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Abstract

The paper of J� Ketonen and R�Weyhrauch ��� de�nes a decidable fragment of �rst�order predicate
logic � Direct Predicate Calculus � as the subset which is provable in Gentzen sequent calculus
without the contraction rule� and gives an e�ective decision procedure for it� This report is a
detailed study of this procedure� We extend the decidability to non�prenex formulas� We prove
that the intuitionnistic fragment is still decidable� with a re�nement of the same procedure� An
intuitionnistic version has been implemented in the system Coq �	� using a translation into natural
deduction�

Keywords� predicate calculus� sequent calculus� decision procedures� proof search� intuitionnistic logic�

R�esum�e

L
article de J� Ketonen et R� Weyhrauch ��� d�e�nit un fragment d�ecidable du calcul des pr�edicats
du premier ordre � le Calcul des Pr�edicats Direct � comme le sous�ensemble prouvable dans le
calcul des s�equents de Gentzen sans utiliser la r�egle de contraction� et en donne une proc�edure
de d�ecision e�ective� Ce rapport pr�esente une �etude d�etaill�ee de cette proc�edure� Nous �etendons
la d�ecidabilit�e au cas des formules non n�ecessairement pr�enexes� Nous montrons que le fragment
intuitionniste est �egalement d�ecidable� par un ranement de la m�eme proc�edure� Une version
intuitionniste de cette algorithme a �et�e impl�ement�ee dans le syst�eme Coq �	��

Mots�cl�es� calcul des pr�edicats� calcul des s�equents� proc�edures de d�ecision� recherche de preuves� logique
intuitionniste�
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Abstract

The paper of J� Ketonen and R� Weyhrauch ��� de�nes a decidable fragment of �rst�order predicate
logic � Direct Predicate Calculus � as the subset which is provable in Gentzen sequent calculus without
the contraction rule� and gives an e�ective decision procedure for it� This report is a detailed study of
this procedure� We extend the decidability to non�prenex formulas� We prove that the intuitionnistic
fragment is still decidable� with a re�nement of the same procedure� An intuitionnistic version has been
implemented in the system Coq �	� using a translation into natural deduction�

� Introduction

First�order predicate logic is known to be undecidable� But some fragments are decidable� like propositional
calculus� monadic predicates� or some classes of prenex formulas �Ackermann
s class � � � ���� � � ��� or G�odel
s
class � � � ����� � � �� for instance�� All those fragments are syntactic restrictions�

The paper of J� Ketonen and R� Weyhrauch ��� de�nes a decidable fragment of predicate logic� not in
terms of syntactic restriction� but with a restriction on deduction rules� Indeed� Direct Predicate Calculus is
de�ned as �the fragment of �rst�order predicate logic which is provable in Gentzen sequent calculus without
the contraction rule��

Intuitively� it means that� for a given proof� each hypothesis �and each conclusion� can be used at most
once during the proof� For instance� the hypothesis A is used once in a proof of

A � �A � B� � B

but necessarily twice in a proof of

A � ��A � B� � �A � C�� � �B �C�

and that
s why the �rst formula is provable in Direct Predicate Calculus but not the second one�
In a more subtle way� it prevents proofs by case� like for instance the �drinkers
 theorem�

�y��x��P �y� � P �x��

which is provable in Gentzen sequent calculus but not in Direct Predicate Calculus�
In ���� a decision procedure for Direct Predicate Calculus is explicitly given� It has been studied again

in ���� which mentions a mistake in the original paper� carries out relations with linear logic and gives
details about implementation of the decision procedure� The basic idea is simple� each atomic subformula

�This research was partly supported by ESPRIT Basic Research Action �Types� and by the GDR �Programmation� co�

�nanced by MRE�PRC and CNRS�
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can appear at most once in an axiom� therefore� we can see a derivation as the set of its axioms� The
decision procedure consists of looking for such sets �called paths�� which are �nite and in �nite number�
then to construct derivation from paths� Quanti�cation� in the case of prenex formulas� in handled through
Herbrand functions and uni�cation ��� ���

The result is no longer true for non�prenex formulas� The skolemization does not assure the eigenvariable
condition� it can now depend on the order of the quanti�er rules� which was obvious and �xed in the prenex
case� We extend the decision procedure to handle the case of non�prenex formulas� the construction of
derivations from paths can now lead to a failure� We prove the completeness of this procedure� The ideas
are closed to the framework presented in ���� but we do not perform proof search bottom�up exploiting the
permutabilities of logical rules� we look for sets of axioms and re�construct one particular proof from these
axioms� Thus the permutabilities of rules are still completely exploited�

At last� we are interested in Intuitionnistic Direct Predicate Calculus� that is Direct Predicate Calculus
restricted to intuitionnistic sequents� or equivalently Gentzen intuitionnistic sequent calculus �LJ � without
contraction� Indeed� we want the decision procedure to be e�ective in Coq� which proof language is an intu�
itionnistic natural deduction� So we must know when a derivation corresponds to an intuitionnistic proof�
We extend again the decision procedure to bring out intuitionnistic proofs� when they exist� and we prove
its completeness with respect to intuitionnistic provability�

In section 	� we give notations and de�nitions� Then we present in section � the original main result and
the decision procedure of ��� ��� but we give a slightly di�erent proof� The extension we give for non�prenex
formulas� and the case of intuitionnistic proofs is presented in section �� Finally� we give details about
implementation in the system Coq in section ��

� Direct Predicate Calculus

��� Notations and de�nitions

We assume the reader to be familiar with predicate calculus and sequent calculus� Our language is that
of �rst�order predicate logic �L��� terms are built from variables and functions symbols applied to terms�
formulas from atomic formulas applied to terms and the connectives �������� �� �� with the precedences
�� � � � � �� �� �� A sequent is a couple of sequences � and � of formulas� considered as multi�sets of
formulas� and is written � � ��

In order to distinguish the occurrences of an atomic formula in a proof �or a formula� a sequent�� for
instance A inA � �A � C� � D� we extend the language with annotations on atomic formulas� Ai will denote
an occurrence of A� where i is an integer� Therefore� A� � �A� � C� � D represents the above formula� but
in which we have syntactically distinguished the two occurrences of A� This language is denoted L�

De�nition � �separated formula� A formula F of L is said to be separated if two occurrences of the
same atomic formula of F are distinct� that is� annotated with di�erent integers�

If F is a formula� then ��F � is the formula of L� obtained by removing all annotations on atomic formu�
las� Two formulas F and G are called similar �F � G� if ��F � � ��G�� that is if they represent the same
formula� From now on� we will assume that formulas and sequents are separated�

De�nition � �occurrence� We will write u � t for �u occurs in t�� u and t being terms or formulas�

The notion of positive and negative occurrence is de�ned as usual� A formula A occurs positively in
A� and if A occurs positively �resp� negatively� in B then A occurs positively �resp� negatively� in C �
B�B �C�C �B�B �C�C �B� �x�B� �x�B and negatively �resp� positively� in �B�B � C�

A conjunctive subformula is a positive occurrence of a conjunctive formula �A�B� or a negative occurrence
of a disjunctive formula �A�B�A � B�� and a disjunctive subformula is a positive occurrence of a disjunctive
formula or a negative occurrence of a conjunctive formula� In the following� we will sometimes write A 	B
for a conjonctive or a disjunctive subformula� 	 being one of the three connectives �� � or ��

	



A quanti�er is called essentially universal if it is the outermost quanti�er of a positive occurrence of �x�A
or a negative occurrence of �x�A� and essentially existential if it is the outermost quanti�er of a positive
occurrence of �x�A or a negative occurrence of �x�A�

All those de�nitions are extended to sequents without any diculty� interpreting A�� � � � � An � B�� � � � � Bm

as the formula A� � � � ��An � B� � � � ��Bm�

��� Axioms and rules

Direct Predicate Calculus is the fragment of �rst�order predicate logic which can be proved in Gentzen
sequent calculus �LK� without the contraction rules�

A�A�� � �

A�� � �
�L�contract�

� � A�A��

� � A��
�R�contract�

Therefore� the rules for Direct Predicate Calculus are the following�

Axioms Axioms are

A��u� � B��u�
�Ax�

where A and B are two similar atomic formulas �A � B�� and �u a list of terms�

Structural rules Contraction being eliminated� and exchange rule being implicit� the only structural rules
are weakening rules�

� � �

�� A � �
�L�W �

� � �

� � �� A
�R�W �

Logical rules Logical rules are exactly those of LK� To each connective� �������� �� or �� correspond
two introduction rules� one on the left side of the sequent� the other one on the right side�

� � A��

�A�� � �
�L���

A�� � �

� � �A��
�R���

A�B�� � �

A �B�� � �
�L���

�� � ��� A �� � ��� B

����� � ������ A �B
�R���

A��� � �� B��� � ��

A �B������ � �����
�L���

� � �� A�B

� � �� A �B
�R���

�� � ��� A B��� � ��

A � B������ � �����
�L���

A�� � �� B

� � �� A � B
�R���

A�t��� � �

�x�A�x��� � �
�L���

� � �� A�a�

� � �� �x�A�x�
�R���

A�a��� � �

�x�A�x��� � �
�L���

� � �� A�t�

� � �� �x�A�x�
�R���

where ��������������� are formulas sequences� A�B are formulas� a is a variable which does not appear
in � 
�� and t a term �called witness of the existential variable x��

In each previous rule� the formulas A and B are called active formulas and the formula appearing in the
conclusion �A �B�A �B� � � �� is called the principal formula of the rule� Notice that positivity is preserved
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by any rule� that is a positive �resp� negative� formula of the conclusion is also positive �resp� negative� in
the premises and conversely�

One can notice here that rules for ��� and � are given in their multiplicative way� that is formulas of
the conclusion are split into the two premises� and not in their additive way where they would be duplicated
in the two premises� like in the rule

� � �� A � � �� B

� � �� A �B
�R���

This is consistent with the elimination of contraction�

The notion of derivation is de�ned as usual� from the rules above� and a formula F� of L� is provable in
Direct Predicate Calculus if there exists a derivation of � F � where F is a formula of L such that ��F � � F��

��� Examples

We recall that LK denotes the �rst�order classical Gentzen sequent calculus �see for instance ���� page ����
As a �rst example� let us consider the two formulas

A � �A � �B � �B�� and A � ��A �B� � �A ��B��

They represent the same proposition� are both provable in LK� but in the second one the � has been
distributed on the �� Only the �rst one is provable is DPC�

Example ��� A � A � �B ��B� is provable in DPC�

Proof�

A � A
�Ax�

B � B
�Ax�

� B��B
�R���

� B � �B
�R���

A � A � �B � �B�
�R���

� A � A � �B � �B�
�R���

�

On the other hand�

Example ��� A � ��A �B� � �A � �B�� is not provable in DPC�

Intuitively� every derivation of the sequent � A � ��A�B���A��B�� must use the hypothesis A twice� and
that is exactly what is forbidden by the eliminationof the contraction rule� A proof ofA � ��A�B���A��B��
in LK would be�

A � A
�Ax�

A � A
�Ax�

B � B
�Ax�

� B��B
�R���

A � B�A � �B
�R���

A�A � A �B�A � �B
�R���

A � A �B�A ��B
�L�contract�

A � �A �B� � �A ��B�
�R���

� A � ��A �B� � �A � �B��
�R���

One can be convinced that � A � ��A �B� � �A � �B�� is not provable in DPC by trying to apply in a
systematic way all inference rules on the sequent �see forthcoming examples��

�

Another example of formula provable in LK but not in DPC is the well�known �drinkers
 theorem��
�y�A�y� � �x�A�x�� whose name came from the interpretation �There exists a person y such that if y drinks
then everybody drink�� We choose here the prenex version of this formula� that is �y��x��A�y� � A�x���
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Example ��	 �y��x��A�y� � A�x�� is not provable in DPC�

Proof� The only rule that can be applied to the sequent � �y��x��A�y� � A�x�� is R� �� and the resulting
sequent is then�

� �x��A�t� � A�x��

� �y��x��A�y� � A�x��
�R���

where t is a term in which x does not appear� Again� the only rule that can be applied is R� �� which leads
to�

� A�t� � A�x�

� �x��A�t� � A�x��
�R���

� �y��x��A�y� � A�x��
�R���

Once again� only the rule R� � can be used� and leads to the sequent A�t� � A�x�� clearly not provable in
DPC� seen the above eigenvariable condition on t�

�

On the other hand� if T denotes the formula �y��x��A�y� � A�x��� T � T is provable in DPC�

Example ��
 �y��x��A�y� � A�x�� � �y���x���A�y�� � A�x��� is provable in DPC�

Proof�

A�x� � A�x�
�Ax�

A�x� � A�x�� A�x��
�R�W �

� A�x�� A�x� � A�x��
�R���

A�y� � A�x�� A�x� � A�x��
�L�W �

� A�y� � A�x�� A�x� � A�x��
�R���

� A�y� � A�x�� �x���A�x� � A�x���
�R���

� A�y� � A�x�� �y���x���A�y�� � A�x���
�R���

� �x��A�y� � A�x��� �y���x���A�y�� � A�x���
�R���

� �y��x��A�y� � A�x��� �y���x���A�y�� � A�x���
�R���

� �y��x��A�y� � A�x�� � �y���x���A�y�� � A�x���
�R���

�

It shows that �y��x��A�y� � A�x�� is provable in LK �by �rst applying R � contract� then the above
proof��

� A decision procedure

The decision procedure is based on the search for axioms� Axioms of a proof of F are pairs of atomic formulas
appearing positively and negatively in F � We de�ne the notion of path which is a set of such pairs satisfying
some conditions� and show how paths and proofs are in correspondence� and how proofs are built from paths�
Then the decision procedure will consist in looking for paths� which appears to be clearly decidable�

��� De�nitions

Let S be a propositional sequent� Let P be a set of pairs of atomic subformulas of S�

De�nition 	 �P satis�es A� We say that P satis�es a formula A �in symbols P � A� if there is a pair
�P� P �� in P such that either P � A or P � � A�

De�nition 
 �A and B connected� For A�B � S� we say that A and B are connected �in symbols AkPB�
if there is a pair �P� P �� in P such that P � A and P � � B �or vice versa��

�



De�nition � �conjunctive cycle� We say that P has a conjunctive cycle if there exist distinct conjunctive
subformulas of S� namely A� 	B�� � � � � An 	Bn �n � ��� such that

�i � f�� � � � � ng BikPAi���

indexes being considered modulo n�

De�nition � �path� We say that P is a path for S if it satis�es the following conditions	

�a� P �� �


�b� Atomic formulas in P are all distinct


�c� If �P� P �� � P then P appears positively in S and P � negatively in S


�d� If A 	B is a conjunctive subformula of S� and if P � A 	B� then P � A and P � B


�e� If A 	B is a conjunctive subformula of S� and if P � A 	B� then A and B are not connected


�f� There is no conjunctive cycle in P�

��� The main theorem

Let S be a propositional sequent�

Theorem � For any substitution �� S��� is provable in Direct Predicate Calculus if and only if there is a
path P for S� minimal for inclusion� such that

��P� P �� � P P ��� � P ���� ���

Examples

� If S � A� � �A� � B�� � B�� then P �
�
�A�� A�� � �B�� B��

�
is a path for S� It corresponds to the

proof

A� � A� �Ax� B� � B� �Ax�

A�� A� � B� � B� �L���

A� � �A� � B�� � B� �R���

� A� � �A� � B�� � B� �R���

as we will show later�

� If S denotes the sequent
A��a� � ��x��A��x� � B��x��� � �y�B��y�

then its skolemized form SH �x� y� is

A��a� � �A��x� � B��x�� � B��y�

and P �
�
�A��x�� A��a�� � �B��y�� B��x��

�
is a path for SH �x� y� satisfying the condition ��� for the

substitution � �
�
x y
a a

�
� It corresponds to the proof

A��a� � A��a�
�Ax�

B��a� � B��a�
�Ax�

A��a�� A��a� � B��a� � B��a�
�L���

A��a�� �x��A��x� � B��x�� � B��a�
�L���

A��a�� �x��A��x� � B��x�� � �y�B��y�
�R���

A��a� � ��x��A��x� � B��x��� � �y�B��y�
�R���

� A��a� � ��x��A��x� � B��x��� � �y�B��y�
�R���

�

�



	���� Proof of the theorem� only if part

The only if part is the most intuitive� the path corresponds exactly to the axioms of the derivation �propo�
sition 	��

De�nition  �path of a derivation� The path of a derivation D �in symbols P�D�� is de�ned as the set
of the axioms of D� that is

P�D� � f �A�B� jB � A is an axiom of D g

The notions of formulas satis�ed and connected are extended to derivations through P�D��

De�nition � �normal derivation� A derivation D is said to be normal if it satis�es the following two
conditions	

� if R is a rule of D with two premises� of active formulas A and B� then A and B are satis�ed in D


� if R is a rule of D with one premise� which is not a weakening rule� then at least one of the active
formula of R is satis�ed in D�

Proposition � If S is derivable in Direct Predicate Calculus� then there is a normal derivation of S in
Direct Predicate Calculus�

Proof� Let D be a derivation of S� and let us consider a weakening rule� for instance R�W � in D�

D�

� � �
� � �� A

�R�W �

���

�X �

If A is not active in the rule X then we can exchange the application of R�W and X � Let us assume this
fact everywhere in the derivation D� Then� only two cases can occur�

� The formula A is active in the inference X � In that case� let us assume that X is a two premises rule�
for instance R� �

D�

�� � ��

�� � ��� A
�R�W �

D��

�� � ��� B

����� � ������ A �B
�R���

Since D� is a derivation of �� � ��� we can simplify D in this way

D�

�� � ��

����� � ������ A �B
�W��

where W � represents a sequence of weakening rules�

If X is a one premise rule� like for instance

D�

� � �
� � �� A

�R�W �

�A�� � �
�L���

then we can simplify D in
D�

� � �
�A�� � �

�L�W �

 



� The rule X is also a weakening rule� on a formulaB� and A and B are both active in the rule preceding
X � for instance R� �

D�

� � �
� � �� A

�R�W �

� � �� A�B
�R�W �

� � �� A �B
�R���

Then we can replace D by the simpli�ed derivation

D�

� � �
� � �� A �B

�R�W �

�

Proposition � If D is a normal derivation of S then P�D� is a path for S� minimal for inclusion�

Proof� Let D be a derivation of S� Let us show by induction on the length of D that P�D� is a path for S�

� If D is an axiom the result is clear�

� If the last rule of D has one premise
D�

S�
S

�X �

then by induction hypothesis P�D�� is a path for S� �since unary rules do not generate new conjunctive
formulas�� But P�D� � P�D�� and� since P�D�� satis�es the conditions �a�f� then P�D� too�

� If the last rule of D has two premises� for instance

D�

�� � ��� A

D�

�� � ��� B

����� � ������ A �B
�R���

the induction hypothesis can be applied to D� and D�� so P�D�� and P�D�� are paths for S� and S�
respectively� Clearly� P�D� � P�D�� 
 P�D��� and satis�es �a�c�� Since D is assumed to be normal�
then P�D� satis�es �d�� P�D� is minimal because P�D�� and P�D�� are� Axioms of P�D�� and P�D��
are distinct� so P�D� satis�es �e��

It remains to verify the condition �f�� Since P�D�� and P�D�� do not contain any conjunctive cycle by
hypothesis� let us consider a conjunctive cycle of the form

F 	C� � � � � Yi� � � � � A �B� � � � � Zi� � � � � F 	C

But A and B cannot be connected �condition �e��� so necessarily all Yi must be subformulas of S� and
all Zi subformulas of S�� But F 	C cannot belong to both S� and B�� So P�D� satis�es �f��

�

Proof of the theorem �only if part�� Let D be a proof of S���� From Proposition 	� P�D� is a path for
S���� so also for S� And the condition ��� is clearly satis�ed since axioms are of the form

A��u� � B��u�
�Ax�

with �B�A� � P�D�� �

!



	���� Proof of the theorem� if part

The if part of the theorem is more subtle� Given a path for a sequent� we must re�construct a proof of this
sequent� We prove it by induction on the sum of the sizes of the sequent and the path� and it gives us an
algorithm for the decision procedure� The main diculty appears when the sequent contains only conjunctive
formulas� so that we have to choose one of them to apply the corresponding rule� We �rst establish some
preliminaries to solve this critical point�

Preliminaries Let S be a sequent and P a path for S� Let C be the set of pairs �Ai� Bi� such that Ai 	Bi

or Bi 	Ai is a conjunctive subformula of S� We de�ne the oriented graph G � �V�E� by

� V � C

� ��A�B�� �C�D�� � E if and only if ��P� P �� � P with P � B and P � � C� �i�e�� B and C are connected�

If x � �A�B� is an vertex of G we denote "x the vertex �B�A�� We write x y if �x� y� � E� We denote
�

 the transitive closure of � and
�

 its re#exive transitive closure� If we have x
�

 y� we say that we have
a path from x to y� If c�  c�  � � � cn is a path� we say that it is pure if i �� j �� ci �� cj � ci �� "cj�
We write x

�

p y in that case� When y � x or y � "x we still say that the path from x to y is pure if it is of
the form x

�

p z  y� Then we allow to write x
�

p x or x
�

p "x�

We call cycle every pure path x
�

p x� and loop every pure path x
�

p "x�

The main property of this graph is the following�

Proposition 	 P has a conjunctive cycle if and only if G has a cycle�

Proof� Let
A� 	B� � A� 	B� � � � � � An 	Bn

be a conjunctive cycle of P� Then it is clear that �A�� B��  �A�� B��  � � �  �An� Bn�  �A�� B�� is a
cycle of G�

On the opposite� if �A�� B��  �A�� B��  � � �  �An� Bn�  �A�� B�� is a cycle of G� then we have
i �� j �� Ai 	Bi �� Aj 	Bj � and so

A� 	B� � A� 	B� � � � � � An 	Bn

is a conjunctive cycle of P� �

Remarks

�� If �x� y� � E then �"y� "x� � E� by de�nition of E� Consequently� if we have a path from u to v� then
we have a path from "v to "u �more exactly� if we have the path c�  � � �  cn� we also have the path
"cn  � � �  "c���

	� If the path y
�

p z
�

p "z is not pure� then there exists a cycle in G�

Indeed� if y
�

p z
�

p "z is not pure� let us consider the smallest sux of this path� w
�

p z
�

p "z� which
is not pure� Two cases arise�

� either y
�

 w
�

 z
�

 w
�

 "z� with w
�

 z
�

 w pure� so we have a cycle�

� or y
�

 w
�

 z
�

 "w
�

 "z� with w
�

 z
�

 "w pure� We have "w
�

p "z so by the previous remark we

have z
�

p w� so z
�

p w
�

p z� If this path were not pure it would contradict the minimality of

w� So we have a cycle z
�

p z�

�



We de�ne on V the relation � by

x�� y
def
�� �z x

�

p z
�

 y
�

 "z� where z
�

 y
�

 "z is pure

and
x� y

def
�� x�� y � ��y �� x�

Lemma � If G has no cycle then � is a strict partial order�

Proof� The relation � is anti�re#exive by de�nition�
To show the transitivity of �� notice that is sucient to show that

x�� y � y � z �� x�� z

Indeed� assume that this fact is true� If x � y and y � z� then clearly x�� z� If we had also z �� x�
then� because x� y� we would have by the same result z �� y� which is not�

So assume that x�� y and y � z� and let us show x�� z� We have the paths�

x
�

p u
�

 y
�

 "u� �z �
pure

and y
�

p v
�

 z
�

 "v� �z �
pure

From remark 	 those two paths are necessarily pure� So we have

x
�

p y
�

p v
�

 z
�

 "v� �z �
pure

and we aim at proving x �� z� Suppose x
�

p y
�

p v is not pure� and let w
�

p y
�

p v be the smallest
sux of this path which is not pure� Two cases arise�

� either we have w
�

p y
�

p w
�

p v� and we have a cycle� contradiction�

� or we have w
�

p t
�

p "w
�

p v
�

 z
�

 "v� we have "w
�

p v� so "v
�

p w �Remark ��� so z
�

 "v
�

p w�

which is a pure path because "w
�

p v
�

 z
�

 "v is� So we have

z
�

p w
�

 y
�

 "w with w
�

 y
�

 "w pure

that is z �� y� which cannot be� seen y � z�

In the end� we have the path
x

�

p v
�

 z
�

 "v� �z �
pure

that is x�� z� �

Lemma � If G has no cycle� and if there is an in�nite path

x�  x�  � � �  xn  � � �

with xi�� �� "xi� then the relation � has a minimal element�

Proof� Since G has no cycle� � is a strict partial order� from the previous lemma� Therefore� seen that V
is �nite� � has a minimal element if and only if � is not empty�

Let x�  x�  � � �  xn  � � � be an in�nite path in G� with xi�� �� "xi� Let x�  � � �  xk the longest
pure pre�x of this path� Two cases arise�

� either we have x�
�

 xi � xk��
�

p xk��� then we have a cycle� which cannot be�

��



� or we have x�
�

 xi � xk��
�

p xk��� and then x� � xi���

�

Proof of the theorem �if part�� Let P be a path for S���� for � a substitution� such that the condition
��� is satis�ed� Notice that P is also a path for S� The condition ��� only ensures that pairs in P could be
considered as axioms in the following� So we won
t mention � anymore to clarify the proof�

Let us show by induction on the integer t $w that P corresponds to a proof of S� where t is the size of
S �the number of symbols� and w the number of atomic subformulas of S not satis�ed in P�

� If S has the shape �� P � � �� P with �P� P �� � P then we can apply the rule Axiom� possibly preceded
by weakenings�

� If S has the shape � � �� F �or �� F � �� with F not satis�ed in P� then the induction hypothesis
applies to � � � and we use the weakening rule�

� If S contains a disjunctive formula� for instance S � � � �� A�B then the induction hypothesis applies
to � � �� A�B for the same path P� and we get a derivation of S by R� ��

Likewise if S contains a negation�

� Otherwise� the formulas of S can be split into two sets % and &� where % is a set of atoms �atomic
formulas� and & a nonempty set of satis�ed conjunctive formulas� Then we look for a conjunctive
formulas X� of & �for instance A� �A�� on which we can apply the corresponding rule �here R� ���
that is for which we can split S into two sequents containing A� and A�� and �nd two paths for these
sequents� to apply the induction hypothesis� We can distinguish two cases�

� There exists a conjunctive formula X� of &� for instance A� �A�� such that A� is connected only
to atoms �i�e�� if �P� P �� � P and P � A� �resp� P � � A�� then P � � % �resp� P � %��

Then let S� and S� be the two sequents de�ned by S� � A� 
%� and S� � �&nfX�g� 
A� 
%��
where %� � fP � % jPkPA� g and %� � %n%�� We restrict the path P to S� and S� by

Pi � f �P� P �� � P jP � Si g

Let us show that Pi is a path for Si� Pi satis�es �a�� because P satis�es �d� so P � A� and
P � A�� Pi satis�es �b�e� because P satis�es �b�e�� Pi satis�es �f� because a conjunctive cycle
of Pi would be a conjunctive cycle of P� At last� Pi is minimal� because P is �if� for instance�
P�� � P� would be a path for S� then P�� 
P� would be a path for S� smaller than P�� So we can
apply the induction hypothesis to �S��P�� and �S��P��� we get a derivation of S� and a derivation
of S�� and a derivation of S by R� ��

� In the other case� every conjunctive formula of & is connected to another conjunctive formula of
&�

From the lemma 	 there exists an element X� of & minimal for �� Assume that X� � A� �A��
and let

&i � fY � &nfX�g j there is a chain from Ai to Y g

Since there is no cycle and X� is minimal for� we have &��&� � �� Let %i � fP � % j PkP&i

fAig g� P satis�es �b� so %� �%� � ��

Suppose there exists C in & such that C �� &i� for i � �� 	� Then let P� � f �P� P �� �
P jP � C or P � � C g� S is satis�ed so P� �� �� Moreover� P� � Pi � � for i � �� 	� other�
wise C would be connected to A� or A�� Then it
s clear that PnP� is a path for S� which
contradict the minimality of P�

Likewise� suppose there exists P � % such that P �� %i for i � �� 	� The rule Axiom has not been
applied� so P is connected to a conjunctive formula C of &� C cannot be X� by hypothesis� But�
from the previous remark� such a formula C must belong to &� or &�� which is a contradiction�

��



So we have� & � &� 
 &� 
 fX�g and % � %� 
%�� Then let

Si � %i 
&i 
 fAig

and
Pi � f �P� P �� � P j P or P � appears in Si g

It
s clear that Pi satis�es �b�f� since P satis�es these conditions� Moreover� Pi is minimal because
P is� At last� P satis�es �d� and P � X�� so P � A� and P � A�� and so Pi satis�es �a��

So we can apply the induction hypothesis to �Si�Pi�� and get a proof of S� and S�� then a proof
of S by R� ��

�

��� Skolemization

De�nition � �Herbrand term� Let F be a formula of L and Qx�A an essentially universal subformula
of F which lies in the scope of essentially existential quanti�ers Q�x������ Qnxn of F � The Herbrand term
associated with Qx is fx�x�� � � � � xn� where fx is a new symbol of function� fx is called the Herbrand function
associated with Qx�

De�nition �� �Herbrand form� Let F be a formula of L� The Herbrand form FH�x�� � � � � xn� of F is the
result of erasing all quanti�ers of F and replacing each essentially universal variable with the corresponding
Herbrand term� Here x�� � � � � xn are all the essentially existential variables in F �

In the following� we will consider free variables as �implicitly� universally quanti�ed� It is the same as
considering free variables as constants �since a free variable do not lie in the scope of any existential variable�
so it is replaced by a new function symbol with no argument� that is a new constant symbol��

Examples

� If F � �y�P �y� � �x�P �x�� we have FH �y� � P �y� � P �fx��

� If F � �y�A�y� �B � �x��A�x� �B�� we have FH �x� � A�fy� �B � A�x� �B�

� If F � �y��x��P �y� � P �x��� we have FH�y� � P �y� � P �fx�y���

� If F � �x��y��A�x� y� � B�x�� � �t���z�A�u� z� � B�t���
we have FH�x� t� z� � �A�x� fy�x�� � B�x�� � �A�u� z� � B�t���

The interest of Herbrand form lies in the following result�

Theorem � �Skolem�Herbrand� Let F be a prenex formula� Then F is provable in DPC if and only if
there exist terms t�� � � � � tn such that FH �t�� � � � � tn� is provable in DPC �more exactly in Direct Propositional
Calculus� that is without the rules R� �� R� �� L� � and L� ���

Remark� Before giving the proof of this theorem let us notice that the result is no longer true for non�
prenex formulas� For instance let F be the formula

�y�A�y� �B � �x��A�x��B�

Its Herbrand form is FH�x� � A�fy� � B � A�x� � B� and there exists a term t � fy� such that FH�t� is
provable in DPC�

But F is not provable in DPC� Indeed� the only rule that we can apply to the sequent � F is R� ��
and then we must prove the sequent �y�A�y� �B � �x��A�x��B�� Two rules can be applied a priori �R� �
and L� �� The second one leads to a sequent of the form �y�A�y� � or B � which is not provable� so the

�	



�rst one remains� So we look for a term t and a proof of �y�A�y� �B � A�t� �B� Likewise� we must apply
here R��� which leads to �y�A�y� �B � A�t�� B� At last� only the rule L� � can be applied and leads to
�y�A�y� � A�t�� which is not provable since t is a term which does not contain y �y is a bound variable when
we introduce t with R� ���

However� notice that F is provable in LK�

A�y� � A�y�
�Ax�

A�y� � A�y�� B
�R�W �

A�y� � A�y� �B
�R���

A�y� � �x��A�x� �B�
�R���

�y�A�y� � �x��A�x��B�
�L���

B � B
�Ax�

B � A�x�� B
�R�W �

B � A�x� �B
�R���

B � �x��A�x� �B�
�R���

�y�A�y� �B � �x��A�x� �B�� �x��A�x� �B�
�L���

�y�A�y� �B � �x��A�x� �B�
�R�contract�

� �y�A�y� �B � �x��A�x� �B�
�R���

�

Lemma 	 Let F be a formula� � a substitution and t a term� Let �fu�u�U be function symbols appearing in
F � and �f �u�u�U new function symbols such that for all u of U we have ar�f �u� � ar�fu� $ ��
F ��� is provable in DPC if and only if F �fu � f �u�t����� is provable in DPC�

Proof� F �fu � f �u�t����� is equal to F ����fu � f �u���t��� so it
s sucient to show that if t is a term them F
is provable if and only if F �fu � f �u�t�� is provable�

The proof is by induction on the length of the derivation� showing the more general result� for all sequent
S� S is derivable if and only if S�fu � f �u�t�� is derivable� The reader will easily convinced himself of this
result�

Notice that the derivation of F �fu � f �u�t�� is the derivation of F in which we apply everywhere the
substitution �fu � f �u�t��� �

Lemma 
 Let F be a formula� x a free variable in F � � a substitution such that ��x� � x and fx a function
symbol which does not occur in F �
F ��� is provable in DPC if and only if F �x� fx���� is provable in DPC�

Proof� The proof is also by induction on the length of the derivation to show that for every sequent S such
that x is free in S and fx does not occur in S� S��� is derivable if and only if S�x� fx���� is�

The proof is trivial since we notice that the rules R� ��L� ��R� � and L� � cannot be applied on the
variable x �because we assumed that x is free in S� and it
s always possible to rename the bound variables
of S with names other than x��

Notice that the derivation of F �x � fx���� is the derivation of F ��� in which we apply everywhere the
substitution �x� fx�� �

Proposition 
 Let F be a prenex formula and � a substitution�
If FH ��� is provable in DPC then F ��� is provable in DPC�

Proof� The proof is by induction on the number of quanti�ers of F �

� If F has no quanti�er then F � FH � and the proposition is obvious�

� If F � �x�F � then FH � F �H �fu � fu�x�� for every essentially universal variable u in F �� �We write fu
for the two function symbols� even if they are actually di�erent symbols�� By hypothesis FH ��� �i�e��

��



F �H �fu � fu�x����� is provable� So� from lemma �� F �H ��� is provable� But F � has one quanti�er less
than F � so the induction hypothesis applies to F �� and F ���� is provable �i�e�� we have a derivation

D

� F ����

and so there is a derivation of F ���
D

� F ����

� ��x�F �����
�R���

� If F � �x�F � then FH � F �H �x� fx��
By hypothesis FH ��� �i�e�� F �H �x� fx���� is provable so F

�
H ��nx��x� fx� is provable� So from lemma �

F �H ��nx� is provable� and the induction hypothesis applies to F �� F ���nx� is provable �i�e�� we have a
derivation

D

� F ���nx�

from which we get
D

� F ���nx�

� ��x�F �����
�R���

�

Proposition � Let F be a prenex formula�
If F is provable in DPC then there exist a substitution � such that FH ��� is provable in DPC�

Proof� The proof is by induction on the number of quanti�ers of F �

� If F has no quanti�er then F � FH � and the result is obvious�

� If F � �x�F � then FH � F �H �fu � fu�x�� for every essentially universal variable u in F ��
By hypothesis F is provable so there exist a term t such that we have the derivation

D

� F ��x� t�

� �x�F �
�R���

F ��x � t� is derivable and by induction hypothesis there exist a substitution � such that �F ��x �
t��H ��� is provable� But �F ��x � t��H � F �H �x � t� so F �H �x � t���� is provable� and from lemma �
F �H �fu � fu�x���x� t���� is provable �i�e�� FH ���� is provable� where �� is the substitution de�ned by
���x� � t and ���y� � ��y� if y �� x�

� If F � �x�F � then FH � F �H �x� fx��
By hypothesis F is provable so we have a derivation

D

� F �

� �x�F �
�R���

Induction hypothesis applies to F � and so there exist a substitution � such that F �H ��� is provable� So
from lemma �� F �H �x� fx���� is provable �i�e�� FH ��� is provable� �

Proof of the theorem� Let F be a prenex formula and FH�x�� � � � � xn� its Herbrand form�

��



� If F is provable in DPC then� from proposition �� there exist a substitution � such that FH ��� is
provable �i�e�� FH ���x��� � � � � ��xn�� is provable�

� Conversely� assume that there exist terms t�� � � � � tn such that FH �t�� � � � � tn� is provable in DPC�
Let � be the substitution �xi � ti�i�������n� FH ��� is provable so� from proposition �� F ��� is provable�
and F ��� � F �

�

��� The decision procedure

Let F � Q�x��Q�x� � � �Qnxn�G be a prenex formula� where G has no quanti�er� We are going to apply the
previous theorem to �nd derivations of F �

Let FH�xi� � � � � � xip� be the Herbrand form of F � Let A� �resp� A�� be the set of positive �resp� negative�
atomic subformulas of FH � First we consider the set

M �
�
�P� P �� u� j P � A� � P � � A� � P �u� � P ��u�

�

where u is a principal solution of the uni�cation problem P � P �� First�order uni�cation is decidable� and
has pseudo�linear solutions �see for instance � � �����

Then we consider nonempty subsets P of M satisfying conditions �b� and �d�� and such that the substi�
tution

� �
�

�P�P ��u��P

u

exists� therefore� conditions �a�d� and ��� are already satis�ed� See ��� for an ecient algorithm to �nd such
subsets�

Then we keep the subsets who also satis�ed the last conditions �e� and �f�� If P is such a subset �actually
a path�� and � the above substitution� the proof of the theorem � gives a way to construct a derivation D of
FH ���� By replacing the Herbrand functions fu by the corresponding variable u in � we get a substitution
��� and by doing the same replacement in D we get a derivation D� of G����� Then

D�

� G����
� Qnxn�G���nxn�

�R�Qn�

���
� Q�x� � � �Qnxn�G�x�� ���x���

� Q�x� � � �Qnxn�G
�R�Q��

is a derivation of F �

� Extensions

In the case of prenex formulas the skolemization expresses the relative order of the quanti�ers� so that
uni�cation respects the eigenvariable condition� The basic idea is the following� if F is the formula

�x��y�P �x� y�

its Herbrand form is
P �x� fy�x��

Then uni�cation cannot lead to a term containing fy to substitute to x �we would have an occur�check�� As
a consequence� the term substituted to x does not contain the variable y� which is the correct condition�

But� unfortunately� in the case of non�prenex formulas� the skolemization is not powerful enough� For
instance� we saw that the formula

�y�A�y� �B � �x��A�x��B�

��



has the Herbrand form
FH �x� � A�fy� �B � A�x� �B

which is provable for the substitution � �
h
x
fy

i
� But the dependency of ��x� over y �fy� implies that L� �

must be applied before R� � in the proof� which is not possible without contraction� as we have already
seen�

So skolemization gives a necessary condition on �� but not a sucient one� The idea for extending the
decision procedure in the case of non�prenex formulas is the following� we keep skolemization and the search
for paths for the Herbrand form� satisfying the condition ���� and we try to reconstruct derivations from
paths� like we did in the prenex case� But now� this step can lead to a failure� the path does not necessarily
correspond to a derivation� But we keep the completeness of the method� if a formula is provable in DPC
then there is at least one path for it on which the algorithm is successful�

Of course� such reconstructed proofs from paths have a certain shape� depending on the choices we made
when applying the rules� But all the proofs we can construct from a given path are �all the same�� in a sense
we are going to de�ne below�

Moreover� we can direct the construction to bring out intuitionnistic proofs when they exist� We prove
the existence and the completeness of such a construction� that is� if a formula is provable in intuitionnistic
DPC then there is at least one path for it on which the algorithm successfully returns an intuitionnistic proof
of it�

��� Canonical proofs

De�nition �� �potential quanti�er� Let S be a sequent� and Q�x��F�� � � � � Qmxm�Fm its quanti�ed sub�
formulas� x�� � � � � xn being the essentially existential variables� Let D be a derivation of S� and � the substi�
tution of existential variables in D� We de�ne the relation � on fQigi�������m with

Qi � Qj
def
�� � �Qjxj�Fj � Fi� � �j � f�� � � � � ng � xi � ��xj�� �

A quanti�ed formula Qx�F of S is said to be potential if Q is minimal for ��

It just means that the corresponding rule can be applied on Qx�F � and we have the fact�

Proposition � Let D be a derivation of S� and Q�Q� two quanti�ers appearing in D� If Q � Q� then Q is
introduced before Q� in D �that means below in the bottom�up representation we chose in this paper��

De�nition �� �potential conjunction� Let S be a sequent� and D a derivation of S� A conjunctive
formula A	B of S is said to be potential if the corresponding rule can be applied on A	B� keeping the same
path P�D� for the resulting proof� �That is� if S can be split into S� 
S� 
A 	B� and P�D� into P� and P��
such that P� is a path for S� 
A and P� for S� 
B�

We de�ne the notion of canonical derivation by induction on a derivation�

De�nition �	 �canonical proof� A derivation D of a sequent S � � � � is said to be canonical if

� either D is an axiom


� or D is of the form
D�

S�

D�

S�
� � �

�R� or

D�

S�
� � �

�R�

with D� and D� canonical� and

� If a formula of S is not satis�ed in D then R is a weakening rule


� or else� if S contains a potential quanti�cation then R is a quanti�cation rule


� or else� if � contains a negation then R � R��


��



� or else� if S contains a disjunction then R is a disjunctive rule


� or else� if � contains a potential conjunction then R � R��


� or else� if � contains a potential conjunction then R is a conjunctive rule


� or else� if � contains a negation then R � L� ��

This choice may seem arbitrary� and we could have chosen another� but it will be justi�ed by proposi�
tion ���

De�nition �
 �equivalent derivations� Two derivations D� and D� are said equivalent if

P�D�� � P�D��

�i�e�� if they have the same axioms�

The main result is the following�

Proposition  Every derivation D is equivalent to a canonical derivation "D�

Proof� The proof is by induction on the derivation D �of S � � � ��� If D is an axiom� then the result is
clear with "D � D� Otherwise� D is

either

D�

S�

D�

S�
� � �

�R� or

D�

S�
� � �

�R�

Then we reason by case� following the de�nition of a canonical derivation�

�a� If a formula F of S is not satis�ed in D�

Lemma � If F is not satis�ed in a derivation D of S� F � then there is an equivalent derivation D� of
S� smaller than D�

Proof� The proof is by induction on the length of D� D cannot be an axiom� If the last rule of D is a
weakening on F � then the result is clear� Otherwise� D has the form

D�

S�� F

S� F
�R�

and by induction hypothesis� there is an equivalent derivation D�� of S�� smaller than D�� so there is
an equivalent derivation of S by R� smaller than D� �

From the lemma above� there is a derivation of SnF smaller than D and by induction hypothesis
there is an equivalent canonical derivation of SnF � and so� by a weakening on F � there is a canonical
derivation of S equivalent to D�

�b� or else� if S contains a potential quanti�cation Qx�F �x��

Lemma � If D is a derivation of � � �� �x�P �x� then the derivation D in which we have removed the
rule R� � corresponding to �x�P �x�� and replaced every occurrence of �x�P �x� by P �x� is a derivation
of � � �� P �x�� �Likewise for �� �x�P �x� � ���

Proof� The proof is an easy induction on the derivation D� as above� �

� 



Lemma  If D is a derivation of � � �� �x�P �x�� where �x�P �x� is a potential quanti�er� then the
derivation D in which we have removed the rule R� � corresponding to �x�P �x�� and replaced every
occurrence of �x�P �x� by P �t�� where t is the substituted term for x� is a derivation of � � �� P �t��
�Likewise for �� �x�P �x� � ���

Proof� The proof is an easy induction on the derivation D� as above� �

Assume that S is of the form � � ��� Qx�F �x�� Then� from one of the two previous lemmas� we
have an equivalent derivation of � � �� F �x� �or � � �� F �t��� smaller than D� so� by induction hy�
pothesis� we have an equivalent canonical derivation of � � �� F �x� �or � � �� F �t��� from which we
get an equivalent canonical derivation of S by the corresponding rule �R� � or R� � here��

�c� or else� if � contains a negation�

Lemma � If D is a derivation of � � ���F � in which �F is satis�ed� then there is an equivalent
derivation of �� F � �� smaller than D�

Proof� The proof is an easy induction on the derivation D� as above� �

Then� if S has the form � � ����F � there is� from the previous lemma� an equivalent derivation
of �� F � ��� smaller than D� so the induction hypothesis gives an equivalent canonical derivation of
�� F � ��� So we get an equivalent canonical derivation of S by R� ��

�d� or else� if S contains a disjunction�

Lemma � If D is a derivation of � � �� A�B� in which A�B is satis�ed� then there is an equivalent
derivation of � � �� A�B� smaller than D� �Likewise for � � �� A � B and �� A �B � ���

Proof� The proof is an easy induction on the derivation D� as above� �

Then� if S has the form � � ��� A �B� there is� from the previous lemma� an equivalent derivation of
� � ��� A�B� smaller than D� so the induction hypothesis gives an equivalent canonical derivation of
� � ��� A�B� So we get an equivalent canonical derivation of S by R��� �Likewise for � � �� A � B
and �� A �B � ���

�e� or else� if � contains a potential conjunction�

Lemma �� If D is a derivation of � � �� A � B� in which A � B is satis�ed and potential� then
there is a derivation D� of �� � ��� A and a derivation D� of �� � ��� B� both smaller than D� with
� � �� 
 ��� � � �� 
�� and P�D� � P�D�� 
 P�D���

Proof� The proof is by induction on the size of D� D cannot be an axiom� If the last rule of D is
applied to A �B� then the result is obvious� Two cases remain�

� The last rule of D has one premise� for instance

D�

� � �� F�A�B
�F�� � �� A�B

�L���

By induction hypothesis� there exist a derivation D� of �� � ��� A and a derivation D� of �� �
��� F�B� both smaller than D�� with � � �� 
 ��� � � �� 
�� and P�D�� 
 P�D�� � P�D�� �
P�D�� So we have the derivation

D�

�� � ��� A

D�

�� � ��� F�B

�F��� � ��� B
�L���

�F�� � �� A�B
�R���

where the derivation of �F��� � ��� B is smaller than D�

�!



� The last rule of D has two premises� for instance

D�

�� � ��� A�� A �B

D�

B���� � ��

A� � B������� � ������ A �B
�L���

By induction hypothesis� there exist a derivation D� of �� � ��� A and a derivation D� of �� �
��� B�A

�� both smaller than D�� with �� � �� 
��� �� � �� 
�� and P�D��
P�D�� � P�D���
So we have the derivation

D�

�� � ��� A

D�

�� � ��� B�A�
D�

B���� � ��

A� � B������� � ������ B
�L���

A� � B������� � ������ A �B
�R���

where the derivation of A� � B������� � ������ B is smaller than D because D� is smaller than
D��

�

Then� if S has the form � � �� A � B� then� from the previous lemma� there exist derivations D�

and D� of �� � ��� A and �� � ��� B� both smaller than D� with � � �� 
 ��� � � �� 
 �� and
P�D� � P�D�� 
 P�D��� By induction hypothesis there exist equivalent canonical derivations "D� and
"D�� so we have an equivalent canonical derivation of S by R���

�f� or else� if � contains a potential conjunction�

The proof is similar to the previous case�

�g� or else� if � contains a negation�

The proof is similar to the case �c��

�

��� Application

The idea is to build canonical proofs from paths� For this purpose� we re�ne the algorithm given in ��	�	�
let P be a path for SH � and � a substitution� such that the condition ��� is satis�ed� We construct a proof
of S by induction on the size of S�

� If there is an axiom in S� then we apply the rule Axiom� possibly preceded by a sequence of weakening
rules�

� or else� if a formula of S is not satis�ed� then we apply the corresponding weakening rule�

� or else� if there is a potential quanti�er in S we apply the corresponding rule�

� or else� if there is a negation in � we apply the corresponding rule�

� or else� if there is a disjunction in S we apply the corresponding rule�

� or else� if there is potential conjunction in � we apply the corresponding rule�

� or else� if there is potential conjunction in � we apply the corresponding rule�

� or else� if there is negation in � we apply the corresponding rule�

� or else� we return a FAILURE�

��



We denote A�P� the resulting proof� if it exists� Clearly� we have the following results�

Proposition �

��� If A�P� exists� then it is a canonical proof�

��� A�P�D�� exists� and is equivalent to D�

As a consequence of the proposition  � we obtain the completeness of our algorithm�

Theorem 	 �Completeness� If S is provable in DPC then there exist a path P for S �and a substitution
�� such that A�P� is de�ned and is a proof of S�

��� Intuitionnistic proofs

The corresponding system in intuitionnistic logic� that we can call Intuitionnistic Direct Predicate Calculus�
is obtained as usual by considering only intuitionnistic sequents that is of the form � � � where � contains
at most one formula� The rules are slightly modi�ed�

� � �

�� A � �
�L�W �

� �

� � A
�R�W �

� � A

�A�� �
�L���

A�� �

� � �A
�R���

A�B�� � �

A �B�� � �
�L���

�� � A �� � B

����� � A �B
�R���

A��� � �� B��� � ��

A �B������ � �����
�L���

� � A

� � A �B
�R����

� � B

� � A �B
�R����

�� � A B��� � �

A � B������ � �
�L���

A�� � B

� � A � B
�R���

A�t��� � �

�x�A�x��� � �
�L���

� � A�a�

� � �x�A�x�
�R���

A�a��� � �

�x�A�x��� � �
�L���

� � A�t�

� � �x�A�x�
�R���

where ��������������� are sequences of formulas� with j�j � � and j�����j � �� A�B formulas� a a
variable not appearing in � 
�� and t a term�

Notice that it is equivalent to replace the rule L� � by the two rules

A��� � � B��� �

A �B������ � �
�L����

A��� � B��� � �

A �B������ � �
�L����

since in L� � we have j�����j � �� The multiplicative form of the rules gives to the rule L� � a very
di�erent behaviour than the additive form

A�� � � B�� � �

A �B�� � �
�L���

in which the goal is the same on each side�

If a formula is provable in Intuitionnistic Direct Predicate Calculus then we will say that its is provable
in DPCi�

	�



De�nition �� �intuitionnistic derivation� A derivation D of DPC is said to be intuitionnistic if every
application of the rule R� � on A�B is immediately followed by a weakening on A or B� and if every rule
has at most one formula in conclusion�

Clearly we have�

Proposition � F is provable in DPCi if and only if there is an intuitionnistic derivation of F in DPC�

Proof� Let D be a derivation of F in DPCi� Excepted R� �� and R� ��� every rule of DPCi is a rule of
DPC� and remains unchanged� The rule

� � A

� � A �B
�R����

is translated into
� � A

� � A�B
�R�W �

� � A �B
�R���

Likewise for R���� The resulting derivation is clearly an intuitionnistic derivation�
Conversely� if there exists an intuitionnistic derivation of F in DPC� then the same translation clearly

gives a derivation of F in DPCi� �

The choice we made for the order of application of the rules in the previous algorithm is not innocent�
The idea is to get intuitionnistic proofs when they exist� Indeed� two derivations can be equivalent� the one
being intuitionnistic� the other not� For instance

A � A
�Ax�

�A�A �
�L���

�A � �A
�R��� and

A � A
�Ax�

� �A�A
�R���

�A � �A
�L���

are equivalent� but only the �rst one is intuitionnistic� That
s the reason why we chose to apply R��
before L� � in our algorithm� Likewise� the derivations

A � A
�Ax�

B � B
�Ax�

B��B �
�L���

A � B��B�A �
�L���

A � B��B � �A
�R���

C � C
�Ax�

A � B�C��B � �A �C
�R��� and

A � A
�Ax�

� A��A
�R���

C � C
�Ax�

C � A��A�C
�R���

B � B
�Ax�

B��B �
�L���

A � B�C��B � �A �C
�L���

are equivalent� but only the �rst one is intuitionnistic� That
s the reason why we chose to apply R��
before L� � and L� ��

These choices are justi�ed by the following result�

Proposition �� If a derivation D is intuitionnistic then the derivation "D is intuitionnistic too�

Proof� The proof is by absurdum� assume that "D is not intuitionnistic� There are two possible reasons�

� either we have an application of R� � not followed by a weakening on A or B�

� � �

� � A�B
�X �

� � A �B
�R���

But "D is canonical� so A�B is satis�ed in "D so in D too� But D is intuitionnistic so the application of
R� � on A�B in D is followed by a weakening on A or B� so A or B must be weakened in "D� which
is a contradiction�

� or there is a non�intuitionnistic sequent in "D� Let us consider the ��rst� non�intuitionnistic sequent in
"D� There are two possibilities�
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� the corresponding rule is
� � A�F

���A � F
�L���

"D is canonical so A is satis�ed in "D� so in D too� and F is a quanti�er or a conjunction not
potential� Let us consider the rule in D where A is principal� that is

�� � A

����A �
�L���

since D is intuitionnistic� But this contradicts the fact that F were not potential in "D�

� the corresponding rule is
�� � F�A B��� �

A � B������ � F
�L���

"D is canonical so F is a non�potential conjunction� or an atom� Then let us consider the rule in
D where A � B is principal� that

��� � A B���� � F
�

A � B������
�
� � F

�
�L���

Necessarily� F � must be F � otherwise it would contradict the non potentiality of F in the above
rule� But� since F is satis�ed� and connected to A seen the derivation D� this application is not
possible�

�

As a consequence we obtain the completeness of our algorithm with respect to intuitionnistic provability�

Theorem 
 �Completeness� If a sequent S is provable in DPCi then there exist a path P �and a substi�
tution �� such that A�P� is de�ned and is an intuitionnistic proof of S�

� Implementation in the system Coq

An implementation of the decision procedure we just presented has been realized in the system Coq� version
���� �	�� a proof assistant developed at INRIA�Rocquencourt and ENS Lyon�

The implementation of the decision procedure itself has been realized in Caml Light ���� !�� independently
of the system Coq� with its own representation of terms and proofs� The interface with the system Coq�
which is written in Caml Light� is then just a translation of the goal to prove into our representation of terms�
and of the resulted proof �if it exists� in a natural deduction proof� We just give here the main lines of this
implementation� and we won
t focus on the possible algorithmic optimizations �see ���� pages �� ������

��� Implementation of the decision procedure in Caml Light

We assume that we have types term� formula and proof to represent terms� formulas and proofs of Direct
Predicate Calculus� A possible representation of terms and formulas may be the following�

type term � Var of string

� Fun of string � �term list���

type formula � Atom of string � int � �term list�

� Neg of formula

� Imp of formula � formula

� Conj of formula � formula

� Disj of formula � formula

� ForAll of string � formula

� Exists of string � formula��

		



even if it is not exactly the one we chose�
Notice that atomic formulas are of the form Atom�name�n�tl�� where name is the name of the predicate�

tl the list of terms on which it is applied and n an integer� This integer n allows to separate formulas�
formulas of L� are represented with the integer � and separated formulas of L with di�erent integers for each
occurrence of an atomic formula�

We de�ne the following functions�

value separate � formula �	 formula��

value pi
formula � formula �	 formula��

where pi formula is the canonical projection fromL into L� �denoted �� and separate a function associating
to a formula F� of L� a separated formula F of L such that ��F � � F� �by doing a pre�x traversal of F�
and giving increasing integers for each atomic formula��

����� Paths search

We consider a formula F of L for which we want to know if it is provable in Direct Predicate Calculus and�
in that case� what are the possible derivations�

The �rst step of the decision procedure is to determine the Herbrand form of F � The function

value Herbrand � formula �	 �string list � formula���

takes a formula F and returns the list of its essentially existential variables together with its Herbrand form
FH �

The next step is to look for pairs ���P� where � is a substitution and P a path for � FH satisfying
the condition ��� of the theorem �� For this purpose� we proceed using the method of ���� that we brie#y
presented in ��

We �rst determine the set

M �
�
�P� P �� u� j P � A� � P � � A� � P �u� � P ��u�

�

where A� is the set of positive atomic subformulas of FH and A� the set of negative ones� So� we have to
solve the uni�cation problems �u � �v where Ai��u� and Aj��v� are two atomic subformulas of FH � respectively
appearing positively and negatively� The �rst�order uni�cation is decidable� A lot of algorithms are known�
and we used Martelli and Montanari
s one �see ����� and also � �� pages 		��		���

The function all matches compute the set M

value all
matches � formula �	 �formula � formula � unifier� list��

Then we look for the pairs �U � ��� where U is a subset of M and � a substitution� such that

� U is not empty�

� All atomic formulas of U are distinct�

�
W

�P�P ��u��U u is de�ned and � �
W

�P�P ��u��U u�

� If A 	B is a conjunctive subformula of FH then A and B are not connected by U �

� If U satis�es a conjunctive formulas A 	B then U satis�es A and B�

Such a pair �U � �� clearly satis�es the conditions �a�e� and ���� They are represented by the type

type path �� �formula � formula � unifier� list � unifier��

and the function

value paths � �formula � formula � unifier� list �	 formula

�	 path list��
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compute all such pairs from M and FH � We do not compute all the subsets of M� which would be costly�
but we use the method described in ���� page ����

It remains to satisfy the condition �f�� that is the absence of conjunctive cycle� For this purpose we build
the graph G introduced in ��	�	 and we check if it has a cycle or not �this can be done in linear time�� The
function

value valid
paths � formula �	 path list �	 path list��

takes the formula FH � a list of potential paths for FH � and returns the set of paths for FH �those without
conjunctive cycle��

So we can now build proofs from paths�

����� From paths to proofs

Let P be a path for FH and � a substitution such that the condition ��� is satis�ed� First we replace in
P and � the Herbrand terms by the corresponding variables �they are no longer useful�� that is we replace
every occurrence of fx��u� by x� We keep the notation P and � for the resulting path and substitution�

The making of a derivation from P follows the algorithm given in ��	� The function

value proof
of
path � formula �	 path �	 proof��

applies the algorithm and returns a proof of F � or raises the exception FAILURE�
Then we can give the main body of the decision procedure�

exception Not
provable
in
DPC of string��

���� prove � formula �	 proof ����

let prove f �

let f� � separate f in

let �ex�f�� � herbrand f� in

let M � all
matches f� in

if M�� then

raise �Not
provable
in
DPC �M is empty���

else

let ps � paths M f� in

if ps�� then

raise �Not
provable
in
DPC �No path���

else

let vp � valid
paths f� all
paths in

if vp�� then

raise �Not
provable
in
DPC �Every path has a conjunctive cycle���

else

let rec quant � function

p��rest �	 try proof
of
path f� p

with FAILURE �	 quant rest

� � �	 raise �Not
provable
in
DPC

�Path�s� do not correspond to proofs���

in quant vp

��

����	 Complexity

Our purpose is to evaluate the complexity of the decision procedure�
Let F be a formula and n the number of atomic subformulas of F � This number n is of the size of F

�even if it can be very less� like in �� � � ��A� and we will consider them as equal� Let a� be the number of
positive atomic subformulas and a� the number of negative ones�
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The �rst step is to determine the set M� �i�e�� the triplets �P� P �� u� satisfying �c� and ���� There are at

most n�

� pairs �P� P �� with P � A� and P � � A�� and so the computing of M is in time O�n���
Then we look for paths among the subsets of M� For a subset of M of cardinal k� we must check the

conditions on paths� We admit that this check can be done in time kn�
Let pk be the number of paths of cardinal k� with � � k � a � min�a� � a��� Seen the conditions �b� and

���� we have
pk � k'Ck

a� C
k
a�

The search for all paths takes a total time

Tn �
aX

k��

kn pk

� n

aX
k��

k k'Ck
a� C

k
a�

� n

aX
k��

k k'Ck
n�aC

k
a

But we have a � n�	 so Ck
n�a and Ck

a are always less than C
n��
n�� � and so

Tn � na� a'
�
C
n��
n��

	�

� n
�n
	

	� �n
	

	
'
�
C
n��
n��

	�

�
n�

	

�n
e

	n

�

using the Stirling formula�
The complexity is �reasonably exponential�� when we remember that propositional calculus decidability

is already exponential�

��� Overview of the system Coq

Coq �	� is a proof assistant for higher�order logic� It allows to write speci�cations and propositions� to
check mathematical proofs� and to automatically synthesize computer programs from the proof of their
speci�cations�

The language of Coq is the Calculus of Inductive Constructions� and its proof system is an intuitionnistic
natural deduction� We are going to brie#y present the syntax and the principles of Coq� in order to explain
how we implemented the decision procedure for Direct Predicate Calculus in Coq�

����� Terms and propositions

In Coq� all types are terms� Given basic types� it is possible to build other types from three elementary
constructions�

� application of a term f to a term x� denoted �f x��

� abstraction of a variable x of type T in a term F � denoted x�T�F �

� product of a type T� and a type T�� denoted �x�T��T�� When the product is not dependent �that is x
does not appear in T�� it is also denoted T� �	T�� and then represents the type of functional objects�

Coq allows also to de�ne inductive types� as the type of naturals for instance� In a language of the ML
family� like Caml Light� it is possible to de�ne such a type as�
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type nat � O

� S of nat��

In Coq� we de�ne the same inductive type in a similar way�

Inductive Set nat � O � nat

� S � nat �	 nat�

The function associating x to x$ 	 will be denoted x�nat��S �S x��� and it has the type nat �	nat�

In Coq� logical propositions have type Prop� Atomic propositions are obtained as the application of
predicate to terms� For instance� if P is a predicate of type nat �	 Prop� then �P �S O�� is an atomic
proposition� Propositions are built from the usual connectives and quanti�ers� with the following syntax�

� If P and Q are two propositions then P �	 Q is the proposition P � Q�

� If P and Q are two propositions then P��Q is the proposition P �Q�

� If P and Q are two propositions then P��Q is the proposition P �Q�

� True is the tautological proposition� False the absurd proposition�

� If P is a proposition then �P is the proposition �P � de�ned as P � False�

� If P is a proposition in which x is a free variable of type T then �x�T�P is the proposition �x � T�P �

� If P is a proposition in which x is a free variable of type T then �Ex x�T�P� is the proposition �x � T�P �

We can also write higher�order propositions� like �A�Prop�A�	A or �P�nat�	Prop��Ex x�nat��P x���
If P is a predicate of type nat �	Prop� the �drinkers
 theorem� is written �Ex x�nat��y�nat��P x��	�P

y���
Let us show now how to prove propositions in the system Coq�

����� Tactics and proofs

If we want to prove the proposition A � �A � B� � B in Coq� we write for instance

Coq � Lemma example� � �A�B�Prop� A�	�A�	B��	B�

We obtain the following goal�

� subgoal

����������������������������

�A�B�Prop��A�	�A�	B��	B�

In a goal� the proposition to prove is below the double line and the context in which we do the proof �
here an empty context for the moment � is on top of it� We can see the goal as the sequent � � P � where
� is the context �also called environment� and P the proposition to prove�

We call tactic every Coq command which applies one or more inference rules to the current goal� To each
tactic is associated a validation� that is a structure which allows to verify� once the proof is done� that the
inference rules have been correctly used� Then� we are always ensured to stay in a coherent state� and to
have a sequent which can be derived from the initial one�

The tactic Intro� for instance� allows to introduce universally quanti�ed variables and hypothesis in the
context� Let us apply the tactic Intro to our goal�

example� � Intro�

� subgoal

A � Prop

����������������������������

�B�Prop��A�	�A�	B��	B�
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By applying it as many times as possible �Intros does it� we get the goal�

A � Prop

B � Prop

H � A

H� � A�	B

����������������������������

B

We apply an hypothesis �or a lemma� an axiom�� � �� with the tactic Apply� Here we apply the hypothesis
H� with the command�

example� � Apply H��

� subgoal

A � Prop

B � Prop

H � A

H� � A�	B

����������������������������

A

A is an hypothesis� So we can �nish the proof with the tactic Assumption �

example� � Assumption�

Subtree proved�

In a more general way� there exist for each connective an introduction and an elimination rule� The
elimination of a conective in realized through the tactic Elim� For instance� on the goal

A � Prop

B � Prop

C � Prop

H � A �� B

����������������������������

C

the command Elim H produces the two subgoals�

� subgoals

A � Prop

B � Prop

C � Prop

H � A �� B

����������������������������

A�	C

subgoal � is�

B�	C

��� Interface with the system Coq

We are now in position to interface our decision procedure with the system Coq� For this purpose� we must
�rst translate the goal in the language L� and then translate one of the resulting proofs� if there exist� into
a sequence of Coq tactics�

	 



The translation of the goal to prove into L is not a problem� It is a purely syntactic translation� in which
we forget the types of terms� We have just to check if the goal is a �rst�order proposition� For this� it is
sucient to check that none of the quanti�ed variables is a predicate or a function applied to terms�

Remark� The proposition �A��A � A� does not belong to �rst�order logic� but A � A is trivially provable
in Direct Predicate Calculus� More generally� if we can prove P �x�� � � � � xn� in DPC� then we can prove
�x� � � ��xn�P �x�� � � � � xn� in Coq� even if the quanti�ers �x��� � � ��xn are not �rst�order ones� So we can �rst
introduce all the prenex universal quanti�cations� then apply the decision procedure on the resulting goal
�in which x�� � � � � xn have become free variables� that is constants�� This way� the method is extended to a
certain class of higher�order formulas�

Once the goal is translated into a formula F of L� we can apply the decision procedure� If it fails� we
leave the goal unchanged and we just warm the user that the tactic failed � which does not mean� of course�
that the goal is not provable in Coq � and why�

If it succeeds� we get a set of derivations of F in DPC� from which we keep intuitionnistic ones� If there
is almost one intuitionnistic derivation D of F then we translate it into Coq tactics� In the practice� we used
internal Coq functions to do this translation� but� to clarify this step� we will give here the corresponding
Coq top�level tactics�

Axioms� Every axiom

A � A
�Ax�

in the derivation D means that A is in the local context� So we translate the rule Axiom by the tactic
Assumption�

Structural rules� The weakening rule
� � �

�� A � �
�L�W �

means that we forget the hypothesis A� We just do nothing and continue the translation�
On the other hand� the weakening rule

� �

� � A
�R�W �

means that we replace the goal to prove by False� The command ElimType False has this e�ect�

Logical rules� Here is the translation of logical rules of Intuitionnistic Direct Predicate Calculus into Coq
tactics� We assume that this translation is recursively called on the generated subgoals� We denote C the
local context of Coq�

�� A �

� � �A
�R��� Red� Intro�

because �A is de�ned as A � False

� � A

���A �
�L��� Apply H�

where H � �A � C

�� � A �� � B

� � A �B
�R��� Split

A�B�� � �

A �B�� � �
�L��� Elim H� Intro� Intro�

where H � A �B � C

� � A

� � A �B
�R���� Left
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� � B

� � A �B
�R���� Right

A��� � �� B��� � ��

A �B�� � �
�L��� Elim H� then ElimType False on the goal i such

that �i � �� and Intro on the other�
where H � A �B � C

�� A � B

� � A � B
�R��� Intro

�� � A B��� � �

A � B�� � �
�L��� Cut B� then Apply H on the second subgoal �where

H � A � B � C� and Intro on the �rst one

� � P

� � �x�P
�R��� Intro

P �t��� � �

�x�P �x��� � �
�L��� Cut P �x� t�� then Apply �H t� on the second sub�

goal �where H � �x � T �P � C� and Intro on the �rst
subgoal

� � P �t�

� � �x�P �x�
�R��� Exists t

P�� � �

�x�P�� � �
�L��� Elim H� Intro� Intro�

where H � �Ex �x � T �P � � C

The resulting tactic is called Linear� and thus called with�

Coq � Linear�

However� this tactic does not allow to use previous results or hypothesis of the context� It is useful to
use lemmas in a proof� when some subgoals arise frequently� or when we need to do a part of the proof �a
higher�order reasoning� �by hand�� and to �nish the proof with the tactic Linear�

For this purpose� we extended the syntax of our tactic in the following way� Assume that we have in the
context the hypotheses

H� � c� � H� � c� � � � � � Hn � cn

and the goal to prove
�x� � T���x� � T�� � � � �xk � Tk� c

for which we want to �possibly� use the previous hypotheses�
The idea is to apply the decision procedure on the goal c� � c� � � � � � cn � c� seen we have c�� � � � � cn

as hypotheses� The syntax is

Coq � Linear with H� H� ��� Hn�

Examples� Let us illustrate the behaviour of the tactic Linear on some examples� Assume we have a
natural a� predicate P�Q� odd� even of type nat Prop and a function f of type nat nat�

Variable a � nat�

Variable P�Q�odd�even � nat�	Prop�

Variable f � nat �	 nat�

We can show the following facts�
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Theorem E� � �x�nat��Ex y�nat���P x��	�P y����

Linear�

Save�

Theorem E� � �Ex x�nat��P x��

�	 ��y�nat��P y� �	 �Q y��

�	 �Ex z�nat��Q z���

Linear�

Save�

Theorem E� � �even a�

�	 ��x�nat���even x��	�odd �S x����

�	 �Ex y�nat��odd y���

Linear�

Save�

Theorem E� � ��x�nat���and �P x� �odd x�� �	 �even �f x����

�	 ��x�nat���even x��	�odd �S x����

�	 �even a�

�	 �P �S a��

�	 �Ex z�nat��even �f z����

Linear�

Save�

The drinkers
 theorem is more delicate to prove� The proof by case �we have either �x�Q�x�� or �x��Q�x��
is done �by hand�� but the corresponding subgoals are automatically proved by the tactics Linear �with a
lemma for the second one��

Variable U � Set�

Variable Q � U �	 Prop�

Axiom excluded
middle � �P�Prop� �P �� �P��

Lemma em
Q � �x�U� �Q x� �� ��Q x��

Exact x�U��excluded
middle �Q x���

Save�

Theorem Drinker�s
theorem � �x�U��Ex x� U���Q x� �	 �x� U� �Q x����

Intro t��

Generalize �excluded
middle �Ex x�U���Q x���� Intro H� Elim H�

Linear�

Intro H��

Exists t��

Linear with H� em
Q�

Save�

To illustrate the use of lemmas in the decision procedure� let us consider a speci�cation of the predicate
� on naturals� a monotonic function f of type nat nat� and let us show

�a �b f�a� � f�b $ ��

Variable le � nat �	 nat �	 Prop�

Variable f � nat �	 nat�

Axiom le
n � �n�nat��le n n��

��



Axiom le
S � �n�m�nat��le n m� �	 �le n �S m���

Axiom monoticity � �n�m�nat��le n m� �	 �le �f n� �f m���

Lemma le
x
Sx � �x�nat��le x �S x���

Linear with le
n le
S�

Save�

Theorem L� � �a�nat��Ex b�nat��le �f a� �f �S b�����

Linear with le
x
Sx monoticity�

Save�

At last� let us show some examples on which the tactic fails�

Parameter A�B�C�D � Prop�

Theorem T� � A �	 �A �� A��

�� Error� Not provable in DPC �No path�

� during command Linear�

��

Auto�

Save�

Theorem T� � ��or A B� �	 C�

�	 �or �D �	 A� �D �	 B��

�	 D �	 C�

�� Error� Not provable in DPC �No path�

� during command Linear�

��

Intros H H� H��

Elim H�� Auto�

Save�

Conclusion

We have presented a decision procedure for Direct Predicate Calculus� Starting from ��� ��� we have extended
the decision procedure to non�prenex formulas and to intuitionnistic proofs� This work can be related with
��� but it di�ers on two points� �rst� we do not consider explicitly rules permutabilities but we construct a
particular proof �discarding the others� which are equivalent�� secondly� we do not wait to reach the axioms
rules to fail in proof search but we �rst look for potential axioms and then we construct a proof from axioms�
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