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Abstract

Multipartitioning is a strategy for partitioning multi-dimensional arrays
on a collection of processors. With multipartitioning, computations
that require solving 1D recurrences along each dimension of a multi-
dimensional array can be parallelized effectively. Previous techniques for
multipartitioning yield efficient parallelizations over 3D domains only
when the number of processors is a perfect square. This paper con-
siders the general problem of computing optimal multipartitionings for
d-dimensional data volumes on an arbitrary number of processors. We
describe an algorithm that computes an optimal multipartitioning for
this general case, which enables efficient parallelizations of line-sweep
computations under arbitrary conditions. Finally, we describe a proto-
type implementation of generalized multipartitioning in the Rice dHPF
compiler and performance results obtained when using it to parallelize
a line sweep computation for different numbers of processors.

Keywords: loop parallelization, array mapping, generalized latin squares,
High Performance Fortran
Résumé

Le “multi-partitionnement” est une stratégie de partitionnement multi-

dimensionnel de tableaux sur un ensemble de processeurs. Grace
au multi-partitionnement, des calculs qui nécessitent la résolution
de récurrences 1D le long de chaque dimension d’un tableau
multi-dimensionnel peut étre parallélisée efficacement. Les techniques
précédentes de multi-partitionnement fournissaient des parallélisations
efficaces pour des tableaux 3D mais uniquement pour un nombre de
processeurs égal & un carré parfait. Dans ce rapport, nous considérons
le probleme général du calcul d’un multi-partitionnement optimal pour
des volumes de données en dimension d pour un nombre quelconque
de processeurs. We donnons un algorithme qui calcule un multi-
partitionnement optimal pour ce cas général ce qui permet la pa-
rallélisation efficace des calculs par vagues 1D dans n’importe quelles
conditions. Finalement, nous décrivons également un prototype d’im-
plantation dans le compilateur dHPF de Rice et les résultats de perfor-
mances obtenues lorsque le nombre de processeurs varie.

Mots-clés: parallélisation de boucles, allocation de tableaux, carrés latins
généralisés, High Performance Fortran
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Abstract

Multipartitioning is a strategy for partitioning multi-dimensional arrays among a collection of
processors so that line-sweep computations can be performed efficiently. The principal property
of a multipartitioned array is that for a line sweep along any array dimension, all processors
have the same number of tiles to compute at each step in the sweep. This property results in
full, balanced parallelism. A secondary benefit of multipartitionings is that they induce only
coarse-grain communication.

All of the multipartitionings described in the literature to date assign only one tile per
processor per hyperplane of a multipartitioning. While this class of multipartitionings is optimal
for two dimensions, in three dimensions it requires the number of processors to be a perfect
square. This paper considers the general problem of computing optimal multipartitionings
for multi-dimensional data volumes on an arbitrary number of processors. We describe an
algorithm to compute a d-dimensional multipartitioning of a multi-dimensional array for an
arbitrary number of processors. When using a multipartitioning to parallelize a line sweep
computation, the best partitioning is the one that exploits all of the processors and has the
smallest communication volume. To compute the best multipartitioning of a multi-dimensional
array, we describe a cost model for selecting d, the dimensionality of the best partitioning, and
the number of cuts along each partitioned dimension. In practice, our technique will choose a
3-dimensional multipartitioning for a 3-dimensional line-sweep computation, except when p is a
prime; previously, a 3-dimensional multipartitioning could be applied only when /p is integral.

Finally, we describe a prototype implementation of generalized multipartitioning in the Rice
dHPF compiler and performance results obtained when using it to parallelize a line sweep
computation for different numbers of processors.

1 Introduction

Line sweeps are used to solve one-dimensional recurrences along each dimension of a multi-dim-
ensional discretized domain. This computational method is the basis for Alternating Direction
Implicit (ADI) integration — a widely-used numerical technique for solving partial differential equa-
tions such as the Navier-Stokes equation [5, 16, 18] — and is also at the heart of a variety of
other numerical methods and solution techniques [18]. Parallelizing computations based on line

*This work performed while a visiting scholar at Rice University.



sweeps is important because these computations address important classes of problems and they
are computationally intensive.

The recurrences along a dimension that line sweeps are used to solve serialize computation of
each line along that dimension. If a dimension with such recurrences is partitioned, it induces
serialization between computations on different processors. Using standard block unipartitionings,
in which each processor is assigned a single hyper-rectangular block of data, there are two classes of
alternative partitionings. Static block unipartitionings involve partitioning some set of dimensions
of the data domain, and assigning each processor one contiguous hyper-rectangular volume. To
achieve significant parallelism for a line sweep computation with this type of partitionings requires
exploiting wavefront parallelism within each sweep. In wavefront computations, there is a tension
between using small messages to maximize parallelism by minimizing the length of pipeline fill and
drain phases, and using larger messages to minimize communication overhead in the computation’s
steady state when the pipeline is full. Dynamic block unipartitionings involve partitioning a single
data dimension, performing line sweeps in all unpartitioned data dimensions locally, transposing
the data to localize the data along the previously partitioned dimension, and then performing the
remaining sweep locally. While dynamic block unipartitionings achieve better efficiency during a
(local) sweep over a single dimension compared to a (wavefront) sweep using static block unipar-
titionings, they require transposing all of the data to perform a complete set of sweeps, whereas
static block unipartitionings communicate only data at partition boundaries.

To support better parallelization of line sweep computations, a third sophisticated strategy for
partitioning data and computation known as multipartitioning was developed [5, 16, 18]. Multi-
partitioning distributes arrays of two or more dimensions among a set of processors so that for
computations performing a directional sweep along any one of the array’s data dimensions, (1) all
processors are active in each step of the computation, (2) load-balance is nearly perfect, and (3) only
a modest amount of coarse-grain communication is needed. These properties are achieved by care-
fully assigning each processor a balanced number of tiles between each pair of adjacent hyperplanes
that are defined by the cuts along any partitioned data dimension. We describe multipartitionings
in Section 2. A study by van der Wijngaart [21] of implementation strategies for hand-coded paral-
lelizations of ADI Integration found that 3D multipartitionings yield better performance than both
static block unipartitionings and dynamic block unipartitionings.

All of the multipartitionings described in the literature to date consider only one tile per pro-
cessor per hyperplane along a partitioned dimension, even the most general class known as diagonal
multipartitionings. While diagonal multipartitionings are always possible in two dimensions, they
require in 3D that the number of processors is a perfect square. We consider the general problem
of computing optimal multipartitionings for d-dimensional data volumes on an arbitrary number
of processors, which enables efficient parallelizations of line-sweep computations under arbitrary
conditions.

In the next section, we describe prior work in multipartitioning. Then, we present our strat-
egy for computing generalized multipartitionings. This has three parts: an objective function
for computing the cost of a line sweep computation for a given multipartitioning, a cost-model-
driven algorithm for computing the dimensionality and tile size of the best multipartitioning, and
an algorithm for computing a mapping of tiles to processors. Finally, we describe a prototype
implementation of generalized multipartitioning in the Rice dHPF compiler for High Performance
Fortran. We report preliminary performance results obtained using it to parallelize a computational
fluid dynamics benchmark.



2 Background

Johnsson et al. [16] describe a two-dimensional domain decomposition strategy, now known as a
multipartitioning, for parallel implementation of ADI integration on a multiprocessor ring. They
partition both dimensions of a two-dimensional domain to form a p x p grid of tiles. They use a
tile-to-processor mapping 60(i,7) = (i — j) mod p, where 0 < 4,j < p. Using this mapping for an
ADI computation, each processor exchanges data with only its two neighbors in a linear ordering
of the processors, which maps nicely to a ring.

Bruno and Cappello [5] devised a three-dimensional partitioning for parallelizing three-dim-
ensional ADI integration computations on a hypercube architecture. They describe how to map a
three-dimensional domain cut into 2¢ x 2 x 2¢ tiles on to 22¢ processors They use a tile to processor
mapping 6(7, j, k) based on Gray codes. A Gray code gs(r) denotes a one-to-one function defined
for all integers r and s where 0 < r < 2% that has the property that g5(r) and gs((r + 1) mod 2°)
differ in exactly one bit position. They define 6(i, j, k) = gq4((j + k) mod 2%) - g4((i + k) mod 2%),
where 0 < 4, j, k < 2¢ and - denotes bitwise concatenation. This 6 maps tiles adjacent along the i or
j dimension to adjacent processors in the hypercube, whereas tiles adjacent along the £ dimension
map to processors that are exactly two hops distant. They also show that no hypercube embedding
is possible in which adjacent tiles always map to adjacent processors.

Naik et al. [18] describe diagonal multipartitionings for two and three dimensional problems.
Diagonal multipartitionings are a generalization of Johnsson et al’s two dimensional partitioning
strategy. This class of multipartitionings is also more broadly applicable than the Gray code based
mapping described by Bruno and Cappello. Tghe three-dimensional diagonal multipartitionings
described by Naik et al. partition data into p? tiles arranged along diagonals through each of
the partitioned dimensions. Figure 1 shows a three-dimensional multipartitioning of this style
for 16 processors; the number in each tile indicates the processor that owns the block. In three
dimensions, a diagonal multipartitioning is specified by the tile to processor mapping (i, 7, k) =
((i — k) mod \/p)\/p+ ((j — k) mod /p) for a domain of /p x \/p x \/p tiles where 0 < i,5,k < /p.

J

1 5 9 |13
i 2 6
3 7 6
4
5 9| 13| 1
4
6 10| 14| 2
5
7 11| 15| 3

Figure 1: 3D Multipartitioning on 16 processors.



More generally, we observe that diagonal multipartitionings can be applied to partition d-
dimensional data onto an arbitrary number of processors p by cutting the data into p slices in
each dimension, i.e., into an array of p? tiles. For two dimensions, this yields a unique optimal
multipartitioning (equivalent to the class of partitionings described by Johnsson et al. [16]). But,
for d > 2, cutting data into so many tiles yields inefficient partitionings with excess communication,

1
except when pd-T is integral.

3 Generalized Multipartitioning

Bruno and Cappello noted that multipartitionings need not be restricted to having only one tile per
processor per hyperplane of a multipartitioning. [5] How general can multipartitioning mappings be?
Obviously, to support load-balanced line-sweep computation, in any hyperplane of the partitioning,
each processor must have the same number of tiles. We call any hyperplane in which each processor
has the same number of tiles balanced. This raises the question: can we find a way to partition a
d-dimensional array into tiles and assign the tiles to processors so that each hyperplane is balanced?
The answer is yes. However, such an assignment is possible if and only if the number of tiles in
each hyperplane along any dimension is a multiple of p. We describe a “regular” solution (regular
to be defined) to this general problem that enables us to guarantee that the neighboring tiles of
a processor’s tiles along a direction of a data dimension all belong to a single processor — an
important property for efficient computation on a multipartitioned distribution.

In Section 4, we define an objective function that represents the execution time of a line-sweep
computation over a multipartitioned array. In Section 5, we present an algorithm that computes a
partitioning of a multidimensional array into tiles that is optimal with respect to this objective. In
Section 6, we develop a general theory of modular mappings for multipartitioning. We apply this
theory to define a mapping of tiles to processors so that each line sweep is perfectly balanced over
the processors.

We use the following notation in the subsequent sections:

e p denotes the number of processors. We write p = Hj-:l a;j , to represent the decomposition

of p into prime factors.

e d is the number of dimensions of the array to be partitioned. The array is of size nq,... ,ng.
The total number of array elements n = ngl n;.

e v;, for 1 <4 < d, is the number of tiles into which the array is cut along its i-th dimension.
We consider the d-dimensional array as a y; X ... X 74 array of tiles. In our analysis, we
assume +y; divides n; evenly and do not consider alignment or boundary problems that must
be handled when applying our mappings in practice if this assumption is not valid.

To ensure each hyperplane is balanced, the number of tiles it contains must be a multiple of p;
d
namely, for each 1 <4 < d, p should divide H V;-

i=1
J#i

4 Objective Function

We consider the cost of performing a line sweep computation along each dimension of a multipar-
titioned array. The total computation cost is proportional to the number of elements in the array,



n. A sweep along the i-th dimension consists of a sequence of ; computation phases (one for each
hyperplane of tiles along dimension i), separated by v; —1 communication phases. The work in each
hyperplane is perfectly balanced, with each processor performing the computation for its own tiles.
The total computational work for each processor is roughly % of the total work in the sequential
computation. The communication overhead is a function of the number of communication phases
and the communication volume. Between two computation phases, a hyperplane of array elements
is transmitted — the boundary layer for all tiles computed in first phase. The total communication
d

volume for a phase communicated along dimension ¢ is H nj elements, i.e., --. Therefore, the
i=1
Jj#i

total execution time for a sweep along dimension 7 can be approximated by the following formula:

Ti(p) = Ko = + (7 — 1) (K> + Ky —)
p g
where K is a constant that depends on the sequential computation time, K5 is a constant that
depends on the cost of initiating one communication phase (start-up), and K3 is a constant that
depends of the cost of transmitting one array element. The total cost of the algorithm, sweeping
in all dimensions, is thus

d

d d

n n n

T(p) = E Ti(P):d(Klp?—fQ—Kg E n—l)+ E ’)’z'(Kz—i-K?,n—i)
=1 =1 =1

Remark: we assume here that the cost of one communication phase is actually an affine function
of the volume of transmitted data. If all communications are in fact performed with perfect par-
allelism, with no overhead, then the third term is divided by p. However, this will not change the
technique we describe later.

Assuming that p, n, and the n;’s are given, the only term that can be optimized is Zgzl YiXi
where each \; = Ko + Kgnli is a constant that depends upon the domain size and the machine’s
communication parameters (and possibly the number of processors with the remark above).

There are several cases to consider. If the number of phases (through K») is the critical term,
the objective function can be simplified to ), ;. If the volume of communications is the critical
term, the objective function can be simplified to ), g—i, which means it is preferable to partition
dimensions that are larger into relatively more pieces. For example, in 3D, even for a square number
of processors (e.g., p = 4), if the data domain has one very small dimension, then it is preferable
to use a 2D partitioning with the two larger ones rather than a 3D partitioning. Indeed, if n; and
ng are at least 4 times larger than ns, then cutting each of the first two dimensions into 4 pieces
(71 =72 =4, 73 = 1) leads to a smaller volume of communication than a “classical” 3D partitioning
in which each dimension is cut into 2 pieces (71 = 72 = 73 = 2). The extra communication while
sweeping along the first two dimensions is offset by the absence of communication in the local sweep
along the last dimension.

5 Finding the Partitioning

In this section, we address the problem of minimizing ), v;A; for general \;’s, with the constraint
that, for any fixed 4, p divides the product of the v;’s excluding ;. We give a practical algorithm,
based on an exhaustive search, exponential in s and the r;’s (see the decomposition of p into prime
factors), but whose complexity in p grows slowly. Furthermore, in practice, the algorithm is much



faster than the exponential worse-case may suggest, both because the average complexity is much
lower and because practical p’s are not very large.

From a theoretical point of view, we do not know whether this minimization problem is NP-
complete, even for a fixed dimension d > 3, even if all \; are equal to 1, or if an algorithm polynomial
in logp or even in logs and the logr;’s exists. The only NP-complete problem we found in the
literature related to product of numbers is the Subset Product Problem (SPP) [13], which is weakly
NP-complete (it can be solved thanks to dynamic programming). We suspect that our problem is
strongly NP-complete, even if the input is s and the r;’s, instead of p. However, if p has only one
prime factor, we point out that a greedy approach leads to a polynomial (i.e., polynomial in logr)
algorithm (see Section 5.1).

We say that (v;)i1<i<a — or (y;) for short I _is a valid solution if, for each 1 < i < d, p divides

d
H 7;. Furthermore, if ), v;A; is minimized, we say that (v;) is an optimal solution. We start
i=1
J#
with some basic properties of valid and optimal solutions.

Lemma 1 Let (v;) be given. Then, (7;) is a valid solution if and only if, for each factor a of p,
appearing o, times in the decomposition of p, the total number of occurrences of a in all v; is at
least ro + Mg, where my, is the mazimum number of occurrences of a in any ;.

Proof: Suppose that (v;) is a valid solution. Let a be a factor of p appearing r, times in the
decomposition of p, let m, be the maximum number of occurrences of « in any -y;, and let ig be
such that o appears m,, times in ;,. Since p divides the product of all v; excluding v;,, @ appears
at least ro times in this product. The total number of occurrences of « in all of the +; is thus at
least 7o + mg. Conversely, if this property is true for any factor «, then for any product of (d — 1)
different 7;’s, the number of occurrences of « is at least ro + m, minus the number of occurrences
in the ; that is not part of the product, and thus is at least r,. Therefore, p divides this product
and (;) is a valid solution. [ |

Thanks to Lemma 1, we can interpret (and manipulate) a valid solution (v;) as a distribution
of the factors of p into d bins. If a factor a appears r, times in p, it should appear (r, + mq)
times in the d bins, where m, is the maximal number of occurrences of « in a bin. As far as
the minimization of ), A;7y; is concerned, no other prime number should appear in the y; without
increasing the objective function. The following lemma shows that, for an optimal solution, there
should be exactly (rq+mq) occurrences for each factor @ and that the maximum m, should appear
in at least two bins.

Lemma 2 Let (v;) be an optimal solution. Then, each factor a of p, appearing ro times in the
decomposition of p, appears exactly (ro +mg) times in (y;), where mq, is the mazimum number of
occurrences of a in any particular ;. Furthermore, the number of occurrences of « is mq in at
least two ;’s.

Proof: Let (;) be an optimal solution. By Lemma 1, each factor «, 0 < j < s, that appears r,
times in p, appears at least (ro + mg) times in (7;). The following arguments hold independently
for each factor a.

Tn other words, (y;) denotes the set of all particular ;’s as opposed to a particular ;



Suppose m, occurrences of & appear in some y;, and no other ;. Remove one « from v;,. Now,
the maximum number of occurrences of « in any «; is mq—1 and we have (rq+mq)—1 = ro+(ma—1)
occurrences of . By Lemma 1, we still have a valid solution, and with a smaller cost. This
contradicts the optimality of (7;). Thus, there are at least two bins with m, occurrences of «.

If ¢, the number of occurrences of « in (vy;), is such that ¢ > r4 + mq, then we can remove one
« from any nonempty bin. We now have ¢ — 1 > r, + m,, occurrences of a and the maximum is
still m,, (since at least two bins had m, occurrences of «). Therefore, according to Lemma 1, we
still have a valid solution, and with smaller cost, again a contradiction. |

We call locally optimal solutions the valid solutions that satisfy Lemma 2. These solutions
are the minima of the partial order defined on valid solutions with the relation S = (y;) < §' =
(y) if 7; divides 4, for all i. Since all \; are positive, only locally optimal solutions need to be
considered to find an optimal solution. Note however that there are locally optimal solutions that
can never be optimal. For example, in 3D, for p = 22 x 3% x 52, the locally optimal solution
(22 x 32,22 x 52,32 x 5%) = (36,100, 225) (and its permutations) can never be optimal since the
solution (30, 30, 30) is always better, whatever the positive \;’s. However, with a 7 instead of a 5,
these solutions can now be optimal for some particular A;’s since 36 is less than 2 x 3 x 7 = 42.

We can now give some upper and lower bounds for the maximal number of occurrences of a
given factor in any bin.

Lemma 3 In any optimal solution, for any factor « appearing ro times in the decomposition of p,
we have [%] < mgqg < 1o where my 1s the mazimal number of occurrences of a in any bin and d
is the number of bins.

Proof: By Lemma 2, we know that the number of occurrences of « is exactly ro + mq, and at
least two bins contain m,, elements. Thus, ro + m, = 2m. + ¢, in other words r, = mq + e, where
e is the total number of elements in (d — 2) bins, excluding two bins of maximal size m,. Since
0 <e<(d—2)mg, then my <74 < (d — 1)m, which is equivalent to the desired inequality since
Mg 1S an integer. [}

5.1 A Greedy Algorithm for Partitioning when p is a Power of a Prime

Here we describe a greedy algorithm for computing an optimal partitioning in the simplest case,
namely, when p is a power of a prime, p = o”. The algorithm has to apportion factors of & among
d bins (one for each array dimension) in a way that satisfies Lemma 2 and minimizes the total cost.
Satisfying Lemma 2 requires that the total number of occurrences of « in all of the bins must be
r + m, where m is the maximum in any one bin, and at least two bins contain m instances of «.
The cost of the i-th bin in the solution is a®)\;, where §; is the number of instances of « in the
bin. This yields a total cost of Zgzl P ). A greedy algorithm is shown in Figure 2. We show
that this algorithm computes the optimal partitioning when p = " and that the complexity of this
algorithm is O((d + logp) log d).

Theorem 1 The greedy algorithm shown in Figure 2 is optimal if p is a power of a prime.

Proof: We prove the result by induction on r. Let us first consider the case r = 1. We need to
put (r + m) copies of « in the bins and m < r, according to Lemma 3. Therefore, any optimal
solution has (d — 2) empty bins and 2 bins with one element, and the greedy algorithm computes
an optimal solution in one iteration of the while loop by applying case 2.



inputs:
d: the number of dimension, d > 2; let D represent {i | 1 <17 < d}.
r: p=«a’ and « is prime.
Ai, © € D: the cost coefficient for each dimension.
outputs:
Bi, © € D: the power of « in the bin for each dimension.

Algorithm GreedyPartitioning

let t = m = 0; // t is the total number of « placed, m is the mazimum number of « in any bin

for alli € D, let 5; = 0 and C(i) = X\i; // C(i) is the current cost of dimension i

let C(0) = +o0; // add a dummy dimension to simplify notations

while (t < r + m)
let B, ={i|i€ DAB; =m};let s={0}U(D\ By,); // add {0} to s to avoid an empty set
let j € s be the dimension with smallest cost C(5);
let k,1 € B, be two dimensions with smallest costs C'(k) and C(I);

if C(j) < C(k) + C(l) then // add one « to bin j, increase t (case 1)
Bi += 1t +=1; C(j) = aC(j);
else // add one « to bins k and 1, and increase both m and t as appropriate (case 2)
Be +=1; C(k) = aC(k); B +=1; C(I) = aC(l); m +=1; t +=2;
endif
endwhile

Figure 2: Greedy Algorithm for Partitioning r Instances of v among d Dimensions.

We now prove the induction step. Assume that the greedy algorithm gives an optimal solution
for o”. Let us show that it also gives an optimal solution for o"*!. Denote by S, the solution
obtained by the greedy algorithm for r and let B,, be the set of bins with maximal size for S,. To
build the greedy solution for r + 1, we evaluate the cost of two alternatives: S; and S3. S; extends
Sy by adding a single element into a bin b; not in B,, with smallest cost (case 1). Sy extends S, by
adding two elements into two bins by and b;, both in B,,, with smallest costs (case 2). The greedy
algorithm selects the lowest cost solution of S7 and S5 as S;;1. Before showing that either S} or
Sy is an optimal solution, let us make two simple remarks:

e If we remove one element in any bin of a valid solution for o"*!, we obtain a valid solution
for o. Indeed, because of Lemma 1, if the total number of elements is at least r 4+ m, then
after removing one element, the total number of elements is at least » + m — 1, which is at
least (r — 1) +m' where m' < m is the new maximum.

e Let T and U be two valid solutions for o"*! such that the cost of 7" is less than the cost of U.
Assume that there is a bin b; such that b; has Br elements in T and [y elements in U with
Br > By > 1. Then, if we remove one element in this bin both in T" and U, we obtain two
valid solutions 7" and U’ for o (according to the previous remark) such that the cost of 7" is
less than the cost of U’. Indeed, the cost of the bin b; goes down from X T to \;aPr1 for
T, and is thus reduced by A\;a®” (1 —1/a). The reduction for U can be computed analogously.
Therefore, since B > By, the cost decrease is higher for 7" than for U, and since the cost of
T was less than the cost of U, this remains true for 7" and U’.

We now go back to the greedy algorithm. Suppose there exists a solution S’ that is strictly



better than S,,;. We show that this is not possible. We first show that no bin in S’ can have
strictly more elements than in S,.. We keep the notations of Figure 2 for the indices j, k, and [: Sy
is obtained from S, by adding one element in bin b;, S by adding one element both in bins b; and
b;. We distinguish bins in B,,, (those with maximal size in S,) from the other ones.

e If S’ has a bin b; not in B,, with strictly more elements than the corresponding bin in S, we
move in S7 one element from the bin b; to the bin b;, and we get a new valid solution S| (with
at most as many elements in b; than S’), not better than S} (otherwise 7 would have been
selected instead of j in the greedy algorithm) thus strictly worse than S’. Then, we remove
one element from b;, both in S" and S]. According to the second remark above, we get two
valid solutions S” and S for o such that the cost of S” is strictly less than the cost of S7.
But S7 is exactly S,. This contradicts the fact that S, is optimal by induction hypothesis.

e Now, suppose that S’ has a bin b; in B,, with strictly more elements than the corresponding
bin in S,, thus a bin with strictly more elements than any bin in S, (by definition of B,,).
Consider b; and bs two bins with maximal size in S’ (there are at least two such bins according
to Lemma 2). In S’, they have more elements than b;, thus strictly more elements than any
bin in S,, in particular the corresponding bins in S,. As we did for S;, we move in S5 one
element from by, to b, and one element from b; to by, and we get a new valid solution S} (with
at most as many elements in b; and b, than S’), not better than S (otherwise s and ¢ would
have been selected instead of & and [ in the greedy algorithm), thus strictly worse than S’
Then, we remove one element each from b; and bs, both in S" and in S}, and we get two valid
solutions S” and SY for p = o" such that the cost of S” is strictly less than the cost of S).
But SY is exactly Sy, again a contradiction.

In other words, no bin in S’ can have strictly more elements than the corresponding bin in S,, thus
the total cost of S’ is at most the total cost of S,. If we remove any element from S’, we get a
valid solution for " (according to the first remark above) with a cost strictly smaller than the cost
of §', thus better than S,, which again is not possible. Therefore, the best solution for o+ can
indeed be built from an optimal solution for o” by selecting the best solution obtained by adding
one element in a bin which is not of maximal size, or two elements in two bins of maximal size. B

Here we consider the complexity of GreedyPartitioning. Since m < r by Lemma 3, the while
loop executes at most 2r trips. With A\ equal to the maximal );, the cost for each bin is always
less than Aa™ = Ap. The dimensions with the smallest costs can be maintained in two sets: one
for bins of maximum size, and one for other bins. Selecting the bins with minimal cost in each
set can be done in O(dlog(Ap)), while updating the costs is done by a multiplication by «, thus
in O(log alog(Ap)). This yields an overall complexity of the greedy algorithm of O(log(\p)(rd +
rloga)) = O((d + 1) log(A\p) log p) since p = rlog o, thus O(d(log p)?) if A is not considered.

We do not know if an extension of this greedy approach can lead to a polynomial algorithm for
an optimal solution in the general case where p # .

5.2 Exhaustive Enumeration of Locally Optimal Partitionings

In this section, we present an algorithm that finds an optimal solution by generating all possible
partitionings (v;) that satisfy the necessary conditions given by Lemma 2 (the locally optimal
solutions), and determining which one yields the lowest cost. We also evaluate how many candidate
partitions there are and present the complexity of our algorithm.

Note that instead of generating all possible distributions in bins given by Lemma 2, we could
try to explore all possible values of (vy;) directly and to check whether they are valid (in the sense
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that the product of any (d— 1) values is a multiple of p). However, this would require generating all
possible values from 1 to p for each bin and would consider roughly p? possible solutions (without
counting the cost of checking). We want to do better.

5.2.1 Complexity Issues: First Hints

Before describing our exhaustive enumeration algorithm, we first give some upper bounds on the
number of solutions S(p) that respect the conditions of Lemma 2, for an integer p. We are not
interested in an exact formula, but in the order of magnitude, especially when the number of bins
d is fixed (and small, equal to 3, 4, or 5), but when p can be large (up to 1000 for example), since
this is the situation we expect to encounter in practice when computing multipartitionings.

Let us first try a rough estimation. For each factor, we need to put (r 4+ m) factor instances
in the bins, where m is at most r, thus at most 2r instances. Each factor instance can be put in
d different bins, thus there are at most d2" possibilities for each factor, and d227) for all factors,
and d?!°82P in the worse case (when p is a power of 2), which is equivalent to p?1°&2¢,

We can be a little bit more accurate: we can try to give an upper bound for a given m between

the bounds given by Lemma 3. For each m, we select two bins — 44D choices — in which we put m

elements each. It remains to distribute (r —m) elements, which car21 be done in at most (d —2)"~™
ways. When d = 3, since m goes from [f] to r, the number of possibilities for each factor is thus
3(l5) + 1) < 3r, and the total number of solutions is less than 3° [];_; r; when combining all
factors. We will come back to such an expression later when discussing our final upper bound.

When d > 3, the number of possibilities for each factor is less than:

r r r—1
Z d(d; 1) (d—2)rm < d(d; 1) Z(d_2)r—m _ d(d; 1) Z(d_Q)i
m=[7551 m=1 i=0
dd=1)(@d—2" —1 _d(d—1)(d—2)"
S T i—3  ~  2(d-3)

When there is a single factor (such as 2) the number of solutions can be of order (d — 2)'°82P i.e.,
plo82(4-2) which is roughly the square root of what we had previously. This is better, but still a
polynomial in p. We would like to do even better.

In the previous approach, we evaluated the number of possible positions for each element to be
put in the d bins. Another (dual) view is to count, for each bin, how many elements it can contain.
This view leads to a sharper upper bound when d is small and r can be large. We can select
for each bin a number between 0 and r, thus (r + 1) possibilities. The total number of solutions
is thus less than (r 4+ 1)? for each factor, thus less than (logyp + 1)? if p is a power of 2, and
S(p) < (TT;(ri +1))? in the general case. When r is larger than d > 3, (r +1)¢ is less than (d+1)",
which is roughly our previous upper bound. Thus, with this scheme, we are more likely to obtain a

better evaluation of the total number of solutions. We will indeed be able to show (Section 5.2.3)
(+o(1)) logp

that S(p) = O (@) o8 0B ) , which is a better upper bound when d is fixed and p can be

large, and that this bound is tight in order of magnitude. It is no surprise that we get a worse-case
with a similar expression as the number of dividers of an integer (see [15]) since [[;(r;+1) is indeed
the number of dividers of p.

We now first detail an algorithm that generates exactly all locally optimal solutions.
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5.2.2 Generating All Distributions in Bins

The C program of Figure 3 generates in linear time all possible distributions into d bins satisfying
the (r 4+ m) optimality condition of Lemma 2 of a given factor appearing r times in the decom-
position of p. It is inspired by a program [19] for generating all partitions of a number, which is
a well-studied problem (see [3, 20]) since the mathematical work of Euler and Ramanujam. The
procedure Partitions first selects the maximal number m in a bin, and uses the recursive proce-
dure P(n,m,c,t,d) that generates all distributions of n elements in (d —t+ 1) bins (from index ¢ to
index d), where each bin can have at most m elements and at least ¢ bins should have m elements.
Therefore the initial call is P(r+m,m,2,1,d).

// Precondition: 4 >= 2
void Partitions(int r, int d) {
int m;
for (m = (r+d-2)/(d-1); m <= r; m++) {
P(r+m,m,2,1,d);
}
}

void P(int n, int m, int c, int t, int d) {
int 1i;
if (t==d) {
bin[t] = n;
} else {
for (i=max(0,n-(d-t)*m); i<=min(m-1,n-c*m); i++) {
bin[t] = i;
P(n-i,m,c,t+1,d);
}
if (n>=m) {
bin[t] = m;
P(n-m,m,max(0,c-1),t+1,d);
}
}

Figure 3: Program for Generating All Possible Distributions for One Factor.

Let us first consider the loop in function Partitions. Thanks to Lemma 3, we know that the
maximal number of elements in a bin is between [5] = ’"‘gff and r. Furthermore, for each
such m, there is indeed at least one valid solution with (r + m) elements and two maxima equal
to m (if d > 2), for example the solution where the first two bins have m elements and the (d — 2)
other bins contain a total of (r —m) elements, one possibility being with the (r —m) elements
distributed so that ¢ = ["=] bins contain m elements and another one contains (r —m — mq)
elements. Therefore, if the function P is correct, the function Partitions is also correct.

To prove the correctness of the function P, we prove by induction on (d — ¢+ 1) (the number of
bins) that there is at least one valid solution if and only ifc < d—t+1andem <n < (d—t+1)m
and that P generates all of them (and only once) if these conditions are satisfied. These conditions
are simple to understand: we need at least e¢m elements (so that at least ¢ bins have m elements)
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and at most (d — ¢ + 1)m elements, otherwise at least one bin will contain more than m elements.

The terminal case is clear: if we have only one bin and n elements to distribute, the bin should
contain n elements. Furthermore, if there is solution, we should have ¢ < 1 and n =m if ¢ = 1,
ie,c<d—t+landem <n<(d—t+1)m.

The general case is more tricky. We first select the number of elements ¢ in the bin number ¢
and recursively calls P for the remaining bins. If we select strictly less than m elements (this
selection is thus in the loop), we will still have to select ¢ bins with m elements for the remaining
(d — t) bins, with (n — i) elements. Therefore, the number 7 that we select should not be too
small, nor too large, and we should have em < n —i < m(d —t) (by induction hypothesis), i.e.,
n— (d—t)m < i < n — em. Furthermore, 7 should be strictly less than m, nonnegative, and less
than n. Since c is always nonnegative, the constraint i < n — c¢m ensures 1 < n. If the parameters
are correct for the bin number ¢, we also have ¢ < d —t+ 1 and if c = d — ¢ + 1, then the loop
has no iteration, thus for any 7 selected in the loop, we have ¢ < d — t. Therefore the recursive
call P(n-i,m,c,t+1,d) has correct parameters. Finally, if we select m elements for the bin ¢ (this
selection is thus after the loop), this is possible only if m is less than n of course, and then it
remains to put (n —m) elements into (d —t¢) bins, with a maximum of m, and at least max(0,c—1)
maxima. Again, the recursive call has correct parameters since we decreased both ¢ and (d — )
and removed m elements.

5.2.3 Complexity of the Exhaustive Enumeration

For generating an optimal solution to our minimization problem, we first decompose p into prime
factors (complexity O(,/p) by a standard algorithm, this will be the dominant complexity), we then
generate all locally optimal solutions (those that satisfy Lemma 2) for each factor (with the function
Partitions), and we combine them while keeping track of the best overall solution. For evaluating
each solution, we need to build the corresponding (y;)’s and add them. Each ~; is at most p and
is obtained by at most ) . r; < log, p multiplications of numbers less than p. Therefore, building
each ; costs at most (log,p)3. The overall complexity (excluding the cost of the decomposition
of p into prime factors) is thus the product of the complexity of the function Partitions (which
is the number of solutions generated by the algorithm since each solution is generated only once)
times (log, p)®. Therefore, it remains to evaluate the number of solutions S(p) generated by the
function Partitions, i.e., the number of locally optimal solutions.

Consider first the case of a number p, product of simple prime factors, in particular the product
of the first s prime numbers: p = [[’_, m; where 7; is the i-th prime number. For each factor, there

d(d—1)

are =—— possible distributions (picking two bins where to put one element), so the total number

S
of solutions is (@) . Now, the i-th prime number is equivalent to ilogi (see for example [15]).

Therefore, when p grows, we have

logp = Zlogm ~ Zlog(ilogi) ~ Zlogi ~ /1 logzdz ~ slog s
i=1 i=1 i=1

since divergent series with nonnegative equivalent terms are equivalent. Therefore logp ~ slogs

1
d(d—1 Teglosp (1Ho(1)

08P, ¢ The total number of solutions for p is thus (T . We will prove

loglogp
later that this situation (when p is the product of single prime factors) is actually representative of

the worse case (in order of magnitude), as claimed in Section 5.2.1.
Before that, we can give several simpler upper bounds, exploiting well-known results concerning
d(p) the number of dividers of p (see again the book of Hardy and Wright [15, Chap. XVIII]). The

and
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number of dividers of p = [[7_,a;® is d(p) = [[;_,(rs +1). For all € > 0, for p sufficiently
large, d(p) < 2(1+9)logp/loglogr  Fyurthermore, the average order of d(p), which is (32¢_, d(3))/p,

is equivalent to logp, while the average order of d(p)? is of order (log p)Qd_l. As seen before,

the number of locally optimal solutions S(p) satisfies S(p) < d(p)¢. We can therefore deduce

immediately the following upper bounds:
e Foralle > 0, for p large enough, S(p) < 241 +e)logp/loglogr  Thyslog S(p) = O(logp/ loglog p).

e Combined with the previous lower-bound (when p is the product of first primes), we get that
log(d(d —1)/2) < limsup {log S(p) loglog p/logp} < dlog 2.

e The average order of S(p) is less than (logp)Qd_l.

In other words, the worse-case complexity of the exhaustive search is not polynomial in log p but
is smaller than any function p” for any real number r > 0. Furthermore, in average, the behaviour
of the search is that of a polynomial (in logp) algorithm. We did not try to get an equivalent
of the average order of S(p), i.e., an exact order of magnitude. However, to be more complete
in this research report, it remains to compute, as promised, the exact order of magnitude of the
worse-case, i.e., to show that limsup {log S(p) loglogp/logp} = log(d(d — 1)/2). Actually, it only
remains to find an upper bound better than the one obtained thanks to d(p).

Theorem 2 Fore > 0, when d is fized and p grows, log S(p) < (1+¢)log(d(d—1)/2) log p/ loglogp.

Proof: Let C(r) be the number of solutions generated by a factor appearing r times in the
decomposition of p. The total number of solutions S(p) is [[;_; C(r;). To find an upper bound for
S(p), we use a similar proof technique as in [15, page 261-262], with consists in finding an upper

bound for:
S(p = (C T

=1 Q;

for any particular 6 > 0, and ¢ will then be chosen as a function of p.

We first find an upper bound individually for each C(r)/a’". When it is important to be accurate
for a small 7, we will use upper bounds in d" (this also makes the computation simpler), and we
will use upper bounds in 7% when r can be large (remember that r? < d" when r > d > 3). First
note that, with a rough approximation, C(r) is less than (r 4+ 1)¢. Furthermore, since 1/e < log2
and z < €%/¢, we have z < €*1°82 = 2% Thus, for any § > 0:

C(r)/a" < (r+1)%/27 = ((r +1)/2"/)" < (L +r/27 %) < (1 + d/6)! (1)

This is true whatever r and «a.
When « is large, we can bound the number of solutions in a more accurate way. Remember
that when r = 1, the number of generated solutions is d(d — 1)/2. When r > 2 and d > 4, we

saw (Section 5.2.1) that C'(r) < %

rd(d —1)/2 = 3r. When d > 4 and r > 2, it is easy to see that the function log(%)/r is

, and for d = 3, the number of solutions is less than

maximal for r = 2. Furthermore, for » = 2, we have:

_ _9)2 _ 2 _9)2 _
d(d2(cll)£d3) 2’ (d(d2 1)) @(2_23) Sd(d2 D ad— 22 < did— D(d—3)
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But when d > 5, 2 < d — 3 and (d — 2)? < d(d — 1) and when d = 4, 2(d — 2)? = 8 and
d(d —1)(d — 3) = 12. Thus, for all » > 2, we have log(C(r))/r <log(d(d —1)/2) =1logC(1). And

C(r) < C(r) <1 2)

> 1/5 ’!‘6> s
a>C(1)"’ ="’ >C1) = o SO S

We use Inequality (1) when o < C'(1)'/? and Inequality (2) otherwise. Since there are at most
C(1)'/9 different o’s in the first case, we get % <1+ d/5)d0(1)1/5, thus:

log S(p) < dC(1)/%log(1 + d/8) + Slogp < C(1)/°d? /5 + §logp

With 6 = (1 + €/2)log C(1)/loglog p, we get:

2
log S(p) < d

S 0T e/2) g C1) (log p)/(1+</2) loglog p + (1 + €/2) log C (1) log p/ log log p

When p grows, the first term is o(log p/ loglog p), therefore for p large enough, we get:

log S(p) < (1 +€)logC(1)logp/loglogp

which is the desired inequality. |

6 Finding the Mapping

In Section 5, we described how, given a number of processors and the dimensions of an array, we
compute an array partitioning that minimizes an objective function.? A partitioning specifies an
array (of tiles) whose size is (7;)1<i<q4 for which the objective is minimized. So far, we have assumed
that a multipartitioning tile-to-processor assignment can be computed. Such an assignment maps
tiles to processors in a way that satisfies the key multipartitioning properties; namely, each processor
will have the same number of tiles assigned to it in each slice of the array and a multipartitioning
“neighbor mapping” function exists for each processor. This assumption has not yet been proven
valid. We point out that an assignment with the first property is a generalization of the notion of
latin square, mentioned in the second reference book on latin squares by Dénes and Keedwell [11,
page 392] as an F-hyper-rectangle. However, despite this reference, we did not find so far any
paper that gives a construction mechanism for such an assignment, or even an existence proof, in
our general case. Furthermore, even if such a proof exists, which we would not be aware of, the
constructive proof we give below is of interest for us because:

e it has the neighbor property mentioned below,

e the tile-to-processor mapping is given by a simple formula, and conversely, for each processor,
the list of tiles assigned to it can be easily formulated, which is very desirable for code
generation,

e it gives a new insight to the properties of “modular” mappings (defined below).

*We use an objective function that measures the (d — 1) dimensional surface’ area of the cuts - an approximation
of communication cost for a line sweep computation using the partitioning.
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Therefore, we will give here the complete proof, with no further reference to latin squares and
F-hyper-rectangles.

The only property guaranteed so far is that a (y;) partitioning selected is a valid solution
for the partitioning problem; namely, for each 1 < ¢ < d, p divides H’yj. This property is

1

obviously a necessary condition. We prove in this section that this is aljsﬁ a sufficient condition.
For any valid solution (7;), optimal or not, with or without the additional property of Lemma 2,
we can compute a valid multipartitioning tile-to-processor assignment for the tiles defined by the
partitioning. To accomplish this, we use modular mappings, which we define in the following
section (Section 6.1). In Section 6.2, we review some results on the validity of modular mappings
that were shown previously by Darte, Dion, and Robert [10], along with some additional properties
that are more important to our problem at hand. Finally, in Section 6.3, we give a constructive
proof for the existence of a multipartitioning tile-to-processor assignment using modular mappings.
The solution we build is one particular assignment. It is not unique and experiments might show
that other assignments may yield faster execution times because of a difference in communication
costs associated with their neighbor mappings. However, our current objective function (Section 4)
does not account for network topology when constructing tile-to-processor mappings, so all valid
mappings are considered equally good.

6.1 Modular Mappings

Consider the assignment in Figure 1. Can we give a formula that describes it? Let us try an
assignment in the form of a linear ® mapping modulo p (the number of processor), az+by+cz mod p
(a, b, and ¢ can be chosen between 0 and p — 1, i.e., modulo p), and processors can be arranged
differently, as long as the load-balancing property is satisfied.

To simplify the discussion, let us first consider a “smaller” example, with p =4 and v; = vy =
v3 = 2. Consider the first horizontal slice (for z = 0): the four numbers, 0, 1, 2, and 3 should
appear exactly once, and the 0 is in position (0,0). First, a and b are nonzero, otherwise 0 appears
twice, either in the first row, or in the first column. Furthermore, if 1 appears in position (0, 1),
then 3 cannot appear in position (1,0), otherwise 1+ 3 = 0 mod 4 appears in position (1,1), which
again is not acceptable. Therefore, either a = 1 and b = 2 (and the symmetric case), or a = 2 and
b = 3 (and the symmetric case). What are the possible values for ¢? Obviously ¢ is not 0 otherwise
0 appears twice in the slice y = 0 for example. Consider the first case ¢ =1 and b = 2. If ¢ = 1,
then 1 appears twice in the slice y = 0 (for (1,0,0) and for (0,0, 1)). If ¢ = 2, then 2 appears twice
in the slice x = 0 (for (0,1,0) and for (0,0,1). And if ¢ = 3, then 0 appears twice in the slice y =0
(for (0,0,0) and for (1,0,1)). Now, in the second case, if a = 2 and b = 3, what are the possible
values for ¢? A similar study shows that ¢ = 1 is not possible (conflict for the slice z = 0), ¢ = 2 is
not possible (conflict for the slice y = 0), and ¢ = 3 is not possible (conflict for the slice z = 0).

The small example we just studied (for an array of size 2 x 2 x 2 and four processors) is an
example for which the class of one-dimensional modular mappings (a linear map modulo the number
of processors) is not large enough to contain a valid solution. We will therefore study a larger class
of mappings, the class of multi-dimensional modular mappings M,, : Z¢ — 7% defined by
M, (i) = (M7) mod 77 (the modulo is component-wise) where 7 is the vector of coordinates in the
array of tiles (an integral d-dimensional vector), M is an integral d’ X d matrix, and 77 is an integral
positive vector of dimension d’. Each tile is assigned to a “processor number” in the form of a

8Adding a constant, i.e., considering an affine mapping is not more powerful. Numbers are just all shifted by the
same amount.
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vector. The product of the components of 7 is equal to the number of processors. It then remains
to define a one-to-one mapping from the hyper-rectangle {j € Z% | 0 < j < m} (inequalities
component-wise) onto the processor numbers. This can be done by viewing the processors as a
virtual grid of dimension d' of size 7. (Don’t take this representation as a physical view of the
processors. It is just a way of numbering processors.) The mapping M,; is then an assignment of
each tile (described by its coordinates in the d-dimensional array of tiles) to a processor (described
by its coordinates in the d’-dimensional virtual grid).

Note: in the next section, we will consider only the case d’ = d — 1. Modular mappings into a
space of dimension lower than (d — 1) are captured by this representation when some components
of m are equal to 1. Modular mappings into a space of larger dimension could also be studied in a
similar way, but they are not needed for our study.

Consider again Figure 1. There are 16 processors that can be represented as a 2-dimensional
grid of size 4 x 4. For example the processor number 7 = 4 + 3 can be represented as the vector
(3,1), in general (r,q) where r and g are the rest and the quotient of the Euclidian division by 16.
The assignment in the figure corresponds to the modular mapping (i — k mod 4, — k mod 4).

The following definitions summarize the notions of modular mappings and of modular mappings
that satisfy the load-balancing property.

Definition 1 (Modular mapping)
A modular mapping M,, : Z¢ — Z% is defined as M,,(i) = (Mi) mod 7 where M is an
integral d x d' matriz and 1 is an integral positive vector of dimension d'.

Definition 2 (Rectangular index set)
Gwen a positive integral vector b the rectangular index set defined by b is the set Iy = {z €
Z" | 0 <i<b} (component-wise) where n is the dimension of b.

Definition 3 (Slice)
Given a rectangular index set Ty, a slice Ty(i, k;) of Iy is defined as the set of all elements of T
whose i-th component is equal to k; (an integer between 0 and b; — 1).

Definition 4 (One-to-one modular mapping)
Given an hyper-rectangle (or any more general set) T, a modular mapping My, is a one-to-one
mapping from Iy onto L, if and only if for each j € I, there is one and only one i € Iy, such that

Definition 5 (Many-to-one modular mapping) Given an hyper-rectangle (or any more gen-
eral set) Iy, a modular mapping M, is a many-to-one modular mappzng from Iy onto T, if and
only if the number ofz € Iy such that M, (i ) = j does not depend on j.

Definition 6 (Load-balancing property)

Given a rectangular index set Ty, a modular mapping M,, has the load-balancing property for
Ty if and only if for any slice Ty(i, k;), the restriction of My, to Ty(i, k;) is a many-to-one mapping
onto Ly,.

Note that the images of the slice Z(i, k;) are obtained from the images of the slice Z,(7,0) by
adding (modulo m) k; times the i-th column of M. Therefore, all values in I,,, are images of the
same number of elements in the slice Z,(i, k;) if and only if the same is true for the slice Z(i,0).
In other words, for modular mappings (as opposed to arbitrary mappings), the load-balancing
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property can be checked only for the slices that contain 0 (the slices Zy(i, 0)). Furthermore, if b[i]
denotes the vector obtained from b by removing the i-th component and M [i] denotes the matrix
obtained from M by removing the i-th column, then the images of Z(,0) under M, are the images
of Zy;; under the modular mapping Mfi],,. We therefore have the following property.

Lemma 4 Given an hyper-rectangle Ty, a modular mapping M,, has the load-balancing property
for Iy if and only if each mapping M[i], is a many-to-one modular mapping from Ly to Lp,.

We now address the following questions. How can we check that a given modular mapping has
the load-balancing property? This is the topic of Section 6.2. Given an array of tiles Z, defined by
a valid solution (b;), how can we find a modular mapping that has the load-balancing property?
This is the topic of Section 6.3. We will have to define an adequate matrix M and also to choose
an adequate shape m for the virtual grid of processors.

6.2 Validity of Modular Mappings

Let us first recall some of the theory of one-to-one modular mappings developed by Lee and
Fortes [17] and Darte, Dion, and Robert [10]. We will then extend some of these results to many-
to-one modular mappings. We will make use of Hermite and Smith forms. We only recall here the
definitions for square matrices.

Definition 7 (Smith normal form)
Given a square matriz A of with integral components, there exist integral matrices Q1, Q2, and
S such that:

e Q1 and Qo are unimodular (i.e., with determinant 1 or —1),

e S is nonnegative, S = diag(s1,... ,sr,0,...,0) where r is the rank of A, and s; divides $;4+1
for1<i<r,

o A=0Q15Qs.

Definition 8 (Left Hermite normal form)
Given a square matriz A with integral components, there exist integral matrices Q and H such
that:

e Q is unimodular (i.e., with determinant 1 or —1),

e H is lower triangular and nonnegative,

each nondiagonal element is lower than the diagonal element of the same row,

A=HQ.

We can also apply the Hermite decomposition by first permuting the rows of A, i.e., considering
the rows of A in a different order when “triangularizing” the matrix A into H. We will consider
these d! Hermite forms in the rest of our study (where d is the size of A). We will also use the
following notations: aZ denotes the set of integers that are multiple of a, and MmZ denotes the
product miZ X ... X mgZ for a vector m of size d’. A modular mapping M,, is a linear mapping
from the group Z? into the quotient group Al JmZ.
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6.2.1 The Lattice G = Ker(M,,)

We denote by G the set Ker(M,,) = {i | Mi = 0 mod 71}, i.e., the set of pre-images of the zero of
7% 7. The set G is essential for our study.

Lemma 5 G is a subgroup of 7. G is also a sub-lattice of 7%, whose determinant divides the
cardinality of Z /M, i.e. Hd_l m;.

Proof: @ is the pre-image of the subgroup of Z% /mZ whose single element is the zero of /Al JMZ.
Therefore G is a subgroup of Z% Now, consider the equivalence relation i=i e i—i¢eq. Let
7 be the canonical surjective map from Z? onto the quotient group Z%/G such that W(Z) is the
class of 7 with respect to the equivalence relation =. There is a unique map M,, from Zd/ G into
Zd’/ﬁiZ such that M,, o ® = M,,, and M,, is one-to-one (this is the classical factorization of a
linear map between groups). The image of Z?/G under M, is a subgroup of yAS /mZ, thus its
cardinality divides the cardinality of Z% /mZ (Lagrange’s theorem). Since M,, is one-to-one, this
holds also for Z¢/G. Finally, since Z¢ is a lattice and G is a subgroup of Z% G is also a lattice,
and its determinant is the cardinality of Z¢/G. [ |

The map M,, is a one-to-one linear map from the equivalence classes of = onto the image of
74 under M,,,. Now, given a set S € Z? of representatives of the equivalence relation = (i.e., a set
for which the restriction of the surjective map 7 is one-to-one), the restriction of M, to S is also
a one-to-one mapping, but we loose the linear properties of M, or M,, since S has no particular
algebraic structure. This will be typically our case when considering the rectangular index set Zp.
We have the following result.

Lemma 6 If a basis of G is given by a triangular (up to a permutation of the rows) matriz H,
then the rectangular index set I, where b is the vector of diagonal components of H is a set of
representatives of the equivalence relation =.

Proof: First, if b is defined as the diagonal components of H, then 7, and Z?/G have the same
number of elements. It remains to check that all elements of 7 have different images under 7, i.e.,
belong to different equivalence classes. Let i and 7 in 7, such that i = ;’, ie., i—7 € G. Let
i—i = j. By definition, |j] < b (component-wise), and j = H k for some integral vector k. It is
easy to check that such a triangular system has only one integral solution, ;: 0. |

The previous lemma gives an automatic way to compute a rectangular index for which the map
M, is one-to-one. But how can we compute a basis for the lattice G7 This can be easﬂy done as
follows (as described in [10]). Consider 7 € G: Mi = 0 mod i < 3k € Z% such that Mi = 6,,k
where 6,, is the diagonal matrix diag(s7). Let 6,, be the comatrix of 6,,, i.e., the matrix such that
0O = det(0,,)Iy. We get:

Mi = Ok < (0,,M)i = det(0,,)k < Q15Qoi = det(0,,)k < SQai = det(0,,)Q7 'k

where Q1S53 is the Smith form of 6,,M. Now, there exists k € 727 such that Mi = OmE if
and only if there exists &' € Z% such that 7 = det(6,,)k" and i = Q5'j. It remains to solve
the diagonal system Sj = det(f,)k'. With p = det(6,,) = Hgle mj, there exists an integer k/
such that s;j; = pk} if and only if p divides s;7; iff m divides m g; iff j; is a multiple of

m (this is true even if s; = 0 with the convention that gcd(0,p) = p). In other words, with
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S = diag(gcd(gl,p) ey gcd(gd,p))’ we just proved that i € G if and only if there exists £ € Z? such

that 7 = QQIS'I;”. In other words, Q, 'S’ is a basis for G.

Note that if M is unimodular, the above construction can be simplified. Indeed, in this case,
Mi = HmE &= M*IOmI_f', thus M 16, is a basis for G. We will use this later, focusing only on
unimodular matrices (even triangular). Note also that given a lattice described by a nonsingular
square matrix B, we can always build back a matrix M and a vector m such that the corresponding
lattice G for M,, has basis B. This can be done as follows. Write the Smith normal form of B,
B =@Q15Q2. Let M = Qfl and let 1 be the vector whose components are the diagonal components
of S. As seen before, a basis for G is then (1.5, which is also a basis of the lattice described by B
since B and @15 differ by multiplication on the right by a unimodular matrix.

6.2.2 One-To-One Modular Mappings

We are now ready to discuss necessary conditions and sufficient conditions for a modular mapping
M, to be one-to-one from a rectangular index set Z, onto the rectangular set Z,,, (here we identify
Z% |7 with the set Z,, forgetting about the group structure).

First, of course, the cardinality of Z, and Z,, have to be the same, i.e., H?Zl b; = Hglzl. Also,
the determinant of the lattice G has to be equal to the cardinality of Z,,. Otherwise, according
to Lemma 5, the cardinality of the range of M,, divides (strictly) the cardinality of Z,,, therefore
some elements of Z,,, have no pre-image, and the mapping cannot be one-to-one onto Z,.

Lemma 6 gives a sufficient condition for a mapping M, to be one-to-one from a rectangular
index set 7 onto the rectangular index set Z,,,. If the lattice G has a basis expressed by a triangular
(up to a permutation of the rows) matrix whose diagonal components are the components of 5, and
if the determinant of G is equal to the cardinality of Z,, (equivalently if Z, and Z,, have the same
cardinality), then the mapping is a one-to-one mapping from Z, onto Z,,. It turns out that the
converse is also true (see details in [10]) thanks to a famous (in covering/packing theory) theorem
due to Hajés [14].

Theorem 3 A modular mapping M, is one-to-one from I onto L, if and only if the lattice G has
a basis given by a triangular (up to a permutation of the rows) matriz whose diagonal components
are the components of I, and Iy and I,, have same cardinality.

To find the diagonal components of these triangular basis, we just have to compute the d! left

. . . . . L . 2 4
Hermite forms of a given basis. For example, if the basis of G is given by the matrix B = ( > ,

3 12
2 4N _(20\(12), (2 4\_(24)( 1 4
3 12 ) \ 3 6 01 312 ) \ 3 0 0 -1
Therefore, among the 6 possibilities — b € {(1,12), (12,1), (2,6), (6,2), (3,4), (4,3)} — the mapping

is one-to-one from Z;, onto Z,, only for b = (2,6) and b = (4,3). Can we build a mapping with such
a property? Yes. We compute the Smith normal form of B:

2 4\ (2 -1\(1 0 138 N A

3 12 ) \ 3 -1 0 12 o1 )™ 3 —1 S\ -3 2
Therefore the mapping (i,7) — (—i+j mod 1, —3i + 25 mod 12) is such a mapping. We can even
remove the first component of the mapping (since £ mod 1 is always 0), and simply consider the

then:
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mapping (4,7) — —3i + 25 mod 12. The table below depicts the values —3i 4+ 25 mod 12 in the
plane (i,7) (7 increases from left to right, j from bottom to top). The reader can check that only
the “boxes” (2,6) and (4, 3) are suitable.

0 9 6 3 0 9 6
10 7 4 1 10 7 4
8 bt 2 11 8 ) 2
6 3 0 9 6 3 0
4 1 10 7 4 1 10
2 11 ) 2 11 8
0 9 6 3 0 9 6

We point out that the techniques developed here (with the help of Hajés’ theorem) are also
useful in systolic-like array design (see [9] and [8]) for generating “juggling schedules” corresponding
to “locally sequential globally parallel” partitionings.

6.2.3 Many-To-One Modular Mappings

We now generalize the previous results (when possible) to the case of many-to-one modular map-
pings. The situation turns out to be much more difficult. We will say that a rectangular index set
Ty is a multiple of a rectangular index set Zy if b and b have same size and each component of bis
a multiple of the corresponding component of b'. In other words, Z;, can be paved (partitioned) by
disjoint copies of Zj.

The results of the previous section give immediately a necessary condition and a sufficient
condition for a modular mapping M,, to be many-to-one from 7, onto Z,,.

Lemma 7 If M,, is a many-to-one modular mapping from I onto L,,, then the cardinality of Z;
is a multiple of the cardinality of T,,, and the determinant of the lattice G is equal to the cardinality
of Zp,.

Proof: The first part is obvious. If M,, is many-to-one from Z; onto Z,,, by Definition 5, there
exists an integer k such that each element of Z,,, has exactly k pre-images. Therefore, the cardinality
of Ty is exactly k times the cardinality of Z,,.

The second part comes from Lemma 5: the image of Z? is a set whose cardinality is the
cardinality of the determinant of G. If the determinant of G is not equal to the cardinality of Z,,,
then some element in 7, has no pre-image at all. Since 0 has at least one pre-image (6 always
belongs to a rectangular index set since we assumed b to be positive), not all elements of Z,,, have
the same number of pre-images. |

Lemma 8 If M,, is a one-to-one modular mapping from Ty onto L,,, then My, is a many-to-one
modular mapping from any multiple Ty of Ty onto Lp,.

Proof: This is clear. Each element in 7y gives rise to a different value in Z,,,. Furthermore, this
property is true for any translated copy of Z;s since a translation of the index set Z;» corresponds to
a translation (modulo m) of their images. We already made this remark in Lemma 4. Therefore, if
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M, is one-to-one from Zyy onto Z,,, M,, is also one-to-one from any translated copy of Z;, onto Z,,.
Since 7y is the union of disjoint copies of Z,, M, is a many-to-one mapping from Z, onto M,y,, since
each element of M, has as many pre-images as there are copies of Zy in the partitioning of Z,. B

Can we generalize Theorem 3 to the case of many-to-one modular mappings? The theorem of
Hajés used to prove Theorem 3 is a theorem of group theory, for a group that is the direct sum
of particular subsets (“beginning” of cyclic groups). The direct sum (that Hajés denoted by @)
means that each element of the group can be decomposed, in a unique way, as the sum of elements,
each one in a different subset. In our case, the number of subsets is the dimension of the index set
we work with (here d). It turns out that Hajés proved an extension of his result to more general

“direct sums” (denoted by é), where each element can be decomposed in exactly k£ ways into the
sum of elements, each one in a different subset. He proved a less-known result of same kind up
to dimension 3, but gives a counter-example for 4 such subsets. For more details, see the original
paper by Hajés (in German) [14] or the book of Fuchs [12].

We can easily use Hajos’ extended result to adapt the proof of Theorem 3, up to dimension 3:
a modular mapping is many-to-one from 7, onto Z,, if and only if the lattice G has a determinant
equal to the cardinality of Z,,, and one of the d! left Hermite forms of a basis of G is such that
each diagonal component divides the corresponding component of b. Thanks to Lemma 4, this
will give a necessary and sufficient condition for mappings with the load-balancing property up
to dimension 4 (one more than for many-to-one mappings). However, because of Hajés’ counter-
example with 4 subsets, these results are more likely to be wrong for higher dimensions, even if
we did not try to build a counter-example neither for many-to-one mappings, nor for mappings
with the load-balancing property. It is possible that the very constrained conditions needed for
the load-balancing property (the mapping has to be many-to-one for each “face” of the index set)
makes that we need to look for a counter-example in even higher dimensions, but nevertheless, we
think that such a counter-example is more likely to exist.

The extension of Theorem 3 to many-to-one modular mappings has also a very interesting
consequence. When this extension is true (with the previous discussion, at least up to dimension 3),
it implies that each index set Z;, for which the many-to-one property is true is a multiple of a smaller
index set for which the one-to-one property holds. But in higher dimensions, it is very possible
that Z, can be partitioned using several smaller rectangular index sets, for each of which the one-
to-one property is true, but that Z, cannot be partitioned using only one of them. This seems
to be related to results (much simpler compared to Hajés’ theorem) due to N. G. de Bruijn who
characterized the rectangular index sets, partitioned into given smaller rectangular index sets, that
can be partitioned using only one of them. In higher dimensions, this situation is more likely
to happen. Therefore, in higher dimensions, we do not know if a simple necessary and sufficient
condition for a modular mapping to be many-to-one can be given. Nevertheless, for our practical
concern, we are mainly interested in building one such mapping, and for this, using the sufficient
conditions from the if-part of Theorem 3 and from Lemma 8 will be sufficient.

6.2.4 Modular Mappings With the Load-Balancing Property

Lemma 4 makes the link between modular mappings with the load-balancing property and many-
to-one modular mappings. Using the various necessary conditions and sufficient conditions of the
two previous sections, for one-to-one mappings and many-to-one mappings respectively, we can now
give conditions for the load-balancing property.
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Theorem 4 If M,, is a modular mapping with the load-balancing property for I, then the following
holds:

e for each dimension j, Hi# b; is a multiple of the cardinality of I,
e the determinant of the lattice G is equal to the cardinality of I,

e for any basis B of G, each row of B has coprime components.

Proof: The first property is clear. This is the same as our validity condition for (y;) in Section 5
and a consequence of the first condition of Lemma, 7.

The second property is a consequence of Lemma 5 again. The determinant of the lattice G
for M,, divides the cardinality of Z,,. If the determinant is not equal to Z,,, it is strictly smaller,
and some values in Z,,, have no pre-image at all in the whole set Z", therefore no pre-image in Z,,.
In this case, the mapping cannot have the load-balancing property (in terms of Section 5, some
processors have no tiles at all to compute).

The third property comes from Lemma 4 and the link between the lattice G for M,, and the
lattice G[i] for M[i],, (M][i] is the matrix obtained by removing the i-th column of M, MJi],, is
the corresponding mapping modulo /m). The mapping M, has the load-balancing property if and
only if, for each dimension i, M[i],, is many-to-one when restricted to the i-th “face” of 7y, i.e.,
Zy(4,0). Following Lemma 7, the determinant of the lattice G[i] has to be equal to the cardinality
of . The lattice G[i] is the set of vectors in Z%! whose image under M[i],, is 0. Embedding the
set Z4!into Z? (according to i), Z%! “is” the set of vectors in Z¢ such that the i-th component is
0, and G[i] can be viewed as the projection of the intersection of G with the set {j € Z% | j; = 0}.
This is the reverse operation we did to obtain Lemma 4. To say it differently, with ;[z] the vector
obtained from ; by removing the i-th component, we have:

(je€Gand j;=0) < (Mj=0modm and j; = 0) < (M[i]j[i] = 0 mod 7% and j; = 0)
& (jli] € G[i] and j; = 0)

In other words, instead of computing G[i| following the steps given in Section 6.2.1 starting from
the matrix M[i], we can build G[i] directly from G (which is computed starting from the matrix
M). Starting from a basis B of G, we can multiply B (on the right) by any unimodular matrix
@, and BQ is still a basis of G. Furthermore, as we do for computing Hermite normal forms, we
can choose @ such that the i-th row of B has only one nonzero component (which is the ged —
greater common divisor — of the elements of this row). We then remove the i-th row of B and the
column that contains the nonzero component of the i-th row, and we obtain a basis B[i] for G[i].
By construction, the determinant of B is equal (up to sign) to the determinant of B[i] times the
nonzero element of the i-th row. Therefore, since the determinant of G divides the cardinality of
T, this is true also for the determinant of B[i], and there is equality if and only if the nonzero
element was equal to 1 (or —1), i.e., if and only if the elements of the i-th row are coprime. |

Theorem 4 will give us some hints on how to build a desired mapping with the load-balancing
property. Let us give a sufficient condition now, which is a direct consequence of the if-part of
Theorem 3 and of Lemma 8, and of the link between G[i] and G revealed in the previous lemma.

Theorem 5 A modular mapping M, has the load-balancing property for Iy if the following con-
ditions are satisfied:

e the determinant of the lattice G for My, is equal to the cardinality of Ty,
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e if B is a basis of the lattice G, for each dimension i, there is permutation of the rows of B
such that the i-th row of B is now the first and such that the (unique for this permutation)
left Hermite form of B is HQ where the first diagonal component of B is 1 and each diagonal
component of H divides the corresponding (taking the permutation into account) component
of b.

Proof: Consider a dimension 7. To make the explanations simpler, let us get rid of the permuta-
tion mentioned in the conditions of the lemma by permuting the axes accordingly. Now, the matrix
H is still a basis for G since this is B multiplied on the right by a unimodular matrix. Furthermore,
H' the lower-right submatrix of H, obtained by removing the first row and first column, is a basis of
Gi], as we showed in the proof of Theorem 4. This matrix H' satisfies the condition of Theorem 3:
its determinant is equal to the determinant of B (since the first component of H is 1), which is
equal to the cardinality of Z,,, therefore M[i],, is a one-to-one mapping from Z;, onto Z,,, where h
is the diagonal of H'. Now, thanks to Lemma 8, we know that M][i],, is a many-to-one modular
mapping from the slice Z(i,0) onto Z,, since Typ;) is a multiple of Z,,. Finally, since this is true for
any dimension ¢, Lemma 4 shows that M,, is a modular mapping with the load-balancing property
for the index set Zy. |

Note that in many practical cases, the previous conditions are also necessary. For example,
when for a dimension i, the cardinality of Z,(7,0) is equal to Z,, (and not simply a multiple), the
conditions are necessary (Theorem 3) since many-to-one is in this case one-to-one. Also, when
d < 4, then each modular mapping M][i],, is a mapping in dimension less or equal to 3 and the
conditions of Lemma 8 are also necessary. Furthermore, as pointed out previously, the fact that
the extension of Hajés’ theorem does not hold for a dimension d does not mean that the conditions
of Theorem 5 are not necessary for dimension (d + 1). The load-balancing property makes the
problem much more constrained. We would need a counter-example to give a complete answer to
such a question.

6.3 Generating A Valid Modular Mapping

We are now ready, thanks to the previous observations, to build a modular mapping M, with the
load-balancing property for an index set Z, (which is given, b is the vector whose components are
the 7;’s of Section 5). The freedom we have is that we can choose the matrix M and the modulo
vector 7, but with the constraint that the cardinality of Z,, (the product of the components of
m) is given, equal to the number of processors p. The only property of b we exploit is that b is
a valid solution (with the meaning of Section 5), which means that the product of any (d — 1)
components of bis a multiple of p. We will choose the matrix M to be unimodular so that the
lattice G is easy to compute (as we noticed in Section 6.2.1). A basis of G is simply given by
M~'6,,, where 6,, = diag(my,... ,mq). Note also that, when M is unimodular, the first condition
of Theorem 5 is automatically fulfilled since the determinant of G is the determinant of M~'6,,,
thus the determinant of 6,,, i.e., the cardinality of Z,,.
We will choose the matrix M with the following form:

N 0
= (0
where N will be computed by induction on the dimension. Therefore, finally, M will be even

triangular, with 1’s on the diagonal. We have the following preliminary result.
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Lemma 9 Suppose that mg divides by, and that the modular mapping Ny, — in dimension (d—1) —
defined by N and m' has the load-balancing property for Iy, where b and @' are the vectors defined
by the (d — 1) first components ofl_; and m. Then, the modular mapping M,, defined by M and m
has the load-balancing property for Ty if it is many-to-one from the last slice T(d,0) onto L.

Proof: In order to check that the mapping defined by M and m has the load-balancing property
for the rectangular index set Zj, we have to make sure that it is many-to-one for all slices Z(%, 0),
1 <i < d (Lemma 4). To prove this lemma, we only have to prove that this is true for the slices
Zy(i,0), 7 < d, if N has the properties stated, since this is supposed to be true for Zy(d, 0).

Without loss of generality, let us consider the first dimension, i.e., the first slice Z(1,0). Given
fe Z4)"Z, let us count the number of vectors ie Ty, such that Mi = ] mod m and i; = 0.

- -

M1 mod m < N7’ —] mod 1 and X.7 4+ iq = jq mod my

where i’ and j' are defined the same way as b’ and 77/, and X is the row vector formed by the first
(d —1) component of the last row of M. Now, because of the load-balancing property of N,,, there
are exactly n vectors i’ € Zy such that i1 = 0 and Ni’ = j' mod 7/, where n is a positive integer
that does not depend on f’ . It remains to count the number of values ¢4, between 0 and b; — 1, such
that 1g = j4 — X.i' mod mg. Since my divides by, there are exactly by/mg such values, whatever the
value z = (jq — X.i’ mod mg). These are the values z + kmg, with 0 < k < bg/mg. Therefore, fhas
nbg/mg pre-images in Z, and this number does not depend on ; ]

We define the vector m according to the following formula:

ged ( aHd:i bj)
ged (p, H] —iy10j )

Vi, 1<i<d, mj=

(3)

(By convention, a product of no terms is equal to 1). The vector 77 defined this way has several
properties that will make a recursive construction of M possible. In the rest of the proofs, we will

make an extensive use of the relation ged(a, be) = ged(a, b) ged (m, c).

Lemma 10 The vector m defined by Equation 3 has the following properties: (1) the components
of m are positive integers, (2) my = 1, (3) the product of the components of m is equal to p, (4)
each component m; divides b;, (5) the definition of the m;’s for 1 < d is the same if we only consider
the (d — 1) first components of b and the processor number m. Furthermore, if b is a valid

solution for p, then (by,... ,bg_1) is a valid solution for m, (6) Ifb is a valid solution for p,
then for all k, 2 < k < d, Hé:ll b; is a multiple of H?:Q m;.

Proof: The first property is obvious. The second property (m; = 1) comes from the fact that
H?:Q b; is a multiple of p, therefore m; = p/p = 1. The third property is also elementary. When
computing the product of the m;, the denominator of m; cancel with the numerator of m;,1, only
the first numerator remains, which is p.

Let us consider the fourth property. By definition we have:

p

) b;
ng(pa bz) !

j=it+l

d
m; ged | p, H bj | =ged p,Hb = ged(p, b;) ged
j=it1
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Since ged (p, H] it10; ) is a multiple of ged (m, H?:Z-H bj), ged(p, b;) is a multiple of m;.
Therefore, m; divides both p and b;.
For the fifth property, we have:

d d—1 d—1

god (P IT0ibs)  eed(pba) ged (gl T2 0)  eed (Gt T2 )
= d—1 - d—1

ged (Pa H] —=it+1 bj ) ged(p, be) ged (rd(z;,bd) ) Hj:i+1 bj) ged (gcdé),,bd) ) Hj:i-i—l bj)

m; =

Furthermore if b is a valid solution for p, then for all i < d, p divides H] 1,ji bj» therefore m

divides []%Z i ! ji bj- Thus, the first (d — 1) components of b form a valid solution for
For the last property, we have:

ng(p7bd) ’

k k d p d k
Hmi _ ged (paH =i b]) o ng(pal_[ 2b]) — ged p ?Hbj
=2 =2 ng ( s H] =i+l b; ) ng(pa H] k+1 bj ) gcd(p, H] k+1 b; ) j=2

Thus, Hfﬂ m; divides But, if b is a valid solution for p, p divides [Ti sk bi- Thus,

p
ng(P:HJd:kJ,.l bj)

———2 __ divides []"7]' b; and this i tiori true for [TF_, m;. m
e d Tt ivides [[;Z; b; and this is a fortiori true for [[;_, m;

Because mq = 1, we will be able to drop, at the end of the construction, the first component of
the mapping, and we will end up with a mapping from Z? into a subgroup of Z4~! (or of smaller
dimension if some other components of m are equal to 1). Also, the fact that m; = 1 will make our
life easier when computing a basis of a lattice G[i| (i.e., the pre-images of zero under the restricted
mapping M [i],,). Indeed, the two following constructions are possible:

e Compute a basis B for G with B = M ~'6,,, where 6,, = diag(m). Manipulate the columns
of B so that the i-th row has only one nonzero component. The square submatrix defined by
removing the i-th row and the column that contains the nonzero component of the i-th row
is a basis for G[i| (see Section 6.2.1).

e Consider M[i],, directly, i.e., remove the i-th column of M. M[i],, is not square, but we may
also remove the first row since m; = 1. Now, we get a square submatrix. If this submatrix is
unimodular, then we can easily compute the corresponding G[i].

We now assume that NV is triangular with 1’s on the diagonal. It remains to specify how we
choose the last row of M so that, given N, the modular mapping M,, is many-to-one from the slice
Zy(d,0) onto Z,,. For that, since m; = 1 and the previous remark, we only need to consider the
matrix M obtained from M by removing the last column and first row.

- i T
p Z
where 4 is a column vector and 7' is a row vector, both with (d—1) components, and p is an integer.

The matrix (@,T") is the matrix obtained by removing the first row of N, thus 7" is a triangular
matrix with 1’s on the diagonal. With I the identity matrix of size (d — 2), we write:

IO\ (L0 i T\ i T
t 1 A\t p Z ) \ti+p iT+2
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and we define p and Z such that, for the last row of the previous matrix product, only the first
component is nonzero, equal to 1. In other words, 7= —#I" and p = 1 — £.@. The row vector ¢ has
(d — 2) components and is to be defined. We can now compute the inverse of M starting from the
previous equality (and we first multiply both sides of the equality by the adequate matrix so that
the last row of matrices is now the first):

w=(5n) (Fa)=( ) ()

We denote by F; the matrix ( ; é ) and by 6,,, the matrix diag(me, ... ,mg). The matrix M~16,,
is a basis of the lattice G[d]. Furthermore, to find the diagonal components of its left Hermite form,
it is sufficient to compute the left Hermite form of F,0,, since the left Hermite form of M—16,,
is obtained by multiplying on the left by a triangular matrix with 1’s on the diagonal (7! is
triangular with diagonal components equal to 1). This will not change the diagonal components of
a decomposition HQ. It turns out that the left Hermite form of F; (and similarly of F; multiplied
by a diagonal matrix) is easy to compute in a symbolic way.

0l
S0
a diagonal matriz diag(s) of size (n — 1), the diagonal h of H where A = HQ is the left Hermite
form of A is defined by the following formulas:

Lemma 11 Given o matriz A = ( ) of size n, where U is a row vector of size n and S is

o 1y =y, and r; = ged(vi, rig1) for 1 <i<mn,

i hi+1:”¢—ilsif0r1§i<nandh1:r1,

Proof: Let us compute the left Hermite form of A, first manipulating (i.e., multiplying by a
unimodular matrix on the right of A) the last two columns of A so that the last component of the
first row is 0, then the two columns (n —2) and (n— 1) so that the (n —1)-th component of the first
row is 0, etc. until we reach the first two columns. We let r, = v, and we let r; be the component
that appears on the first row of A and i-th column just after we zeroed the (i + 1)-th component
of this row. Just before this change, the (i + 1)-th component of the first row was equal to 711
and the i-th component was v;. Therefore, by an adequate unimodular transformation (changing
only the columns ¢ and (i + 1)), when the (i + 1)-th component becomes zero, the ged of v; and
ri+1 appears on the i-th column, thus r; = ged(v;, 7i41). The following matrices illustrates this
mechanism:

V1 ... Up Tigl 0 ... 0 V1 ... Ty 0 0 ... 0
0 . : 0 :

S; 0 = * hi+1 0
0 0 *  hiyo 0 0 0 % hiyo 0
: : * * . : : : * * .. :
0O ... 0 * * ... hy 0O ... 0 * * ... hy,

Furthermore, the determinant of the 2 x 2 submatrix defined by the columns ¢ and (i + 1) and
the rows 1 and ¢ (a triangular matrix) does not change. It was equal to s;r;11, it is now equal to
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rihi11. Therefore, h;1 1 = W;ﬂ% After these transformations, the matrix is triangular and hq, the
first component of the diagonal, is equal to the remaining nonzero element ry. |
Applying Lemma 11 to the matrix Fi0,, of size (d—1), we get:
e rg_1 =mg and r; = ged(t;miqq,ripr) for 1 <i<d—1,
. hi_H:%for1§i<d—1andh1:r1.

To prove that M, is many-to-one from the slice Z;(d,0) onto Z,,, it is now sufficient to define ¢
so that h; divides b; for all i+ < d (Lemma 8 and Theorem 3) since the fact that Z; and Z,, have
same cardinality was already guaranteed because M is unimodular. We define the vector ¢ by the
following formula:

Ti+1
ged(biy1,rit)

We then have the following relation:

t; = for1<i<d-—2 (4)

Ti+1Mi+1
N = d t N ; = d _— N
g ge ( 141, Tz+1) ge (ng(bz‘+1, 7'@'+1) ) Tz+1>

Ti+1 Ti+1 )
ged(big1,miv1)” ged(mig, rig1)

= ged(mig1,mip1) ged (

rit1 ged(mit1,Tiv1)
ged(biy1,it1)

since b;;1 is a multiple of m;;1 (Lemma 10, fourth property)

We therefore have the following relation for the components of h:

b ~oripimigpr . Mg ged(bipr, rigr)
i1 = =
T ged(mig1,rig1)

We can then check that h;;; divides b; ;. Indeed:

hi+1 divides bi+1 & My ng(bi+17 ’)”Z'+1) divides bz'+1 ng(mi+1, ’)”Z'+1)
& ged(miy1bivr, mip1ria) divides ged(miy1biv1, big1mit1)

But m;11 divides b;11, thus m; 1741 divides b;11741 and, finally, ged(m;r1biv1, miyr17riv1) divides
ged(mi1bitt, biv1mig)-

It remains the tricky case of hy = r1. We prove the following result by (decreasing) induction
on k, from k =d — 1 to k = 1 (the case we are interested in):

Lemma 12 Ifl_; is a valid solution for p then, for 1 <k <d—1, (rk HLQ mz> divides (Hf:1 bz->.

Proof: Since ry_1 = my, the case K = d — 1 comes from the second and third properties of
Lemma 10: r4_4 H?;Ql m; = p which divides H?;ll b; since b is a valid solution for p.

Now, assume that the result is true for k: 7 Hfﬂ m; divides Hle b; = by Hi:ll b;. We also
know that Hl o m; divides Hl ~!'b; (sixth property of Lemma 10), i Hkil by = )\HLQ m; for

some integer A. Thus, ri divides Abg, and thus divides . Multlplymg by H/’-c 9 My, We

gcd(b k)
obtain that % 15 m; divides [T b;, and a fortiori % 152 m; divides [T} bs.
Going back to the link between rp_1 and ry, this proves that rp_; Hf:_; m,; divides Hi:l b;, which
is the property for (k —1). |

We just proved the following result.
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Lemma 13 With the vector t given by Equation 4, the mapping M,, is many-to-one from the slice
Zy(d,0) onto T,,, when b is a valid solution for p.

We are now ready to put all pieces together, using an induction argument.

Lemma 14 Let b be a valid solution for p. If N is built recursively in dimension (d — 1) the same

way M is built in dimension d, but for a number of processors equal to m and the vector b/

defined by the first (d —1) components of I;, then My, is & modular mapping with the load-balancing
property for Iy.

Proof: We make an induction on the dimension, assuming that the construction is correct for
the dimension (d — 1) (and this is obviously true for d = 1).

First, thanks to the fifth property of Lemma 10, ¥’ is indeed a valid solution for p’ = —2

ged(p,ba)?
and the vector 7i defined from &' and p' by Equation 3 is equal to /. Therefore, by induction
hypothesis, the modular mapping defined by N and /7' has the load-balancing for Z,;. Now, thanks
to Lemma 9, and the fact that my divides by, we just have to show that M,, is many-to-one from
the slice Zy(d, 0) onto Z,,,. This is the result of Lemma 13. [ |

The schema we just presented corresponds to the following program (where the matrix M has
rows and columns from 1 to d as in the presentation of this paper):

// Precondition: d >= 2
void ModularMapping(int d) {

for (i=1; i<=d; i++)
for (j=1; j<=d; j++)
if ((3==1) || (i==j)) M[i][j] = 1; else M[il[j] = O;

for (i=2; i<=d; i++) {
r = m[i];
for (j=i-1; j>=2; j--) {
t = r/gcd(r, bl[j1);
for (k=1; k<=i-1; k++) {
M[i] [k] -= t*M[j][k];
}
r = gcd(t*m[j]l,r);
}
}
}

In our current implementation, we of course take the final matrix modulo the corresponding values
of m (or at least in absolute value less than the corresponding value of m). We also play some
tricks, variants of the previous program (alternating signs of ¢ for example, or pre-permuting the
components of b) to make coefficients smaller. We also use Theorem 3 in [10] (injectivity of My,
for Zyp) to reduce the components of M, dividing the components of b by their gcd. But the
basic kernel is the one presented above. For example, for p = 30 = 2 x 3 x 5 and the valid
solution b = (10,15,6) in dimension 3, the basic kernel leads to m = (1,5,6) and the mapping

(i,7,k) — (i + j mod 5,k — i — 25 mod 6), which corresponds for example to the “linearization”
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(i,7,k) — 6(i+ j mod 5) + (k —i — 27) mod 6. The following 6 tables give the corresponding values
for (4,7), when k goes from 0 to 5.

0 11 16 21 26 1 6 17 22 27 1 6 17 22 27 2 7 12 23 28
10 15 20 25 0 11 16 21 26 1 11 16 21 26 1 6 17 22 27 2
14 19 24 5 10 15 20 25 0 11 15 20 256 0 11 16 21 26 1 6
18 29 4 9 14 19 24 5 10 15 19 24 5 10 15 20 25 O 11 16
28 3 8 13 18 29 4 9 14 19 29 4 9 14 19 24 5 10 15 20
2 7 12 23 2803 8 13 18 29 3 8 13 18 29 4 9 14 19 24
6 17 22 27 2 7 12 23 28 3 T 12 23 28 3 8 13 18 29 4
16 21 26 1 6 17 22 27 2 7 17 22 27 2 7 12 23 28 3 8
20 25 0 11 16 21 26 1 6 17 21 26 1 6 17 22 27 2 7 12
24 5 10 15 20 25 0 11 16 21 25 0 11 16 21 26 1 6 17 22
4 9 14 19 24 5 10 15 20 25 5 10 15 20 25 0 11 16 21 26
8§ 13 18 29 4 9 14 19 24 5 9 14 19 24 5 10 15 20 25 O
12 23 280 3 8 13 18 29 4 9 13 18 29 4 9 14 19 24 5 10
22 27 2 7 12 23 28 3 8 13 23 28 3 8 13 18 29 4 9 14
26 1 6 17 22 27 2 7 12 23 2r 2 7 12 23 28 3 8 13 18
2 7 12 23 28 3 8 13 18 29 3 8 13 18 29 4 9 14 19 24
6 17 22 27 2 7 12 23 28 3 7T 12 23 28 3 8 13 18 29 4
16 21 26 1 6 17 22 27 2 7 17 22 27 2 7 12 23 28 3 8
20 25 0 11 16 21 26 1 6 17 21 26 1 6 17 22 27 2 7 12
24 5 10 15 20 25 0 11 16 21 2> 0 11 16 21 26 1 6 17 22
4 9 14 19 24 5 10 15 20 25 5 10 15 20 25 0 11 16 21 26
8§ 13 18 29 4 9 14 19 24 5 9 14 19 24 5 10 15 20 25 O
12 23 28 3 8 13 18 29 4 9 13 18 29 4 9 14 19 24 5 10
22 27 2 7 12 23 28 3 8 13 23 28 3 8 13 18 29 4 9 14
26 1 6 17 22 27 2 7 12 23 2r 2 7 12 23 28 3 8 13 18
0 11 16 21 26 1 6 17 22 27 1 6 17 22 27 2 7 12 23 28
10 15 20 25 0 11 16 21 26 1 11 16 21 26 1 6 17 22 27 2
14 19 24 5 10 15 20 25 0 11 15 20 256 0 11 16 21 26 1 6
18 29 4 9 14 19 24 5 10 15 19 24 5 10 15 20 25 0 11 16
28 3 8 13 18 29 4 9 14 19 29 4 9 14 19 24 5 10 15 20
4 9 14 19 24 5 10 15 20 25 5 10 15 20 25 0 11 16 21 26
§ 13 18 29 4 9 14 19 24 5 9 14 19 24 5 10 15 20 25 O
12 23 28 3 8 13 18 29 4 9 13 18 29 4 9 14 19 24 5 10
22 27 2 7 12 23 28 3 8 13 23 28 3 8 13 18 29 4 9 14
26 1 6 17 22 27 2 7 12 23 2r 2 7 12 23 28 3 8 13 18
0 11 16 21 26 1 6 17 22 27 1 6 17 22 27 2 7 12 23 28
10 15 20 25 0 11 16 21 26 1 11 16 21 26 1 6 17 22 27 2
14 19 24 5 10 15 20 25 0 11 15 20 256 0 11 16 21 26 1 6
18 29 4 9 14 19 24 5 10 15 19 24 5 10 15 20 25 0 11 16
28 3 8 13 18 29 4 9 14 19 29 4 9 14 19 24 5 10 15 20
2 7 12 23 2803 8 13 18 29 3 8 13 18 29 4 9 14 19 24
6 17 22 27 2 7 12 23 28 3 7T 12 23 28 3 8 13 18 29 4
16 21 26 1 6 17 22 27 2 7 17 22 27 2 7 12 23 28 3 8
20 25 0 11 16 21 26 1 6 17 21 26 1 6 17 22 27 2 7 12
24 5 10 15 20 25 0 11 16 21 2> 0 11 16 21 26 1 6 17 22

The brave reader can check that this is indeed a correct 3D multipartitioning.

7 Experiments

We have implemented preliminary support for generalized multipartitionings in the Rice dHPF
compiler for High Performance Fortran.
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Multipartitioning within the dHPF compiler is implemented as a generalization of BLOCK-style
HPF partitioning [6, 7]. The partitioned dimensions of the template are distributed onto a virtual
array of processors that has the correct size for the rank of the multipartitioning. Internally, the
compiler analyzes communication and loop bounds reduction as if the multipartitioned template was
a standard BLOCK partitioned template onto a larger array of processors. The main difference comes
in the interpretation that the compiler gives to the PROCESSORS directive. For a BLOCK partitioned
template, the number of processors onto which each dimension is partitioned determines the data
sizes of the tiles. The number of processors may be different for each dimension (i.e. processors
p(2, 3); distribute t(block, block) onto p). In the case of multipartitionings, the number
of processors cannot be specified on a per dimension basis since each multi-partitioned dimension
is completely distributed among all processors. The tiles are partitioned according to the rank of
the multipartitioning and then assigned in a skewed-cyclic fashion to the processors as presented
in the previous sections.

There are several important issues for correctly generating efficient code for multipartitioned
distributions. First, the order in which a processor’s tiles are enumerated has to satisfy any loop-
carried dependences present in the original loop from which the multipartitioned loop has been
generated. If the tiles are not enumerated in the order indicated by the loop-carried dependences,
then it is possible to execute the loop correctly, but in a serialized manner induced by data exchange-
related synchronization. Second, communication, which has effectively been vectorized out of a loop
nest, should not be performed on a tile-by-tile basis, but instead should be executed once for all of a
processor’s tiles. Communication aggregation is thus more tricky but is possible because generalized
multipartitioning provide the same neighborhood guarantee as simpler, diagonal multipartitionings:
the neighboring tiles for a particular processor will be the same for all of its owned tiles.

By using a multipartitioned data distribution in conjunction with sophisticated data-parallel
compiler optimizations, we are closing the performance gap between compiler-generated and hand-
coded implementations of line-sweep computations. Earlier results and details about dHPF’s com-
pilation techniques can be found elsewhere [7, 6, 1, 2]. Here we present some preliminary results
applying generalized multipartitioning in a compiler-based parallelization of the NAS SP applica-
tion benchmark [4, 7], a computational fluid dynamics code.

The most important analysis and code generation techniques used to obtain high-performance
multipartitioned applications by the dHPF compiler are:

e partial replication of computation to reduce communication frequency and volume,
e communication vectorization,

e aggressive communication placement, and

e intra-variable and inter-variable communication aggregation.

We performed these experiments on a SGI Origin 2000 with 128 250MHz R10000 CPUs, each
CPU has 32KB of L1 instruction cache, 32KB of L1 data cache and an unified, two-way set
associative L2 cache of 4MB.

Table 1 shows the speedups obtained for both the dHPF-generated and hand-coded versions of
the NAS SP benchmark using the class "B’ problem size (102%). The hand-coded version imple-
ments three-dimensional diagonal multipartitionings, thus its results are only available for numbers
of processors which are perfect squares. The compiler-generated version uses generalized multi-
partitioning to execute on other numbers of processors. The table presents the speedups for the
hand-coded version (where available), the dHPF version and the differences between them. All
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| # CPUs | hand-coded | dHPF | % diff.

1 0.80 0.87 -8.30
2 1.30
4 2.86 2.60 | 10.16
6 4.14
8 6.35
9 7.74 6.98 | 10.84
12 9.72
16 13.00 | 13.97 -6.87
18 15.84
20 16.44
25 22.15 | 21.32 3.87
32 27.84
36 36.51 | 32.38 | 12.79
49 51.78 | 41.32 | 25.32
50 38.88
64 7495 | 5143 | 13.44

Table 1: Comparison of hand-coded and dHPF speedups for NAS SP (class B).

speedups presented are relative to the sequential version of NAS SP. Overall, the performance of
the compiler-generated code is similar to that of the hand-coded versions with the exception of the
gap between the versions for a 49 processor execution, which is wider for reasons that are currently
unknown.

The performance differences observed between the hand-coded and compiler-generated versions
are due in large part to a difference how off-processor values are stored and accessed in the two
versions. In the dHPF-generated code, each data tile is extended with overlap areas (ghost regions
around the tile’s boundary) into which off-processor data is unpacked. Overlap areas enable a loop
operating on the tile to reference all data uniformly without having to distinguish between local and
off-processor data. The hand-coded version uses a clever buffering scheme in which iterations of a
loop that need off-processor data are peeled off the main body of the loop. Then, in the peeled loop
references to off-processor data read their values directly out of a message buffer without having
to unpack it. In the dHPF-generated code, the use of extra data space for overlap areas degrades
data cache efficiency, which appears to account for most of the observed performance differences.

One other factor that effects the execution efficiency of the dHPF-generated code when the
number of tiles per hyperplane of a multipartitioning is greater than one (e.g., when the number
of processors in a 3D partitioning is not a perfect square) is that the dHPF-generated code fails to
effectively exploit reuse of data tiles across multiple loop nests. Currently, for a sequence of loop
nests, dHPF-generated code executes one loop nest for each of the data tiles in a hyperplane of
the data and then advances to the next loop nest. For a sequence of loop nests with compatible
tile enumeration order, the tile enumeration loops could be fused so that all of the compatible loop
nests in the sequence are performed on one tile before advancing to the next tile. When data tiles
are small enough to fit into one or more caches, this strategy this would improve cache utilization
by facilitating reuse of tile data among multiple loop nests.
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8 Conclusions

The paper describes an algorithm for computing multipartitioned data distributions. These dis-
tributions are important because they support fully parallel execution of line-sweep computations.
For arrays of 2 or more dimensions, our algorithm will compute an optimal multipartitioning that
minimizes cost according to an objective function that measures communication in line sweep com-
putations. Previously, optimal multipartitionings could be computed for d dimensional data only
when pdfll is integral.

We have shown that, having a partitioning in which the number of tiles in each slice is a multiple
of the number of processors — an obvious necessary condition — is also a sufficient condition for a
balanced mapping of tiles to processors. We give a constructive method for building the mapping
(which assigns the tiles to the physical processors that should compute upon them) using new
techniques based on modular mappings.

We have constructed a prototype code generator that exploits generalized multipartitionings in
the Rice dHPF compiler; however, these partitionings could be exploited by hand-coded implemen-
tations as well. Preliminary performance results for generalized multipartitioning code generated
by dHPF show encouraging scalability for small numbers of processors.
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