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Abstract

In this paper, we develop a formal specification for a micro-payment protocol,
first on paper, then within the Coq proof assistant. Our approach in defining a
notion of execution traces for protocol runs is inspired by previous works, no-
tably by L. Paulson (in the Isabelle/HOL system). However, we show that the
protocol we study entails some modifications to Paulson’s framework, related to
the modeling of the agents’ internal state. We moreover take profit from Coq’s
expressive meta-language to mechanically derive proofs about the formalisation
itself, by introducing a notion of well-formedness for protocol rules.

Keywords: electronic commerce, micro-payment protocols, specification,
formal proof

Résumé

Cet article présente la spécification formelle d’un protocole de micro-paiement,
d’abord par une définition sur papier, puis par une formalisation dans I’assistant
a la preuve Coq. Nous nous inspirons d’une méthode employée principalement
par L. Paulson afin d’introduire une notion de trace pour les exécutions du pro-
tocole que nous étudions. Néanmoins, le traitement du protocole en question
rend nécessaires quelques modifications a ’approche de Paulson, en rapport
avec la modélisation de ’état interne des agents. Nous exploitons le cadre for-
mel fourni par Coq pour valider la spécification qui est faite en prouvant des
propriétés de la spécification proposée, propriétés qui s’expriment a travers une
notion de bonne formation des regles définissant les étapes du protocole.

Mots-clés: protocole de commerce électronique, micro-paiement,
spécification, preuve formelle



1 Introduction

The formal analysis of cryptographic protocols has grown into an important
research thread. Various methods have been proposed to check mechanically
various kinds of properties of various kinds of protocols. Recently, the devel-
opment of e-commerce has further encouraged the study of formal methods for
security, either through the adaptation of already existing approaches or through
the design of new techniques.

The work at hand is the result of a collaboration between an academical
laboratory and a startup, called NTSys, interested in developing e-commerce
technology. We focus more precisely in this paper on a micro-payment proto-
col, referred to as the “light signatures protocol”. Micro-payment protocols are
used in situations where a client is liable to buy a big amount of goods, each
of these having a small cost. Typically, one can think of an internet service,
the content seller, providing information in such a way that each mouse click
in a certain set of web pages has a (small) price. Traditional, so-called “heavy”
cryptography (e.g. using RSA or elliptic curves) cannot be used for each such
a micro-contract, as it would dramatically slow down the transactions. Alter-
native solutions have then to be found, based on a trade-off between efficiency
of the protocol and security matters, which are of course always crucial in the
context of electronic commerce. The light signatures protocol® has been in-
troduced to adress this question. The basic ideas of the protocol have been
presented in [Opp0la, PBMO01], together with a-rather informal-description of
its behaviour. The general micro-payment system is structured in such a way
that a confidence party, whose role is to arbritrate transactions between several
content sellers and Internet end-users, aggregates the micro-transactions and
monitors the contracts. In this infrastructure, the light signatures protocol is a
client/server security protocol intented to be run between a content seller and
the confidence party. Its goal is to provide authentication for the online control
and registration of the transactions.

The formal definition of the light signatures protocol has been developed
progressively, towards and increasing level of precision in the description of
the protocol steps. What we present here is the result of this process: we
describe the formal specification of the protocol, and establish results about
this specification, but we do not address the security properties satisfied by the
protocol itself. This is left for future work. It has actually turned out that,
already in setting up a formal analysis of the original version of the protocol,
many security issues could be raised, and small mistakes or imprecisions could
be fixed.

In this paper, we describe the resulting protocol in several steps, from a
rather informal account of the interactions between parties to a more mathe-
matical presentation of the protocol, and finally to a mechanical definition. For
this last step, we have used the Coq proof assistant [Bar01], which is an inter-
active theorem prover based on the Calculus of (Co)Inductive Constructions.

In moving towards mechanical verification like is the case in this work, we
isolate some difficult points in the protocol that we want to understand and

3The use of light signatures in micro-payment systems is patended by NTSys; light signa-
tures are based on an original idea by Jacky Montiel.



validate, and leave aside some others (either by keeping them outside the repre-
sentation framework or by “underspecifying” them). This is frequently the case
when performing an analysis like ours. What is important, though, is to keep
track of the simplifying assumptions that are made, so as to be aware of “what
is actually being proved”, and, in a further step, to caractherise the attacks
against which the protocol has been proved to be robust.

It may also be the case that the specification process itself introduces some
unexpected behaviour of the protocol: for example, a given simplification in the
protocol can have the effect of allowing more interactions between agents than
were actually possible in the original, more intricate, version. One is therefore
interested in reasoning about the specification under construction, to establish
properties that are more related to the specification itself than to the system
being specified. Another motivation for this kind of reasoning comes from our
experience in designing the description of the protocol: as the presentation
moved towards a very formal account, some of the people involved in this work,
who were less skilled in formal methods, wanted to be sure that we were “still
talking about the same thing”. If we have a way to prove some properties of
the specification saying that the formal entities that we manipulate actually do
what they are supposed to do, we can increase the confidence in the adequacy of
the specification under constuction. We have developed this kind of reasoning
within our Coq specification of the light signatures protocol, in order to prove
mechanically that the rules of the protocol as they are stated in Coq satisfy a
kind of well formedness (a notion that we define below).

Contributions The contributions of this work are twofold. First, we present
the formal specification of a new micro-payment protocol, described as a set of
traces. Second, we propose a novel approach for the mechanical reasoning about
the specification itself, that can be combined (in the Coq system) with Paulson’s
inductive approach for the study of the traces and of possible interferences with
evil agents.

Related works Paulson’s work [Pau97, Pau98, Pau99] has been a major in-
fluence in introducing a notion of traces for our protocol. However, we use Coq
instead of Isabelle/HOL [Pau94b, Pau93|, which will have some consequences
on our formalisation, as will be seen in Sec. 4. It has to be noted that the work
of Bolignano [Bol96] has led to the definition of a theorem proving framework
for the verification of cryptographic protocols in Coq. Our approach however is
closer to Paulson’s in the way we formalise traces.

Outside the theorem proving community, different techniques have been pro-
posed for the formal study of cryptographic protocols. We can mention in par-
ticular approaches based on model checking [Low97, Mea96], on process algebra
descriptions of protocols [AL00, AF01, AG99, Bor01], as well as term-rewriting
techniques [JRV00].

Outline of the paper The paper is structured towards an increasingly for-
mal understanding of the micro-payment protocol we study. We first introduce
its principles in Section 2. In Section 3, we turn to a more mathematical pre-
sentation, by defining a notion traces generated by protocol runs. We then
turn to the Coq mechanisation, by describing the specification of the protocol



in Section 4 and the proofs about our specification in Section 5. In Section 6,
we conclude and comment on some important originalities of the approach we
have followed, especially in the methodology we use for the formalisation of the
micro-payment protocol.

Parts of this work have been presented in [Opp01b]. The Coq development
corresponding to the formalisation discussed in Sections 4 and 5 is available at
http://www.ens-lyon.fr/~hirschko/oppidum

2 The Micro-Payment Protocol: Informal De-
scription

In this section, we present the light signatures protocol, as introduced in [PBMO01],
and discuss the simplifying assumptions that we make for the sake of our formal
study.

2.1 Preliminaries

The light signatures protocol specifies the transactions between a client and
a confidence party that plays the role of a server. Its general principle is as
follows: first the client generates a seed «, and sends a to the server. Heavy
cryptography (typically, RSA) is used for this transaction. Once both agents
know the seed, they can prepare for the protocol by computing a sequence of 2N
nonces, where the integer NV is a bound on the number of transactions between
client and server in the current session. The nonces are computed by applying
a one-way hash function H to «, generating the sequence

a, H(a), H*(a), H3(a), ...
Thus the ith nonce N; is equal to H*"1(a).

Remark 1 H being a hash function, it is easy to compute N;11 from N;, and
we suppose it is much more difficult the other way around. This is the base idea
which is used in the transactions that take place once initialisation is done and
both agents know the Nj;s.

Once the generation of the nonces sequence is completed on both sides, the
agents start exchanging messages of the following form:

(Ag, k, Sign(C, k), C),

where Ag is the identifier of the agent (client or server), C' is the content being
transmitted (a query of the client or an ackowledgment of the server), k is an
integer computed from the agent’s current session indez (to be described below),
and Sign(_,_) is a signature function that is used to authenticate the message.
We set

Slgn(C, k) déf HI(C, N2N717k:)7

where H' is a hash function (possibly taken equal to H).
Along the execution of the protocol, each agent maintains an internal index
that is incremented after each query/answer; this index allows both parties to



synchronise and to detect strange behaviours in transactions. By definition, the
client sends messages of the form (Clt, 2 * Indcit, Sign(Qrnde,, > Indcit), Qrndey, )
where Indgy; is the current value of the client’s index. Symmetrically, the server
answers using nonces corresponding to odd integers computed from its current
internal index Indg,,, and sending acknowledgments of the form Arpq4.,,. It
can be noted that by definition of the signature function, the nonces will be
used in reverse order, according to Remark 1 above.

2.2 Description of the Protocol

Let us now describe the protocol in a more formal way. We adopt the usual
notation of the form A — B : M to say that at a given step of the protocol,
agent A sends message M to agent B.

e Initialisation and first message the client computes a fresh seed o and
sends it using public key cryptography to the server:

(Clty) Clt — Srv : (Clt,0,Sign({{a, Qo}sci } Psry>0); Qo) -

Scie and Ps,., are respectively the client’s private key and the server’s public key;
private/public keys of every agent are supposed to be the inverse of eachother
in the encryption/decryption process. Once both agents know the seed «, they
compute the sequence of nonces N;s and store it locally (in a protected area).
Note that the very first message of the protocol has a somehow special form,
because, together with the first request Qg, the client also has to send the seed
a. Therefore, public key cryptography is used to encrypt the the pair {a, Qo},
using the client’s shared key S¢;; and the server’s private key Pgy.,,.

A different initialisation step is actually described in [PBMO1], where the
first message is (Clt,0,{{a}ss, }Ps.,» Sign(Qo,0), Qo). The modification we
have brought here is mainly due to technical reasons, in order for all messages
to be 4-uples, which will simplify the formal study. However, there does not
seem to be any reason to fear a security loss in encrypting the seed together
with @ instead of treating both contents separately as is done in [PBMO1].

e Client’s requests the requests of the client-represented as the ();s—are sent
in messages corresponding to even indices of the nonces:

(Cltl) Clt — Srv : <Clt, 2 % I?’de[t, Sign(QIndC“, 2 % I?’LdClt), QIndClt> .

e Server’s responses symmetrically, answers of the server—the A;s—are sent
with odd nonce indices:

(Srvy) Srv—Clt: (Srv, 2 Indgy, + 1,Sign(Arnds,.,, 2 * Indgry + 1), Arnds,., )-

The last query/answer exchange in a normal run of the protocol happens when
rules (Clt;) and (Srvy) are used with Ind = N — 1, and has the effect of
concluding the session.

e Desynchronisation on the client’s side rule (Clt;) above specifies the
emission of client’s requests during a normal execution of the protocol. In
particular, before sending the (¢ + 1)th request, the client makes sure that the
last message received from the server has been generated with the right index
(i.e. 7). Let us now examine the case where the index Indg,, in the last message
received by the client does not correspond to its “view” of the protocol, as
defined by index Indcy;.



There are two cases: either the last message from the client is such that
Indg,, < Indcy: this probably corresponds to an old message from the server,
that has been accidentally resent to the client. In that case, the client simply
ignores it (or may decide to send a warning message to the client, in an enriched
version of this protocol). If Indg,, > Indc; (and if the message from the server
has the right shape), the situation is much more suspect: in some way, either
an evil agent has managed to construct messages to be sent “in the future”,
or for some reason the server erroneously believes that more transactions have
taken place than is actually the case. The best thing to do here is to abort the
protocol session: this is done by sending a message built with the last client
integer (namely 2V) and pointing the fact that an error has occured:

(Clty) Clt — Srv : (Clt,2N — 2,Sign(Error,2N — 2), Error) .

Error is a special message to indicate a misbehaviour.

e Desynchronisation on the server’s side A similar situation may occur on
the server’s side, with a received client index Indcg;; that does not correspond
to the server’s internal index Indg,,. If Indc;; < Indg., this is probably an
old message, ignore it. If Indg;; > Indgy,, then it may be the case that some
messages from the client were lost; the server resynchronises with the client by
setting its current session index to Indci: (and may emit a warning message).

(Srva) Srv — Clt : (Srv,2* Indcy: + 1,Sign(R, 2 * Indcit + 1), Arnds,, ) -

Note that at every step, a transaction has to be initiated by the client and
acknowledged by the server: this is the reason why the reaction of the agents
differs whenever they discover that the other agent seems to be “ahead of time”
in the protocol.

e Time outs If the client fails to receive an acknowledgment from the server
for a given amount of time (to be fixed in practice), he generates a time out, and
sends his last message to the server again. After a given amount of time outs,
the client decides to abort the protocol session, by sending the same message
as in rule (Clt3) above. Therefore, in addition to his current session index, the
client also has to keep track of the number of time outs that have been occurred
in order to be able to decide to abort the transactions.

On the server side, the time out mechanism is somehow simpler: after re-
ceiving no query from the client for a certain amount of time, the last nonce
is sent along with an error message to inform the client that the protocol is
aborted. This corresponds to the following step:

Srv — Clt : (Srv,2N —1,Sign(Err,2N — 1), Err) .

2.3 Discussion — Simplifications Made for the Formal Study

We have given a first description of the light signatures protocol, which is rather
close to the presentation of [PBMO01]. With respect to that work, we have al-
ready introduced a few small refinements in some protocol steps, but many
aspects are still unprecise. For example, it is not clear when agents index mod-
ifications have to occur, or how the session starts on the server’s side. One of
the contributions of the formal description we shall present in the next section
is to give a more detailed treatment of these issues.



We first discuss here some of the aspets of the light signatures protocol that
are not handled in our formal study. As said before, it is important to be aware
of the simplifications we make for the sake of our analysis, in order to understand
the limitations of the specification.

The first issue that we do not address here is time. The overall duration of
the a session of the protocol, as well as the value of time outs on the client’s and
the server’s sides, are to be fixed by practical experiments on an actual imple-
mentation of the protocol. Note however that the shape of the transition rules
we shall present in the next section determines (temporal) causality relations
between message emissions.

We do not describe either the mechanisms that are used to take into account
several contemporaneous sessions, though the handling of freshness of the seed
a. Such issues are rather common in cryptographic protocols, and we believe
that traditional techniques can be used for this purpose.

Finally, as said above, we dont not handle warning messages in the current
description of the protocol. These could be included in a future, more detailed,
specification of the light signatures.

3 A Notion of Trace

In this section, following Paulson’s approach, we inductively define a set of
traces generated by possible protocol runs. Informally, the idea is to represent
the traffic on the network due to the protocol, and describe the messages that
can be sent by the various agents, these messages being possibly intercepted by
an evil agent. Agents which obey the protocol react to the presence of messages
of a certain form on the network by emitting new messages, and so on until
the protocol completes. Of course, at any point in the execution, some agent
watching the traffic on the network can choose to pick a message and try to
decode it, or to resend either previously emitted messages or newly generated
ones. This is captured by the Spy’s behaviour in Paulson’s framework [Pau98].
In the present study, we do not represent the spy and its possible attacks yet,
but rather focus on the construction of protocol traces. The formalisation we
obtain can be enriched following the lines in [Pau98] to handle attacks.

According to this approach, a typical rule for the inductive construction of
protocol traces would state something like

“if a message of shape M 1is present on the network, then add a
message M’ to the current traffic”,

this behaviour corresponding to some step in the protocol where an agent B
replies to A’s message M by sending message M'. We shall see below how this
kind of construction can be defined in a formal way.

3.1 Internal State of Agents

An important specificity of the protocol we study is that both the client’s and the
server’s behaviours depend on an internal representation of the current status
of the protocol session (session index and number of time outs for the client,
session index for the server). This seems to be in contrast with the methodology
described above, where the traces are generated by adopting a global point of



view on message traffic. Indeed, we have modified the framework to take into
account a global notion of state, to represent the information mantained by each
agent. The informal description of each protocol step given above is then refined
into something like

“if a message of shape M is present on the network and the current
state is E, then set state to be E' and emit message M'”.

Of course, this way of presenting the protocol rules is much too general, for
at least two reasons. First, the message M’ that will be emitted will clearly
depend most of the time on the shape of M. Second, the possible modification
to the global state will heavily rely on the agent which is supposed to react at
this step of the protocol, and in particular, we wish to be sure that the agent
may modify the values of “its” components of state, leaving e.g. the index of
the other agent unchanged.

It turns out indeed that adopting a very general approach like we do here
simplifies the task of the formalisation: trying to separate the global structure
representing the state of each agent into several pieces, to take into account the
private character of state, would probably lead to more complex notations and
representation mechanisms. On the other hand, one has to make sure that the
flexibility we gain is not misused, for example by allowing an agent to modify
an other agent’s private values: this is the issue we shall address in Section 5.

3.2 Generating Traces

Let us now move to the formal definition of traces. Every step of the protocol
(except initialisation, see below) is described by a rule of the form

E & M
MI;EI

This judgment means that whenever the system is in state £ and M belongs
to the current trace, first message M’ is emitted (added to the trace), then
the system evolves to state E’. It is important to notice that state modification
takes place after emission of the message, so that one can tell the value of indices
possibly used in the content of the message.

The rules that define the traces generated by protocol runs are given on
Figure 1. They correspond to a precise formalisation of the description given
in Sec. 2. The correspondence is rather easy for rules c;, ¢z, s1 and s2, which
embed rules Clt;, Clty, Srv; and Srv, respectively. Note however that in this
presentation the update of internal indices has been made explicit. The rules for
the initialisation of the protocol on both sides, namely ¢y and sg, specify how
the agents start a new session and set their indices to 0. In particular, rule ¢
has no premiss, as the client can decide at any time to start a protocol session.

With respect to the presentation of [PBMO01], we have added rule sq to model
the protocol initialisation on the server’s side: this allows us to state explicitely
at which point the session index of the server is set to 0, and to make precise
the freshness condition on the seed a. Indeed, without this freshness condition,
any evil agent could keep resending the client’s first message, which would have
the effect of restarting the protocol on the server’s side, thus bringing a form of
denial of service.
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{Srv, 2N — 1, Sign(Err,2N — 1), Err} 5 (-, -]|0)

Figure 1: Definition of traces



The rules for the descrption of time outs are also new with respect to [PBMO1]:
they allow us to take time outs into account in our description of the protocol
without explicitely giving a notion of time along protocol runs. Indeed, we in-
stead introduce a form of non-determinism in the description of the protocol,
which makes it possible to model any possible run of the protocol (possibly in-
terleaved with server or client time-outs), thus freeing us from the necessity of
handling a notion of time. Rules ro.; and to.2 model time outs on the client’s
side, while rule To, defines the server’s time outs.

4 The Protocol in Coq

4.1 The Coq Proof Assistant

For the implementation of our specification, we have adopted the Coq proof
assistant [Bar01]. This system is an theorem prover based on the Calculus of
(Co)Inductive Constructions, that allows the user to define theories and inter-
actively build proofs about the objects that have been introduced. One of the
main original features of Coq with respect to Isabelle is the presence of depen-
dent types [CH88], which we exploit in the present work. Indeed, while on one
hand one could that Isabelle/HOL provides a more powerful language of tactics,
Coq’s metalanguage comes with greater expressiveness, which shall be exploited
below to reason on our formalisation within the prover.

Coq’s syntax is somehow reminiscent of a programming language a la ML,
with the following notations and definitions:

- We shall work with Coq’s Set and Prop kinds. While Prop is the kind for
(non-informative) proof objects, Set is used to build constructions whose
structure can be analysed. This will be useful below.

- Product types (resp. abstractions) are written (x:T)T’ (resp ([x:T1T?).
When T’ expresses a property or a logical statement, (x:T)T’> may be
read “for all = of type T, T’ holds”.

- Inductive types are declared using the Inductive keyword, by providing
the type of each constructor. After such a definition, the corresponding
case-analysis and elimination principles are automatically computed by
Coq.

These informal explanations should be enough to follow the code excerpts
that are provided in the following paragraphs. The reader interested in more
details should refer to the documentation of the system [Bar01].

4.2 Representing the Entities Involved in the Protocol

Figure 2 presents the Coq code for the specification of the data structures we
need to specify the micro-payment protocol. Let us paraphrase these definitions:

- We represent two agents, the client and the server (according to Paulson’s
methodology, the spy shall come into the play afterwards).

- Message bodies can either consist in client’s queries (Q1, Q2, - -.), server’s
answers (Ajy, Ay, ...), or error messages.



Inductive agent : Set := Clt : agent | Srv : agent.
Parameter seed : Set.

Inductive content : Set :=
A : nat —> content | Q : nat -> content | Err : content
| Seed : seed -> content -> content.

Inductive signed : Set := Sign : content -> nat -> signed.

Inductive message : Set :=
msg : agent -> nat -> signed -> content -> message.

Inductive state : Set :=
st : nat -> nat -> nat -> state.

(* an axiomatisation of a set constructor *)

Parameter set : Set -> Set.
Parameter in_set : (S:Set)(set S) -> S -> Prop.
Parameter add_set : (S:Set)S -> (set S) -> (set S).
Parameter empty_set : (S:Set)(set S).
Definition mk_set := [S:Set][x:S](add_set S x (empty_set S)).
Definition incl_set := [S:Set][sl1,s2:(set S)]

(x:8)(in_set S s1 x) -> (in_set S s2 x).
(* a very reasonable property relating in_set and add_set *)
Parameter in_add :

(S:Set) (s:(set S))(x:S) (in_set S (add_set S x s) x).

Definition trace := (set message).

Figure 2: Coq definitions for the entities involved in the protocol
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- The specification of the signature function boils down to a tuple definition.
Its properties can be postulated independently.

- Current state is given by a quadruple of integers.

- The definition of the trace relies on a straightforward axiomatisation of a
set constructor enjoying elementary properties. This part of the specifica-
tion is left unspecified for the moment, as it does not influence the results
we are interested in here.

4.3 Implementing Traces

The rules given at Figure 1 can be translated rather directly into a Coq definition
of an inductive object micro of type state -> t:trace -> Set. Intuitively, a
term of type (micro e t) means that there exists an execution of the protocol
leading to state e and generating trace t.

Here is an example, giving the type associated to the constructor c1 of the
inductive type micro:

cl : (e:state)(t:trace) (micro e t) ->
(c:nat)
(in_set message t (msg Srv (S (mult (2) c))
(Sign (A ¢) (S (mult (2) c))) (4 ¢)))
/\ (state_c e)=c
-> (micro (inc_c e) (add_set message
(msg Clt (S (mult (2) c))
(Sign (Q (S ¢)) (S (mult (2) ¢))) (Q (S ¢)))
t))

As we can see, modulo some syntactical conversions (mult is Coq’s multi-
plication on natural numbers, S is the successor function, /\ is conjunction,
and state_c and inc_c are obvious functions to manipulate state), we basically
recognise rule c¢; from Figure 1. Keeping rules close to their formulation on
paper is good practice because it gives confidence that no hidden anomaly or
extra hypothesis is added in the process of porting the specification into the
machine. Of course, this is possible in our case because the rules we use to
describe traces are already very formal. Such rules were obviously not the kind
of tools we have been using at early stages of the protocol formalisation. It is
useful to go through a step where we have a definition as precise as possible on
paper before going on the machine, in order for the person(s) in charge of the
mechanical specification to take as few unnoticed design decisions as possible as
far as the protocol is concerned (we indeed proceeded this way in the present
work).

Limitations of the specification For the moment, we have not taken into
account the freshness condition on the seed «, neither have we formalised rules
10.1, T0.2 and ro, in Coq. Defining the properties of o should be done at some
point when verifying the protocol, exactly like specifying the behaviour of the
signature function Sign. As we have said above, this is not our purpose yet,
as we are rather interested in examining the kind of traces that are generated
when executing our micro-payment protocol. We believe though that providing
a notion of freshness for seeds within our specification should not be a problem-
atic issue. As far as leaving rules for the managment of time outs outside our
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specification, we think that it can be good practice to first study the protocol
without time outs, to check its behaviour in “normal conditions”, and then add
time outs into the game. Moreover, the specification of the protocol we work
with is smaller without time outs, which is helpful in terms of clarity of our
study. Here again, we do not think that formalising the extra rules to handle
time outs would cause any difficulty in the framework we are presenting.

5 Reasoning about the Encoding of the Protocol

5.1 State Integrity

As has been noted in paragraph 3.1, the framework we use to formalise the
protocol rules and their effect on internal states of agents is rather general, and
may a priori make it possible to represent quite weird behaviours. One problem
is due to the notion of global state where every information about every agent’s
state can be represented in formulating a rule.

Well-behaved protocols nevertheless should be designed in such a way that
every agent only has the possibility to modify its own component of the global
state (at least—one could also think of situations where the internal state of other
agents should not be accessible, not only in writing, but also in reading). We re-
fer to this property as state integrity, to express the fact that the protocol rules
indeed respect this assumption. In the following, we define a framework to cap-
ture within Coq a notion of well-formedness for protocol rules, which basically
says that the interaction described by a given rule respects state integrity.

5.2 Well-Formedness of the Protocol Specification

In order to reason on the evolutions of global state, we define a function ex-
tracting from a trace object a pair of successive states during the execution of
the protocol. This function, called next_state, is of type
state -> (e:state) (t:trace)(micro e t) -> Prop.

It is defined by case analysis on the structure of its fourth argument, namely
an hypothesis H of type (micro e t). Using implicit arguments (a mechanism
available in Coq to simplify notations by allowing the user to omit redundant
parameters in function calls), we can reason on terms of type (next_state e0
H) (H being of type (micro e t)); the existence of such a term represents the
fact that the protocol makes state e0 evolve into e.

Analogously, we can introduce a function added message, extracting from
an hypothesis H of type (micro e t) the last message added in the execution
of the protocol so far. Functions next_state and added message are then used
to state and prove the following theorem, establishing well-formedness of the
constructors of the inductive type micro:

Theorem wf_rules : (e,e’:state) (t:trace)
(H: (micro e’ t)) (next_state e H)
->

(* either the client is sending, and s is invariant ... *)
( (state_s e)=(state_s e’) /\ (msg_sender (added_message H))=Clt ) \/
(* ... or the server is sending, and ¢ is invariant. *)

( (state_c e)=(state_c e’) /\ (msg_sender (added_message H))=Srv ).
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Theorem wf_rules expresses the fact that in any step in the execution of the
protocol, only the internal state of the sender of the last message being emitted
may have changed in the last protocol step. In other words, this means that
no agent can modify other agents’ state. Once the functions for the analysis of
protocol traces have been defined, this result is easily proved by case analysis
on the shape of the object of type (micro e’ t).

5.3 Exploiting Dependent Types to Derive Proofs about
the Specification

In the paragraphs above, we have been able to state and prove some properties
about objects of type micro within the Coq system. To achieve this, we have
defined ways to analyse the structure of an hypothesis H: (micro e t) in order
to extract the information we needed for our proofs. This has been possible
in a rather natural way by exploiting Coq’s setting where proofs are terms
(and propositions are types), these terms possibly having dependent types (like
(micro e t)). These features are specific to Coq w.r.t. Isabelle/HOL, so we
believe that the proofs we have derived could not be directly adapted to the
setting of Paulson.

Remark 2 (About Set and Prop) We have defined micro as a predicate hav-
ing values in Set because we were interested in analysing the structure of a trace.
Indeed, Coq’s distinction between kinds Prop and Set introduces a form of asym-
metry between types carrying a constructive information, which are in Set, and
types in Prop, that are seen as “comments”, to be erased when performing pro-
gram extraction. As a consequence, it is not possible to eliminate an object
in Prop to construct something in Set, which is exactly what we wanted to do
when defining function next_state above. Therefore, we have been led to define
micro in Set, so as to have all elimination principles we need to mechanically
derive proofs about the shape of protocol execution traces.

6 Conclusion

In this paper, we have presented the formal specification of an original micro-
payment protocol, and implemented its specification in the Coq proof assistant.
In doing this, we have modified Paulson’s approach by introducing a notion
of internal state of the agents, and we have established some well-formedness
properties of the encoding w.r.t. the novelty of state managment.

The fact that we have to manipulate some internal knowledge of the agents
along the execution of the protocol is not due to the kind of protocol we have
examined, but rather to the design choices that have been made in defining
the protocol. However, this specificity has been smoothly integrated into the
framework used by Paulson, which demonstrates the flexibility of the inductive
approach for the verification of cryptographic protocols.

Using Coq instead of Isabelle/HOL has made it possible to reason about the
formalisation within the prover rather easily. The theorem we have proved in
paragraph 5.2 above captures a property of the constructors of the inductive
type we use to represent traces. As we have seen, this comes quite naturally in
Coq, using dependent types. It would be interesting to study how this kind of
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proofs could be formalised in Isabelle/HOL. It could be the case that to achieve
this, the user would in some way have to deal with the technicalities involved
in the object-level development of inductive types in Isabelle/HOL [Pau94al. It
is no surprise, anyway, that proofs about the object-level formalisation bring
to light the rather strong differences between Coq and Isabelle’s underlying
frameworks. Still, the general approach defined by Paulson can be adopted
without much conceptual differences in both systems.

We have found it important to define a mechanism to guarantee that the
managment of state is done in a safe way in the rules of our protocol, mostly
because this feature is original w.r.t. previous works. It would be interesting,
more generally, to find out whether other properties about the representation of
the protocol could be formalised and verified within the prover, so as to be able
not only to reason about the protocol, but also about its representation. It is
indeed common knowledge that many important decisions in the formal proof
activity are taken when specifying the entities one shall reason about: on one
hand, oversimplifying the representation of a problem can make its verification
easy (but questionable as far as the meaning of the resulting proof is concerned),
and on the other hand, specifying too many aspects of a problem may prevent
any formal proof to be completed. Tools to study the specification itself can
help in finding a compromise in this context.
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