l, thus if p is white, then we have a secondary
arrow from p′ to p, and if p is black, then we have a secondary arrow from p to p′. This
yields that, in the enriched diagram, if a path of black points starts in a point whose
type contains vD, then all the types of points of this path contain vD. Moreover, such
a path is finite from Proposition 5.3. Therefore, if the enriched diagram of T contains
a black point whose type contain vD, then the enriched diagram contains a black point
whose type contain vD which is covered by no other black point. This last point can be
turned in white to get another tiling. This operation can be repeated until there is no
more black point whose type contain vD.

Afterwards, one can select a black point which is not covered by another black point.
This point can be turned in white to get another tiling. This operation can be repeated
until there is no more black point . �
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Annex

Proposition 5.4 let (v1, v2, ..., vD) be a sequence of vectors of dimension d such that,
for each subsequence (vi1 , vi2, ..., vid), the determinant det(vi1 , vi2, ..., vid) is positive. This
sequence is lexicographic.

Proof:. For each subsequence (vi1 , vi2 , ..., vid, vid+1
, vid+2

), We will study the tournament
(introduced in 4.2.2) induced by vid+2

on tiles on the lowest tiling T of the unitary zonotope
constructed on the sequence (vi1 , vi2 , ..., vid, vid+1

). There is no loss of generality in only
studying the tournament induced by vd+2 on the low tiling of the unitary zonotope Z
constructed on (v1, v2, ..., vd, vd+1).

Each tile of Z can be denoted by ti, where i is the unique integer of {1, 2, ...., d + 1}
such that vi does not appear in the type of ti.

For each pair (i, j) of distinct integers, we denote by {f+
(i,j)

, f−
(i,j)

} the pair of of facets

of ti such that f−
(i,j)

+ vj = f+
(i,j)

. This common facet ti ∩ tj is denoted by fi∩j. Hence,

either f+
(i,j)

= fi∩j or f−
(i,j)

= fi∩j .

From the definition of the lowest tiling , td+1 is in T−
{vd+1,1}. Thus the facet fd+1∩i is

f−
(i,d+1)

.

For any facet f of T and any vector v, we introduce the value sign(f, v) as the the
sign (seen as an element of {−1, 1} for convenience) of the determinant det(S, v) where
S denotes the sequence of vectors of the type of f (sorted according to the increasing
indexes). Informally, sign(f, v) is a tool to know in what sense the vector v passes through
the facet f . For each vertex v and each pair (i, j), we have sign(f+

(i,j)
, v) = sign(f−

(i,j)
, v),

thus we can canonically define sign(f(i,j), v).
From our hypothesis on determinants, we have: sign(f, vd+1) = sign(f, vd+2) = 1 for

any facet of td+1. Moreover, sign(f(d+1,i), vi) = (−1)d−i since vectors of the corresponding
determinant can be ordered in a lexicographic way by moving vi leftwards by a sequence
of d − i transpositions.

We now study the case when d − i is odd, (the case when d − i is even is treated in
a similar way). For d − i odd, sign(f(d+1,i), vi) = −sign(f(d+1,i), vd+1), which means that

vi and vd+1 pass through the face fd+1∩i in opposite senses. thus, since fd+1∩i = f−
(i,d+1)

,

we necessarily have fd+1∩i = f−
(d+1,i)

. For i < d, we also have fd+1∩i+1 is f+

(d+1,i+1)
, by the

same argument (using that sign(f(d+1,i+1), vi+1) = sign(f(d+1,i+1), vd+1).

The facet fi∩i+1 contains the (d− 2)-face fd+1∩i ∩ fd+1∩i+1 = f−
(d+1,i)

∩ f+

(d+1,i+1)
. Thus

fi∩i+1 is necessarily f+
(i,i+1)

= f−
(i+1,i)

:

let v be a vector in fi∩i+1; the vector v is f+
(i,i+1)

, i . e. there exists a vector v′ in t(i
such that v′ + vi+1 = v. This enforces that v is in f+

(i,i+1)
(one proves by a symmetric way

that v is in f−
(i+1,i)

).
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Moreover, sign(f(i,i+1), vi) = sign(f(i,i+1), vi+1) = (−1)d−i since the corresponding
determinant can be ordered in a lexicographic way by moving vi (or vi+1) leftwards by
a sequence of d − i transpositions. Thus, sign(f(i,i+1), vi) = −sign(f(i,i+1), vd+2) which
yields that vd+2 and vi pass through the facet fi∩i+1 in opposite senses. Thus the vector
vd+2 passes through fi∩i+1 from ti+1 to ti.

In other words, we have: ti+1 < ti if the order induced by vd+2. One can prove the
same result for i even. Thus, we have td+1 < td < .... < t2 < t1. This yields that the

sequence of flips successively labeled by (1, 2, ...., , d + 2) can be done, starting from the
lowest tiling of the unitary zonotope induced by (vi1 , vi2 , ..., vid+2

), which is the result. �
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