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A decision procedure for Direct Predicate Calculus
Study and implementation in the system Coq

Jean-Christophe FILLIATRE
February 1995

Abstract

The paper of J. Ketonen and R. Weyhrauch [6] defines a decidable fragment of first-order predicate
logic — Direct Predicate Calculus — as the subset which is provable in Gentzen sequent calculus
without the contraction rule, and gives an effective decision procedure for it. This report is a
detailed study of this procedure. We extend the decidability to non-prenex formulas. We prove
that the intuitionnistic fragment is still decidable, with a refinement of the same procedure. An
intuitionnistic version has been implemented in the system Coq [2] using a translation into natural
deduction.

Keywords: predicate calculus, sequent calculus, decision procedures, proof search, intuitionnistic logic.

Résumé

L’article de J. Ketonen et R. Weyhrauch [6] définit un fragment décidable du calcul des prédicats
du premier ordre — le Calcul des Prédicats Direct — comme le sous-ensemble prouvable dans le
calcul des séquents de Gentzen sans utiliser la régle de contraction, et en donne une procédure
de décision effective. Ce rapport présente une étude détaillée de cette procédure. Nous étendons
la décidabilité au cas des formules non nécessairement prénexes. Nous montrons que le fragment
intuitionniste est également décidable, par un raffinement de la méme procédure. Une version
intuitionniste de cette algorithme a été implémentée dans le systeme Coq [2].

Mots-clés: calcul des prédicats, calcul des séquents, procédures de décision, recherche de preuves, logique
intuitionniste.
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Abstract

The paper of J. Ketonen and R. Weyhrauch [6] defines a decidable fragment of first-order predicate
logic — Direct Predicate Calculus — as the subset which is provable in Gentzen sequent calculus without
the contraction rule, and gives an effective decision procedure for it. This report is a detailed study of
this procedure. We extend the decidability to non-prenex formulas. We prove that the intuitionnistic
fragment is still decidable, with a refinement of the same procedure. An intuitionnistic version has been
implemented in the system Coq [2] using a translation into natural deduction.

1 Introduction

First-order predicate logic is known to be undecidable. But some fragments are decidable, like propositional
calculus, monadic predicates, or some classes of prenex formulas (Ackermann’s class 3...3V3...3, or Godel’s
class 3...3¥V3...V for instance). All those fragments are syntactic restrictions.

The paper of J. Ketonen and R. Weyhrauch [6] defines a decidable fragment of predicate logic, not in
terms of syntactic restriction, but with a restriction on deduction rules. Indeed, Direct Predicate Calculus is
defined as “the fragment of first-order predicate logic which is provable in Gentzen sequent calculus without
the contraction rule”.

Intuitively, it means that, for a given proof, each hypothesis (and each conclusion) can be used at most
once during the proof. For instance, the hypothesis A is used once in a proof of

AD(ADB)DB
but necessarily twice in a proof of
AD((ADB)A(ADC) D(BAC)

and that’s why the first formula is provable in Direct Predicate Calculus but not the second one.
In a more subtle way, it prevents proofs by case, like for instance the “drinkers’ theorem”

JyVe.(P(y) D P(x))

which is provable in Gentzen sequent calculus but not in Direct Predicate Calculus.

In [6], a decision procedure for Direct Predicate Calculus is explicitly given. It has been studied again
in [1], which mentions a mistake in the original paper, carries out relations with linear logic and gives
details about implementation of the decision procedure. The basic idea is simple: each atomic subformula

*This research was partly supported by ESPRIT Basic Research Action “Types” and by the GDR “Programmation” co-
financed by MRE-PRC and CNRS.



can appear at most once in an axiom; therefore, we can see a derivation as the set of its axioms. The
decision procedure consists of looking for such sets (called paths), which are finite and in finite number,
then to construct derivation from paths. Quantification, in the case of prenex formulas, in handled through
Herbrand functions and unification [1, 9].

The result is no longer true for non-prenex formulas. The skolemization does not assure the eigenvariable
condition: it can now depend on the order of the quantifier rules, which was obvious and fixed in the prenex
case. We extend the decision procedure to handle the case of non-prenex formulas; the construction of
derivations from paths can now lead to a failure. We prove the completeness of this procedure. The ideas
are closed to the framework presented in [9], but we do not perform proof search bottom-up exploiting the
permutabilities of logical rules: we look for sets of axioms and re-construct one particular proof from these
axioms. Thus the permutabilities of rules are still completely exploited.

At last, we are interested in Intuitionnistic Direct Predicate Calculus, that is Direct Predicate Calculus
restricted to intuitionnistic sequents, or equivalently Gentzen intuitionnistic sequent calculus (£J) without
contraction. Indeed, we want the decision procedure to be effective in Coq, which proof language is an intu-
itionnistic natural deduction. So we must know when a derivation corresponds to an intuitionnistic proof.
We extend again the decision procedure to bring out intuitionnistic proofs; when they exist, and we prove
its completeness with respect to intuitionnistic provability.

In section 2, we give notations and definitions. Then we present in section 3 the original main result and
the decision procedure of [1, 6], but we give a slightly different proof. The extension we give for non-prenex
formulas, and the case of intuitionnistic proofs is presented in section 4. Finally, we give details about
implementation in the system Coq in section 5.

2 Direct Predicate Calculus

2.1 Notations and definitions

We assume the reader to be familiar with predicate calculus and sequent calculus. Our language is that
of first-order predicate logic (L£g): terms are built from variables and functions symbols applied to terms,
formulas from atomic formulas applied to terms and the connectives =, D, A, V,V, 3, with the precedences
D< V< A< —,¥,3. A sequent is a couple of sequences I' and A of formulas, considered as multi-sets of
formulas, and is written I' - A.

In order to distinguish the occurrences of an atomic formula in a proof (or a formula, a sequent), for
instance Ain A D (4 D C) D D, we extend the language with annotations on atomic formulas: A’ will denote
an occurrence of A, where i is an integer. Therefore, A D (A? D ) D D represents the above formula, but
in which we have syntactically distinguished the two occurrences of A. This language is denoted L.

Definition 1 (separated formula) A formula F of L is said to be separated if two occurrences of the
same atomic formula of F' are distinct, that is, annotated with different integers.

If I is a formula, then 7 (F) is the formula of £y obtained by removing all annotations on atomic formu-
las. Two formulas F' and G are called similar (F ~ G) if n(F) = n(G), that is if they represent the same
formula. From now on, we will assume that formulas and sequents are separated.

Definition 2 (occurrence) We will write u <t for “u occurs int”, u and ¢ being terms or formulas.

The notion of positive and negative occurrence is defined as usual: A formula A occurs positively in
A, and if A occurs positively (resp. negatively) in B then A occurs positively (resp. negatively) in C' D
B,BANC,CAB,BVC,CV B,Yx.B,3x.B and negatively (resp. positively) in =B, B D C.

A conjunctive subformulais a positive occurrence of a conjunctive formula (AA B) or a negative occurrence
of a disjunctive formula (AV B, A D B), and a disjunctive subformula is a positive occurrence of a digjunctive
formula or a negative occurrence of a conjunctive formula. In the following, we will sometimes write A o B
for a conjonctive or a disjunctive subformula, o being one of the three connectives A, V or D.



A quantifier is called essentially universal if it is the outermost quantifier of a positive occurrence of V. A
or a negative occurrence of Jz. A, and essentially existential if 1t is the outermost quantifier of a positive
occurrence of 3xz.A or a negative occurrence of V. A.

All those definitions are extended to sequents without any difficulty, interpreting A;,..., A, F B1,...,Bn
as the formula Ay A ... AA, DB V...V B,,.

2.2 Axioms and rules

Direct Predicate Calculus is the fragment of first-order predicate logic which can be proved in Gentzen
sequent calculus (LK) without the contraction rules:

AATEA THAAA
ATEA Gt TR AA

(R—contract)
Therefore, the rules for Direct Predicate Calculus are the following:

Axioms Axioms are
m(’%)

where A and B are two similar atomic formulas (A &~ B), and # a list of terms.

Structural rules Contraction being eliminated, and exchange rule being implicit, the only structural rules
are weakening rules:

A re=A

TAFAS™  TrEaAaA®W

Logical rules Logical rules are exactly those of LK. To each connective, D, A, V,—,V, or 3, correspond
two introduction rules, one on the left side of the sequent, the other one on the right side:

THAA ATFA
TATFAYT TF-A AR
ABTEA LiFALA TR As B
AABTFASN T, ToF A Ao AnB 7N
AT FAL BTabAs PEAAB
AVB I ToF AL A, 7Y TFAaavp Y
LiFALA BTakAs ATEAB
AS BT, ToF ALA, 72 TFAaASB Y
A),TF A T'F A, Aa)
———————(£L-V) —————(R-V)
Ve A(z),TF A I'FA Ve A(z)
Afa),TF A TF A, A(t)
e (ro3) —(r-3)
Jw A(z), TFA I'EA Je A(x)

where I', A Ty, I's, Ay, As are formulas sequences, A, B are formulas, a is a variable which does not appear
in T UA, and ¢ a term (called witness of the existential variable z).

In each previous rule, the formulas A and B are called active formulas and the formula appearing in the
conclusion (A A B, AV B,...) is called the principal formula of the rule. Notice that positivity is preserved



by any rule, that is a positive (resp. negative) formula of the conclusion is also positive (resp. negative) in
the premises and conversely.

One can notice here that rules for A,V and D are given in their multiplicative way, that is formulas of
the conclusion are split into the two premises, and not in their additive way where they would be duplicated
in the two premises, like in the rule

I'FAA TFAB
TFAAAB

This 1s consistent with the elimination of contraction.

(R-n)

The notion of derivation is defined as usual, from the rules above, and a formula Fy of L is provable in
Direct Predicate Calculus if there exists a derivation of F F', where ' is a formula of £ such that =(F) = Fp.
2.3 Examples

We recall that LK denotes the first-order classical Gentzen sequent calculus (see for instance [3], page 44).
As a first example, let us consider the two formulas

AD(AAN(BV-B)) and AD((AAB)V(AA-B))

They represent the same proposition, are both provable in LK, but in the second one the A has been
distributed on the V. Only the first one is provable is DPC:

Example 2.1 A D A A (BV —B) is provable in DPC.

Proof:
(42)
BEB
. BB
Ar A" FBv=BTY)
AFAA(BV-B)
(R-2)

FADAA(BV-B)

On the other hand,
Example 2.2 A D ((AA B)V (AA-B)) is not provable in DPC.

Intuitively, every derivation of the sequent = A O ((AAB)V(AA—B)) must use the hypothesis A twice, and
that is exactly what is forbidden by the elimination of the contraction rule. A proofof A O ((AAB)V(AA-B))
in LK would be:

BEB
AT A4 F B,ﬁB((i__j\))
AF A ArBAan-B 7Y
A AFANB AA—B o e
AF AAB AA-B
AF (AAB)V (AA—=B) (R=v)
(R-2)

FAD((AAB)V(AA-B))

One can be convinced that - A D ((A A B) V (A A—B)) is not provable in DPC by trying to apply in a
systematic way all inference rules on the sequent (see forthcoming examples).
O

Another example of formula provable in LK but not in DPC is the well-known “drinkers’ theorem”,
Jy.A(y) D V. A(z), whose name came from the interpretation “There exists a person y such that if y drinks
then everybody drink”. We choose here the prenex version of this formula, that is Jy.Va.(A(y) D A(x)).



Example 2.3 Jy.Ve.(A(y) D A(z)) is not provable in DPC.

Proof: The only rule that can be applied to the sequent - Jy.Va.(A(y) D A(x)) is R — 3, and the resulting
sequent is then:

F Yz .(A(t) D A(x))
F3yVe.(A(y) D Alz))
where ¢ is a term in which & does not appear. Again, the only rule that can be applied is R — V, which leads
to:

(R-3)

F A(t) D A(x)
F Yz .(A(t) D A(x))
F3yVe.(A(y) D Alz))
Once again, only the rule R— D can be used, and leads to the sequent A(t) - A(z), clearly not provable in
DPC, seen the above eigenvariable condition on ¢.

(R-v)
(R-3)

O
On the other hand, if 7" denotes the formula Jy.Va.(A(y) D A(x)), TV T is provable in DPC:
Example 2.4 Jy.Ve.(A(y) D A(z)) Vv Y Vo' (A(y') D A(z")) is provable in DPC.
Proof:
A@) F A@e)
(@) F AQe), Ay * )
FA(x), Ax) D A
A(y) F A2), Az) o Ay
F A(y) D Ale), A(x) o A@)
FA(y) D A(z), Ve (Az) D A@) <
FA(y) D Az), 37 V2 (A(y) D A(e)) <
F vz (A(y) D A(2)), 3y Ve (A() D A@))
F3yve.(Aly) D A(2)), 39 Ve (Aly) > A@) <
F 3y (A(y) D A(z)) v 3y Ve (AlY) D A))
O

It shows that Jy.Ya.(A(y) D A(x)) is provable in LK (by first applying R — contract, then the above
proof).

3 A decision procedure

The decision procedure is based on the search for axioms. Axioms of a proof of F' are pairs of atomic formulas
appearing positively and negatively in F'. We define the notion of path which is a set of such pairs satisfying
some conditions, and show how paths and proofs are in correspondence, and how proofs are built from paths.
Then the decision procedure will consist in looking for paths, which appears to be clearly decidable.

3.1 Definitions

Let S be a propositional sequent. Let P be a set of pairs of atomic subformulas of 5.

Definition 3 (P satisfies A) We say that P satisfies a formula A (in symbols P — A) if there is a pair
(P, P") in P such that either P < A or P’ < A.

Definition 4 (A and B connected) For A, B < S, we say that A and B are connected (in symbols A||pB)
if there is a pair (P, P') in P such that P < A and P’ < B (or vice versa).



Definition 5 (conjunctive cycle) We say that P has a conjunctive cycle if there exist distinct conjunctive
subformulas of S, namely Ag o By,..., Ao By (n>1), such that

Vie{0,...,n} Billp Aig1,
indexes being considered modulo n.
Definition 6 (path) We say that P is a path for S if it satisfies the following conditions:
(a) P £0;
(b) Atomic formulas in P are all distinct;
(c) If (P, P') € P then P appears positively in S and P’ negatively in S;
(d) If Ao B is a conjunctive subformula of S, and if P — Ao B, then P+ A and P — B;
(e) If Ao B is a conjunctive subformula of S, and if P — Ao B, then A and B are not connected;

(f) There is no conjunctive cycle in P.

3.2 The main theorem
Let S be a propositional sequent.

Theorem 1 For any substitution o, S[o] is provable in Direct Predicate Calculus if and only if there is a
path P for S, minimal for inclusion, such that

V(P P)eP  Plol~ Pl (1)
Examples
o If S = A' 5 (A% D B') D B?, then P = { (4%, A), (B? B')} is a path for S. It corresponds to the
proof
1 2(Ax) 1 2(Ax)
A '_1A , 1B '_ZB (£=2)
ALA SR
Al (A% o BY) D B?
R-D)

FA' 5 (A* > BY) D B?
as we will show later.

e If S denotes the sequent
Aa) 5 (Ve (A%(2) 5 B () 5 3. B* (1)
then its skolemized form S (z,y) is
Al(a) D (A*(x) D BY(x)) D B*(y)
and P = { (A%(z), Al(a)), (B*(y), B} (z)) } is a path for Sy (z,y) satisfying the condition (1) for the

substitution ¢ = [2 Z] It corresponds to the proof
A @™ BarBw
A@ A @SB @F B @
A'(a),Ve(A%(z) D B'(2)) F B(a) ((R‘ ;)

Al(a), Ve (A% (x) D B (x)) F Jy. B (y)
Al(a) F (Va.(A%(x) D BY(x))) D Jy.B*(y)
F A'(a) D (Vo.(A%(z) D B'(x))) D Jy.B*(y)

(R-2)
(R-2)




3.2.1 Proof of the theorem: only if part

The only if part is the most intuitive: the path corresponds exactly to the axioms of the derivation (propo-
sition 2).

Definition 7 (path of a derivation) The path of a derivation D (in symbols P(D)) is defined as the set
of the arioms of D, that is
P(D)={(A,B)|BF Ais an axiom of D}

The notions of formulas satisfied and connected are extended to derivations through P (D).

Definition 8 (normal derivation) A derivation D is said to be normal if it satisfies the following two
conditions:

e if R 1s a rule of D with two premises, of active formulas A and B, then A and B are satisfied in D;

e if R is a rule of D with one premise, which s not a weakening rule, then at least one of the active
formula of R 1s satisfied in D.

Proposition 1 If S is derivable in Direct Predicate Calculus, then there is a normal derivation of S in
Direct Predicate Calculus.

Proof: Let D be a derivation of S, and let us consider a weakening rule, for instance R — W in D:

D/
LA

TEA AW

(R—
(X)

If A is not active in the rule A then we can exchange the application of R — W and A'. Let us assume this
fact everywhere in the derivation D. Then, only two cases can occur:

e The formula A is active in the inference X'. In that case, let us assume that A" is a two premises rule,
for instance R — A
'D/
T kA D"
= A A (R-W)
i FALA s - As B
[, ToF A AANB

Since D’ is a derivation of 'y - Ay, we can simplify D in this way

(R-n)

D/
Tk A
T, T2F AL Ay, AAB

W)

where W™ represents a sequence of weakening rules.
If X is a one premise rule, like for instance
'D/
reA
FFAHﬂiL?
A THEAT

then we can simplify D in

=T 3
T

(£-w)

==

-



e The rule A is also a weakening rule, on a formula B, and A and B are both active in the rule preceding
X, for instance R — V

'D/
reA
TF A,A(RRWV)V
TFAAB - V)
TFA AV Y
Then we can replace D by the simplified derivation
'D/
reA 3
TFA AvB W

Proposition 2 If D is a normal derivation of S then P(D) is a path for S, minimal for inclusion.

Proof: Let D be a derivation of S. Let us show by induction on the length of D that P(D) is a path for S.
e If D is an axiom the result is clear.

e If the last rule of D has one premise
’D/
St
S
then by induction hypothesis P(D’) is a path for S (since unary rules do not generate new conjunctive
formulas). But P(D) = P(D’) and, since P(D’) satisfies the conditions (a—f) then P (D) too.

()

e If the last rule of D has two premises, for instance

D, D,
I FALA  Tok Ay B
T, 02F AL A, ANB

(R-n)

the induction hypothesis can be applied to Dy and Da, so P(D1) and P (D) are paths for S; and Ss
respectively. Clearly, P(D) = P(D;1) UP(D2), and satisfies (a—c). Since D is assumed to be normal,
then P(D) satisfies (d). P(D) is minimal because P(D;) and P(Dz) are. Axioms of P(D;) and P(D2)
are distinct, so P(D) satisfies (e).

It remains to verify the condition (f). Since P(D1) and P(D2) do not contain any conjunctive cycle by
hypothesis, let us consider a conjunctive cycle of the form

Fol,...)Ys,...,ANB,...,Z;,...,FoC

But A and B cannot be connected (condition (e)), so necessarily all ¥; must be subformulas of S; and
all Z; subformulas of Sy. But F o C' cannot belong to both Sy and Ba. So P(D) satisfies (f).

d

Proof of the theorem (only if part): Let D be a proof of S[e]. From Proposition 2, P(D) is a path for
S[o], so also for S. And the condition (1) is clearly satisfied since axioms are of the form

@

with (B, A) € P(D). O



3.2.2 Proof of the theorem: if part

The if part of the theorem is more subtle. Given a path for a sequent, we must re-construct a proof of this
sequent. We prove it by induction on the sum of the sizes of the sequent and the path, and it gives us an
algorithm for the decision procedure. The main difficulty appears when the sequent contains only conjunctive
formulas, so that we have to choose one of them to apply the corresponding rule. We first establish some
preliminaries to solve this critical point.

Preliminaries Let S be a sequent and P a path for S. Let C be the set of pairs (A;, B;) such that A; o B;
or B; o A; is a conjunctive subformula of S. We define the oriented graph G' = (V| E) by

[ J V e C
e ((A,B),(C,D)) € E if and only if 3(P, P') € P with P < B and P’ < |, (i.e.) B and C are connected.

If # = (A, B) is an vertex of G we denote Z the vertex (B, A). We write # — y if (z,y) € E. We denote
—% the transitive closure of —, and — its reflexive transitive closure. If we have  — y, we say that we have
a path from x to y. If eg = ¢1 — ... — ¢y, is a path, we say that it is pure if { £ ] = ¢ £ ¢; A ¢ # ¢;.
We write z —§p y in that case. When y =  or y = & we still say that the path from z to y is pure if it is of
the form z —§p z — y. Then we allow to write z —§p xrorzx —§p z.

We call cycle every pure path z Jp z, and loop every pure path z Jp z.

The main property of this graph is the following:
Proposition 3 P has a conjunctive cycle if and only if G has a cycle.
Proof: Let
AgoBy—AjoBy—---— A, 0B,

be a conjunctive cycle of P. Then it is clear that (Ag, Bo) = (A1, B1) = -+ = (An, Bn) = (Ao, Bo) is a
cycle of GG.

On the opposite, if (Ag, Bg) = (A1, B1) = -+ = (An, Bn) = (Ao, By) is a cycle of G, then we have
i#j = AioB; # A;0Bj, and so

AgoBy—AjoBy—---— A, 0B,

1s a conjunctive cycle of P. a

Remarks

1. If (x,y) € E then (y,%) € E, by definition of E. Consequently, if we have a path from « to v, then
we have a path from @ to u (more exactly, if we have the path ¢g = -+ = ¢y, we also have the path
Cn == Cg).

2. If the path y Jp z Jp Z is not pure, then there exists a cycle in G.
Indeed, if y Jp z Jp Z 18 not pure, let us consider the smallest suffix of this path, w Jp z Jp z, which

1s not pure. Two cases arise:
o cither y % w %z Fw 3z, with w =% 2 = w pure, so we have a cycle;

eory S w23z 2w 3z with w3 23w pure. We have w Jp Z 80 by the previous remark we
have z Jp W, SO 2 Jp w Jp z. If this path were not pure it would contradict the minimality of

w. So we have a cycle z Jp z.



We define on V' the relation < by
r <ty PN Elzx%*pzﬁyié, where z =y % z is pure

and et
rLy S ety A o(y<te)

Lemma 1 If G has no cycle then < is a strict partial order.

Proof: The relation < is anti-reflexive by definition.
To show the transitivity of <, notice that is sufficient to show that

r<tynyg: = rgtz

Indeed, assume that this fact is true. If # < y and y < z, then clearly « <* z. If we had also z <! z,
then, because x < y, we would have by the same result z <! y, which is not.
So assume that z <! y and y < 2, and let us show <! 2. We have the paths:

xﬁpu—ﬂg—;ﬁ and yﬁpv—fz—;@
N———’ S—
pure pure

From remark 2 those two paths are necessarily pure. So we have

T S e X
—
pure

and we aim at proving z <! z. Suppose z Jp Y Jp v 1s not pure, and let w Jp Y Jp v be the smallest
suffix of this path which is not pure. Two cases arise:

e cither we have w Jp Y Jp w Jp v, and we have a cycle, contradiction;

oorwehavewiptipwipv—fziﬁ. Wehavewipv,soﬁipw(Remarkl),soz#@ipw,

which is a pure path because w —J>rp v = z = v is. So we have
zipwiyiw with w = y = @ pure
that is z <! y, which cannot be, seen y < z.
In the end, we have the path
T Jp vz 30
N —’
pure

that is z <! 2. O

Lemma 2 If G has no cycle, and if there is an wnfinite path
To—> Ty — > Ly =
with x;41 # &, then the relation < has a minimal element.

Proof: Since G has no cycle, <« is a strict partial order, from the previous lemma. Therefore, seen that V'
is finite, < has a minimal element if and only if < is not empty.

Let 20 = 1 — -+ — x, — - - be an infinite path in G, with z;11 # #;. Let ¢ — - -+ — 21 the longest
pure prefix of this path. Two cases arise:

o cither we have g = #; = x4 Jp Zi4+1, then we have a cycle, which cannot be;
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e or we have g = x; = Tht1 Jp Zi41, and then xg < zi41.

d

Proof of the theorem (if part): Let P be a path for S[o], for ¢ a substitution, such that the condition
(1) is satisfied. Notice that P is also a path for S. The condition (1) only ensures that pairs in P could be
considered as axioms in the following. So we won’t mention o anymore to clarify the proof.

Let us show by induction on the integer ¢ 4+ w that P corresponds to a proof of S| where ¢ is the size of
S (the number of symbols) and w the number of atomic subformulas of S not satisfied in P.

e If S has the shape ', P’ = A P with (P, P/) € P then we can apply the rule Aziom, possibly preceded
by weakenings.

e If S has the shape T F A, F (or I', F = A) with F not satisfied in P, then the induction hypothesis
applies to I' = A and we use the weakening rule.

e If S contains a disjunctive formula, for instance S = I' F A, AV B then the induction hypothesis applies
to I' = A, A, B for the same path P, and we get a derivation of S by R — V.

Likewise if S contains a negation.

e Otherwise, the formulas of S can be split into two sets IT and X, where II is a set of atoms (atomic
formulas) and ¥ a nonempty set of satisfied conjunctive formulas. Then we look for a conjunctive
formulas Xy of ¥ (for instance A; A Az) on which we can apply the corresponding rule (here R — A),
that is for which we can split S into two sequents containing A; and As, and find two paths for these
sequents, to apply the induction hypothesis. We can distinguish two cases:

— There exists a conjunctive formula Xy of X, for instance A; A As, such that A; i1s connected only
to atoms (i.e.) if (P, P') € P and P < Ay (resp. P’ < A;y) then P’ €I (resp. P €1I).
Then let Sy and S2 be the two sequents defined by S; = A; UTI; and S; = (E\{Xo}) U As UTI,,
where IIy = { P € IT| P||p A1 } and TI; = TI\IT;. We restrict the path P to S; and S by

Pi = {(P,P)€P|P<5)

Let us show that P; is a path for S;: P; satisfies (a), because P satisfies (d) so P — A; and
P — Aa. P; satisfies (b—e) because P satisfies (b—e). P; satisfies (f) because a conjunctive cycle
of P; would be a conjunctive cycle of P. At last, P; is minimal, because P is (if, for instance,
P1 C Py would be a path for Sy then P; UP; would be a path for S, smaller than P). So we can
apply the induction hypothesis to (S1,P1) and (S2,P2): we get a derivation of S; and a derivation
of Sy, and a derivation of S by R — A.

— In the other case, every conjunctive formula of ¥ is connected to another conjunctive formula of
3.
From the lemma 2 there exists an element Xy of ¥ minimal for <. Assume that Xq = A; A As,
and let
¥, ={Y € X\{X,} | there is a chain from A; to Y }

Since there is no cycle and Xj is minimal for < we have X1 NYXy = . Let II; = { P € 1T | P||p%; U
{A;} }. P satisfies (b) so I1; N 115 = .

Suppose there exists C' in ¥ such that ¢ ¢ X;, for i = 1,2. Then let Py = {(P,P’) €
PP <Cor P <C}. S is satisfied so Py # 0. Moreover, Po NP; = @ for i = 1,2, other-
wise C' would be connected to A; or As. Then it’s clear that P\Py is a path for S, which
contradict the minimality of P.

Likewise, suppose there exists P € II such that P ¢ II; for i = 1,2. The rule Aziom has not been
applied, so P is connected to a conjunctive formula C' of ¥. C' cannot be Xy by hypothesis. But,
from the previous remark, such a formula C' must belong to ¥; or X5, which is a contradiction.

11



So we have, ¥ =Xy UXy U{Xp} and IT = IT; UTI,. Then let
S; IHZ'UEZ'U{AZ'}
and
P;={(P,P’yeP | Por P appearsin S; }

It’s clear that P; satisfies (b—f) since P satisfies these conditions. Moreover, P; is minimal because

P is. At last, P satisfies (d) and P +— Xy, so P — A; and P +— As, and so P; satisfies (a).

So we can apply the induction hypothesis to (S;, P;), and get a proof of S and Ss, then a proof
of S by R — A.

d

3.3 Skolemization

Definition 9 (Herbrand term) Let F' be a formula of £ and Qu.A an essentially universal subformula
of F' which lies in the scope of essentially existential quantifiers Qi x1,..., Qnen, of F. The Herbrand term
associated with Qu is fy(x1, ..., x,) where fy is a new symbol of function. f, is called the Herbrand function
associated with Qx.

Definition 10 (Herbrand form) Let F be a formula of L. The Herbrand form Fy(x1,...,2,) of I is the
result of erasing all quantifiers of F' and replacing each essentially universal variable with the corresponding
Herbrand term. Here x1,...,x, are all the essentially existential variables in F.

In the following, we will consider free variables as (implicitly) universally quantified. Tt is the same as
considering free variables as constants (since a free variable do not lie in the scope of any existential variable,
so it is replaced by a new function symbol with no argument, that is a new constant symbol).

Examples
o If F = Vy.P(y) D Va.P(x), we have Fy(y) = P(y) D P(f+);:
o If F=3y.A(y) VB D Jx.(A(z) V B), we have Fy(z) = A(fy) VB D A(z) V B;
(P(y) D P(=)), we have Fg(y) = P(y) D P(fz(v));
(

o If F=VaVy.(A(z,y) D B(x)) D H.(Vz.A(u, z) D B(1)),
we have Fy(z,t,7) = (A(z, fy(z)) D B(z)) D (A(y, z) D B(t)).

o If F=3dyVaz.

The interest of Herbrand form lies in the following result:

Theorem 2 (Skolem-Herbrand) Let F' be a prenex formula. Then F is provable in DPC if and only if
there exist termsty, ... t, such that Fg(t1,...,t,) is provable in DPC (more exactly in Direct Propositional
Calculus, that is without the rules R =V, R —3, L—V and L —3).

Remark. Before giving the proof of this theorem let us notice that the result is no longer true for non-
prenex formulas. For instance let F' be the formula

Jy.A(y) v B D Je.(A(x) v B)

Its Herbrand form is Fg(x) = A(fy) V B D A(x) V B, and there exists a term ¢t = f,, such that Fg(t) is
provable in DPC.

But F' is not provable in DPC. Indeed, the only rule that we can apply to the sequent = F is R— D,
and then we must prove the sequent Jy.A(y) V B+ Jz.(A(z) vV B). Two rules can be applied a priori:R — 3
and £ — V. The second one leads to a sequent of the form Jy.A(y) = or B F which is not provable, so the
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first one remains. So we look for a term ¢t and a proof of Jy.A(y) V B+ A(t) vV B. Likewise, we must apply
here R — Vv, which leads to Jy.A(y) vV B F A(t), B. At last, only the rule £ — V can be applied and leads to
Jy.A(y) F A(t), which is not provable since ¢ is a term which does not contain y (y is a bound variable when
we introduce ¢t with R — 3).

However, notice that F' is provable in LX:

Aly) F AR Y
Aly) FA@w). BT BB
Ay F Ay vB Y BF A(x),B ")
Ay) F 3z A0 vB) "7 BFA(z)vB "
Ty A F e AV B Y BrFanAwve Y

JyA(y) vV BF 3z.(A(2) vV B), Je.(Ae) v B) V)

), e
Jy.A(y) v B+ Jz.(A(x) V B)
F3y.A(y) v B D Je.(A(x) vV B)

R—contract)

(R-2)

Lemma 3 Let F' be a formula, o a substitution and t a term. Let (fu)uecu be function symbols appearing in
F, and (f!)uecu new function symbols such that for all w of U we have ar(f)) = ar(fy) + 1.
Flo] is provable in DPC if and only if F[f, < f,(¢)][o] is provable in DPC.

Proof: F[f, < f.(t)][o] is equal to Flo][fu < f.,(c(t))] so it’s sufficient to show that if ¢ is a term them F'
is provable if and only if F[f, < f/ (¢)] is provable.

The proof is by induction on the length of the derivation, showing the more general result: for all sequent
S, S is derivable if and only if S[f, « f,(t)] is derivable. The reader will easily convinced himself of this
result.

Notice that the derivation of F[f, < f,(t)] is the derivation of F' in which we apply everywhere the
substitution [f, < f(¢)]. O

Lemma 4 Let I be a formula,  a free variable in F', o a substitution such that o(x) = = and f, a function
symbol which does not occur in F'.
Flo] is provable in DPC if and only if Flx + f;][c] is provable in DPC.

Proof: The proof is also by induction on the length of the derivation to show that for every sequent S such
that x is free in S and f, does not occur in S, S[o] is derivable if and only if S[z « f;][o] is.

The proof is trivial since we notice that the rules R —V, £ —V, R — 3 and £ — 3 cannot be applied on the
variable # (because we assumed that x is free in S, and it’s always possible to rename the bound variables
of S with names other than z).

Notice that the derivation of Flz « f;][o] is the derivation of F[o] in which we apply everywhere the
substitution [z « f;]. O

Proposition 4 Let F be a prenex formula and o a substitution.
If Fglo] is provable in DPC then Flo] is provable in DPC.

Proof: The proof is by induction on the number of quantifiers of F"
e If F' has no quantifier then I = Fg, and the proposition is obvious.

o If F = 3x.F' then Fg = F[fu < fu(z)] for every essentially universal variable u in F’. (We write f,
for the two function symbols, even if they are actually different symbols). By hypothesis Fr[o] (i.€.)
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Filfu < fu(x)][e] is provable. So, from lemma 3, Fj;[o] is provable. But F’ has one quantifier less
than F', so the induction hypothesis applies to F, and F’[o] is provable (i.e.) we have a derivation

D
F F'lo]

and so there is a derivation of F[o]

D
F F'lo]
F (3z.F')[o]

(R-3)

o If F =Va.F' then Fg = Fi[z + fo].
By hypothesis Fglo] (i.e.) Fi [z + fs]lo] is provable so Fi[o\z][x < fs] is provable. So from lemma 4
Fj [o\#z] is provable, and the induction hypothesis applies to F': F'[o\z] is provable (i.e.) we have a

derivation
D
F F'lo\z]
from which we get
Db
F F'lo\z]

el ™

Proposition 5 Let F be a prenex formula.
If F is provable in DPC' then there exist a substitution o such that Fglo] is provable in DPC.

Proof: The proof is by induction on the number of quantifiers of F"

e If F' has no quantifier then /' = Fy, and the result 1s obvious.

o If ¥ =3z .F' then Fg = Ff;[fu < fu(x)] for every essentially universal variable u in F”.
By hypothesis F' is provable so there exist a term ¢ such that we have the derivation

D
FF/le 1]

Faep Y

F'[x « t] is derivable and by induction hypothesis there exist a substitution ¢ such that (F'[z +
t))m[o] is provable. But (F'[x « t))g = Fi[r < t] so Fg[xz + t][¢] is provable, and from lemma 3
Fhlfu « fu(®)][x + t][o] is provable (i.e.) Fg[o'] is provable, where ¢ is the substitution defined by
o'(z) =t and o'(y) = o(y) if y # x.

o If F =Va.F' then Fg = Fi[z + fo].
By hypothesis I is provable so we have a derivation

D
EE
e Y
Induction hypothesis applies to F' and so there exist a substitution o such that Fy;[o] is provable. So
from lemma 4, Fj [z < fz][o] is provable (i.e.) Fg[o] is provable. O
Proof of the theorem: Let F' be a prenex formula and Fg (21, ..., #,) its Herbrand form.
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e If F is provable in DPC then, from proposition 5, there exist a substitution o such that Fg[o] is
provable (i.e.) Fr(o(z1),...,0(xy)) is provable.

o Conversely, assume that there exist terms ¢y, ...,t, such that Fg(¢1,...,%,) is provable in DPC.
Let ¢ be the substitution (#; < ¢;)i=1, n. Frlo] is provable so, from proposition 4, F[o] is provable,
and Flo] = F.

d

3.4 The decision procedure

Let FF = @Q121.Q225 ... Qnx, .G be a prenex formula, where G has no quantifier. We are going to apply the
previous theorem to find derivations of F.

Let Fg(2i,,...,2;,) be the Herbrand form of F'. Let A% (resp. A7) be the set of positive (resp. negative)
atomic subformulas of Fy. First we consider the set

M={(P,Pu) | PEAT NP € A" A Plu]= P'[u]}

where u is a principal solution of the unification problem P = P’. First-order unification is decidable, and
has pseudo-linear solutions (see for instance [7, 10]).
Then we consider nonempty subsets P of M satisfying conditions (b) and (d), and such that the substi-

tution
o= \/ u
(P,P' u)eP

exists; therefore, conditions (a—d) and (1) are already satisfied. See [1] for an efficient algorithm to find such
subsets.

Then we keep the subsets who also satisfied the last conditions (e) and (f). If P is such a subset (actually
a path), and ¢ the above substitution, the proof of the theorem 1 gives a way to construct a derivation D of
Fyglo]. By replacing the Herbrand functions f,, by the corresponding variable u in o we get a substitution
o', and by doing the same replacement in D we get a derivation D’ of G[o’]. Then

D/
F Glo']
F Qnan . Glo"\ 2]

FQsxs.. .ann..G[a:l — o'(z1)]
FQiz1...QninG (R=Qu)

(R=Qn)

1s a derivation of F'.

4 Extensions

In the case of prenex formulas the skolemization expresses the relative order of the quantifiers, so that
unification respects the eigenvariable condition. The basic idea is the following: if F' is the formula

Jx Vy.P(z,y)

its Herbrand form is
Pz, fy(2))
Then unification cannot lead to a term containing f, to substitute to # (we would have an occur-check). As
a consequence, the term substituted to & does not contain the variable y, which is the correct condition.
But, unfortunately, in the case of non-prenex formulas, the skolemization is not powerful enough. For
instance, we saw that the formula

Jy.A(y) v B D Je.(A(x) v B)
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has the Herbrand form
Fr(z)=A(fy)VB D A(z) VB

which is provable for the substitution o = [fxy} But the dependency of o(z) over y (f,) implies that £ — 3

must be applied before R — 3 in the proof, which i1s not possible without contraction, as we have already
seen.

So skolemization gives a necessary condition on ¢, but not a sufficient one. The idea for extending the
decision procedure in the case of non-prenex formulas is the following: we keep skolemization and the search
for paths for the Herbrand form, satisfying the condition (1), and we try to reconstruct derivations from
paths, like we did in the prenex case. But now, this step can lead to a failure: the path does not necessarily
correspond to a derivation. But we keep the completeness of the method: if a formula is provable in DPC
then there is at least one path for it on which the algorithm is successful.

Of course, such reconstructed proofs from paths have a certain shape, depending on the choices we made
when applying the rules. But all the proofs we can construct from a given path are “all the same”, in a sense
we are going to define below.

Moreover, we can direct the construction to bring out intuitionnistic proofs when they exist. We prove
the existence and the completeness of such a construction, that is: if a formula i1s provable in intuitionnistic
DPC then there is at least one path for it on which the algorithm successfully returns an intuitionnistic proof
of it.

4.1 Canonical proofs

Definition 11 (potential quantifier) Let S be a sequent, and Q121.F1, ..., Qmam.Fp, ils quantified sub-
formulas, x1, ..., x, being the essentially existential variables. Let D be a derivation of S, and o the substi-
tution of existential variables in D. We define the relation T on {Q;}i=1,.. m with

def

QiEQj

A quantified formula Qz.F of S s said to be potential if @ is munimal for C.

( (le‘j.Fj < Fz) V (_] S {1,...,77,} N x; < O'(l‘j)) )

It just means that the corresponding rule can be applied on Qz.F | and we have the fact:

Proposition 6 Let D be a derivation of S, and Q, Q' two quantifiers appearing in D. If Q T Q' then Q is
introduced before @' in D (that means below in the bottom-up representation we chose in this paper).

Definition 12 (potential conjunction) Let S be a sequent, and D a derivation of S. A conjunctive
formula Ao B of S is said to be potential if the corresponding rule can be applied on Ao B, keeping the same
path P(D) for the resulting proof. (That is, if S can be split into S1USs U Ao B, and P(D) into P and Pa,
such that Py is a path for Sy U A and P for S; U B)

We define the notion of canonical derivation by induction on a derivation.

Definition 13 (canonical proof) A derivation D of a sequent S =T+ A is said to be canonical if
e cither D s an ariom;

e or D is of the form

'Dl Dz Dl
S S S,
rea o TEAW

with Dy and Dy canonical, and

— If a formula of S is not satisfied in D then R is a weakening rule;
— or else, if S contains a potential quantification then R is a quantification rule;

— or else, if A contains a negation then R =R — —;
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— or else, if S contains a disjunction then R is a disjunctive rule;
— or else, if A contains a potential conjunction then R =R — A\;
— or else, if I' contains a potential conjunction then R is a conjunctive rule;

— or else, if I' contains a negation then R = £ — —.

This choice may seem arbitrary, and we could have chosen another, but it will be justified by proposi-
tion 10.

Definition 14 (equivalent derivations) Two derivations D1 and Ds are said equivalent if
P(D1) = P(D-)
(i.e.) if they have the same axioms.
The main result is the following:
Proposition 7 Every derivation D is equivalent to a canonical derivation D.

Proof: The proof is by induction on the derivation D (of S = I' = A). If D is an axiom, then the result is
clear with D = D. Otherwise, D is

'Dl Dz Dl
. Sl SQ Sl
either TrA (R) or T A(B)

Then we reason by case, following the definition of a canonical derivation:

(a) If a formula F of S is not satisfied in D:

Lemma 5 If F' is not satisfied in a derivation D of S, F, then there is an equivalent derivation D’ of
S, smaller than D.

Proof: The proof is by induction on the length of D. D cannot be an axiom. If the last rule of D is a
weakening on F', then the result is clear. Otherwise, D has the form

Dy
S F
S F

(&)

and by induction hypothesis, there is an equivalent derivation D} of S’ smaller than D, so there is
an equivalent derivation of S by R, smaller than D. |

From the lemma above, there is a derivation of S\F smaller than D and by induction hypothesis
there is an equivalent canonical derivation of S\ F, and so, by a weakening on F, there is a canonical
derivation of S equivalent to D.

(b) or else, if S contains a potential quantification Qz.F(z):

Lemma 6 IfD is a derivation of T = A V. P(z) then the derivation D in which we have removed the
rule R — Y corresponding to V. P(x), and replaced every occurrence of Va.P(x) by P(x) is a derivation

of TH A, P(z). (Likewise for T')3x.P(x) - A).

Proof: The proof is an easy induction on the derivation D, as above. a
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Lemma 7 If D is a derivation of T = A, Jx.P(x), where Jx.P(x) is a potential quantifier, then the
derivation D in which we have removed the rule R — 3 corresponding to Jx.P(x), and replaced every
occurrence of Jx.P(x) by P(t), where t is the substituted term for x, is a derivation of T = A P(t).
(Likewise for T Ve .P(z)F A).

Proof: The proof is an easy induction on the derivation D, as above. a

Assume that S is of the form T' Ay, Q. F(x). Then, from one of the two previous lemmas, we
have an equivalent derivation of T' = A, F(z) (or T' F A, F(1)), smaller than D; so, by induction hy-
pothesis, we have an equivalent canonical derivation of T' = A, F(z) (or T' = A, F(t)), from which we
get an equivalent canonical derivation of S by the corresponding rule (R —V or R — 3 here).

(¢) or else, if A contains a negation:

Lemma 8 If D is a derivation of I' b A, —F, in which —F 1is satisfied, then there is an equivalent
derivation of I', ' = A, smaller than D.

Proof: The proof is an easy induction on the derivation D, as above. a

Then, if S has the form ' F A, —F, there is, from the previous lemma, an equivalent derivation
of I', F = Aq, smaller than D, so the induction hypothesis gives an equivalent canonical derivation of
I FE A So we get an equivalent canonical derivation of S by R — —.

(d) or else, if S contains a disjunction:

Lemma 9 IfD is a derwvation of I = A, AV B, wn which AV B 1s satisfied, then there is an equivalent
derivation of T = A, A, B, smaller than D. (Likewise for T AJAD B and T, AABF A).

Proof: The proof is an easy induction on the derivation D, as above. a

Then, if S has the form I' = Ay, AV B, there 1s, from the previous lemma, an equivalent derivation of
I'F Ap, A, B, smaller than D| so the induction hypothesis gives an equivalent canonical derivation of
T'F Ay, A B. So we get an equivalent canonical derivation of S by R — V. (Likewise for T A, A D B
and T', AA BF A).

(e) or else, if A contains a potential conjunction:

Lemma 10 If D s a derwation of I' = AJA AN B, in which A A B s satisfied and potential, then
there is a deriwation Dy of I'1 - Ay, A and a deriwation Dy of I's b Ao, B, both smaller than D, with
I'= Fl U Fz, A= Al U Az and P(D) = P(Dl) UP(DZ)

Proof: The proof is by induction on the size of D. D cannot be an axiom. If the last rule of D is
applied to A A B, then the result is obvious. Two cases remain:

e The last rule of D has one premise, for instance
'D/
A FAAB
-FTHFA AAB
By induction hypothesis, there exist a derivation Dy of I'1 F Ay, A and a derivation D5 of I's
Ay, F, B, both smaller than D/, with T =T, UT2, A = A; U Ay and P(D1) UP(D2) =P(D') =
P(D). So we have the derivation

(£=7)

Dy
Dl Fz F AQ,F,B (L=
iEALA -FI'sF Ay B ®
-FTHFA AAB
where the derivation of =F, I's F A, B is smaller than D.
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e The last rule of D has two premises, for instance

Dg D4
Tsb A, A ANB  B.T4k Ay
A'D B/,F3,F4 F Ag,A4,A/\B

(£-2)

By induction hypothesis, there exist a derivation Dy of I'1 F Ay, A and a derivation D5 of I's
Az, B, A/, both smaller than Dg, with F3 = Fl U Fz, Ag = Al U Az and P(Dl) UP(DQ) = P(Dg)

So we have the derivation

Ds Dy
Dl Fz"Az,B,A/ B/,F4|_A4 .
Fll_Al,A A/DB/,FQ,F4|_A2,A4,B

(R-n)

A'D B/,F3,F4 FAs, Ay, ANB

where the derivation of A’ D B’ I'5, T4 F A5, Ay, B is smaller than D because D5 is smaller than
Ds.

d

Then, if S has the form I' = A, A A B, then, from the previous lemma, there exist derivations D;
and Dy of 't F Ay, A and 'y - As, B, both smaller than D, with I' = T'y UT'y, A = A U A, and
P(D) = P(D1) UP(D3). By induction hypothesis there exist equivalent canonical derivations D; and
D5, so we have an equivalent canonical derivation of S by R — A.

(f) or else, if T contains a potential conjunction:

The proof is similar to the previous case.

(g) or else, if T contains a negation:

The proof is similar to the case (c).

4.2 Application

The idea is to build canonical proofs from paths. For this purpose, we refine the algorithm given in 3.2.2:
let P be a path for Sp, and ¢ a substitution, such that the condition (1) is satisfied. We construct a proof
of S by induction on the size of S:

e If there is an axiom in S, then we apply the rule Aziom, possibly preceded by a sequence of weakening
rules;

e or else, if a formula of .S is not satisfied, then we apply the corresponding weakening rule;
e or else, if there is a potential quantifier in S we apply the corresponding rule;

e or else, if there is a negation in A we apply the corresponding rule;

e or else, if there is a disjunction in S we apply the corresponding rule;

e or else, if there is potential conjunction in A we apply the corresponding rule;

e or else, if there is potential conjunction in I' we apply the corresponding rule;

e or else, if there is negation in I' we apply the corresponding rule;

e or else, we return a FAILURE.
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We denote A(P) the resulting proof, if it exists. Clearly, we have the following results:
Proposition 8

(1) If A(P) exists, then it is a canonical proof.

(2) A(P(D)) exists, and is equivalent to D.
As a consequence of the proposition 7, we obtain the completeness of our algorithm:

Theorem 3 (Completeness) If S is provable in DPC then there exist a path P for S (and a substitution
o) such that A(P) is defined and is a proof of S.

4.3 Intuitionnistic proofs

The corresponding system in intuitionnistic logic, that we can call Intuitionnistic Direct Predicate Calculus,
is obtained as usual by considering only intuitionnistic sequents that is of the form I' = A where A contains
at most one formula. The rules are slightly modified:

rea L-W R-W
TAFASY T a® ™
PEA ATE
AT oA
ABTFA T'FA ToFB
— —(£-A) —A)
AABTIFA T, ToF AAB
AT FAL BTabAs rEA LB
AV BT Tk AL A, 7Y TFAvB " Trave R
LibA  BTEA ATEB
A5 BT, T,rA 7 TFasB
A),TF A T'F Aa)
(o) ) (R-v)
Ve A(z),TF A I'FVYe A(z)
Afa), TF A Tk A(f)
e (2-3) ———(r-3)
Jw. Ax), THA I'F 3z A(x)

where T, A T, T'y, Ay, Ay are sequences of formulas, with |A] < 1 and |Ay, As| < 1, A, B formulas, a a
variable not appearing in ' U A, and ¢ a term.
Notice that 1t is equivalent to replace the rule £ — V by the two rules

ATiFA BTk ATiF  BT.FA

AVBILTLFA Y TAVB I, T.FA TV

since in £ —V we have |Aj, Ay| < 1. The multiplicative form of the rules gives to the rule £ —V a very
different behaviour than the additive form

ATFA BTFA
AVB,TFA

(£=v)
in which the goal is the same on each side.

If a formula is provable in Intuitionnistic Direct Predicate Calculus then we will say that its is provable

in DPC;.
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Definition 15 (intuitionnistic derivation) A derivation D of DPC is said to be intuitionnistic if every
application of the rule R —V on AV B is immediately followed by a weakening on A or B, and if every rule
has at most one formula in conclusion.

Clearly we have:
Proposition 9 F is provable in DPC; if and only if there is an intuitionnistic derivation of F' in DPC.

Proof: Let D be a derivation of F' in DPC;. Excepted R — V; and R — V3, every rule of DPC; is a rule of
DPC, and remains unchanged. The rule

A
TFAvE v
1s translated into
A
TFaB™
'AvVB

Likewise for R — Va. The resulting derivation is clearly an intuitionnistic derivation.
Conversely, if there exists an intuitionnistic derivation of F' in DPC, then the same translation clearly
gives a derivation of F' in DPC;. a

The choice we made for the order of application of the rules in the previous algorithm is not innocent.
The idea is to get intuitionnistic proofs when they exist. Indeed, two derivations can be equivalent, the one
being intuitionnistic, the other not. For instance

AF A AF A
(L") L (R—=)
-A AR ® and F-A A .
—AF-atY —AF AT

are equivalent, but only the first one is intuitionnistic. That’s the reason why we chose to apply R — —
before £ — = in our algorithm. Likewise, the derivations

BEB
Ara™ BoBr ((i—;)) Ab A(?é)_ﬂ (Az) 4
ADB,-B,AF R " FA-A" CFC . BFB%Qﬂ
AD B, -BF A CFC T and CFA-ANC BoBE
ADB,C,~-BF -AANC ADB,C,~BF =AANC

are equivalent, but only the first one is intuitionnistic. That’s the reason why we chose to apply R — A
before L— D and £ — V.
These choices are justified by the following result:

Proposition 10 If a derivation D is intuitionnistic then the derivation D is intuitionnistic too.

Proof: The proof is by absurdum: assume that D is not intuitionnistic. There are two possible reasons:
e cither we have an application of R — V not followed by a weakening on A or B:

rkAJﬁQV
rravp

But D is canonical, so AV B is satisfied in D so in D too. But D is intuitionnistic so the application of
R —Von AV B in D is followed by a weakening on A or B, so A or B must be weakened in D, which

1s a contradiction.

e or there is a non-intuitionnistic sequent in D. Let us consider the “first” non-intuitionnistic sequent in
D. There are two possibilities:
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— the corresponding rule is

PEAF
T—AFF

D is canonical so A is satisfied in P, so in D too, and F is a quantifier or a conjunction not
potential. Let us consider the rule in D where A is principal, that is

I+ A

o Ar e

since P is intuitionnistic. But this contradicts the fact that F' were not potential in D.

— the corresponding rule is

LERA BTsE
A5 BT, T,FF

_3)

D is canonical so F' is a non-potential conjunction, or an atom. Then let us consider the rule in
D where A D B is principal, that
A BTLEF .
AS BT, I, FF

Necessarily, F' must be F', otherwise it would contradict the non potentiality of F' in the above
rule. But, since F' 1is satisfied, and connected to A seen the derivation D, this application is not
possible.

_3)

d

As a consequence we obtain the completeness of our algorithm with respect to intuitionnistic provability:

Theorem 4 (Completeness) If a sequent S is provable in DPC; then there exist a path P (and a substi-
tution o) such that A(P) is defined and is an intuitionnistic proof of S.

5 Implementation in the system Coq

An implementation of the decision procedure we just presented has been realized in the system Coq, version
5.10 [2], a proof assistant developed at INRIA-Rocquencourt and ENS Lyon.

The implementation of the decision procedure itself has been realized in Caml Light [11, 8], independently
of the system Coq, with its own representation of terms and proofs. The interface with the system Cogq.
which is written in Caml Light, is then just a translation of the goal to prove into our representation of terms,
and of the resulted proof (if it exists) in a natural deduction proof. We just give here the main lines of this
implementation, and we won’t focus on the possible algorithmic optimizations (see [1], pages 137-141).

5.1 Implementation of the decision procedure in Caml Light

We assume that we have types term, formula and proof to represent terms, formulas and proofs of Direct
Predicate Calculus. A possible representation of terms and formulas may be the following:

type term = Var of string
| Fun of string * (term list);;
type formula = Atom of string # int * (term list)
| Neg of formula
| Imp of formula * formula
| Conj of formula * formula
| Disj of formula * formula
| ForAll of string * formula
| Exists of string * formula;;
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even if it is not exactly the one we chose.

Notice that atomic formulas are of the form Atom(name,n,tl), where name is the name of the predicate,
t1 the list of terms on which it is applied and n an integer. This integer n allows to separate formulas:
formulas of L are represented with the integer 0 and separated formulas of £ with different integers for each
occurrence of an atomic formula.

We define the following functions:

value separate : formula -> formula;;
value pi_formula : formula —-> formula;;

where pi_formulais the canonical projection from £ into £g (denoted 7) and separate a function associating
to a formula Fyy of Ly a separated formula F' of £ such that n(F) = Fy (by doing a prefix traversal of Fj
and giving increasing integers for each atomic formula).

5.1.1 Paths search

We consider a formula F' of £ for which we want to know if 1t is provable in Direct Predicate Calculus and,
in that case, what are the possible derivations.
The first step of the decision procedure is to determine the Herbrand form of /. The function

value Herbrand : formula -> (string list * formula);;

takes a formula F' and returns the list of its essentially existential variables together with its Herbrand form
Fy.

The next step is to look for pairs (o,P) where o is a substitution and P a path for - Fp satisfying
the condition (1) of the theorem 1. For this purpose, we proceed using the method of [1], that we briefly
presented in 3.

We first determine the set

M={(P,Pu) | PEATY AP €A™ A Plulm P[]}

where AT is the set of positive atomic subformulas of Fy and A~ the set of negative ones. So, we have to
solve the unification problems @ = ¥ where A!(%) and A’ (%) are two atomic subformulas of Fy, respectively
appearing positively and negatively. The first-order unification is decidable. A lot of algorithms are known,
and we used Martelli and Montanari’s one (see [10], and also [7], pages 224-226).

The function all matches compute the set M

value all_matches : formula —> (formula * formula * unifier) list;;
Then we look for the pairs (U, o), where U is a subset of M and ¢ a substitution, such that
e !{ is not empty;
e All atomic formulas of i are distinct;
* Vippueuttis defined and o =\ (p pr 4y 4
e If Ao B is a conjunctive subformula of Fgr then A and B are not connected by U;
o If U satisfies a conjunctive formulas A o B then U satisfies A and B.
Such a pair (U, o) clearly satisfies the conditions (a—e) and (1). They are represented by the type
type path == (formula # formula * unifier) list * unifier;;
and the function
value paths : (formula * formula * unifier) list -> formula

-> path list;;
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compute all such pairs from M and Fg. We do not compute all the subsets of M, which would be costly,
but we use the method described in [1], page 139.

It remains to satisfy the condition (f), that is the absence of conjunctive cycle. For this purpose we build
the graph G introduced in 3.2.2 and we check if it has a cycle or not (this can be done in linear time). The
function

value valid_paths : formula -> path list -> path list;;

takes the formula Fyr, a list of potential paths for Fyr, and returns the set of paths for Fg (those without
conjunctive cycle).
So we can now build proofs from paths.

5.1.2 From paths to proofs

Let P be a path for Fig and ¢ a substitution such that the condition (1) is satisfied. First we replace in

P and ¢ the Herbrand terms by the corresponding variables (they are no longer useful), that is we replace

every occurrence of f (i) by . We keep the notation P and ¢ for the resulting path and substitution.
The making of a derivation from P follows the algorithm given in 4.2. The function

value proof_of_path : formula -> path —> proof;;

applies the algorithm and returns a proof of F', or raises the exception FAILURE.
Then we can give the main body of the decision procedure:

exception Not_provable_in_DPC of string;;
(*#x prove : formula -> proof #**%*)

let prove f =
let £fO = separate f in
let (ex,f1) = herbrand f0 in
let M = all_matches f1 in
if M=[] then
raise (Not_provable_in DPC "M is empty.")
else
let ps = paths M f1 in
if ps=[] then
raise (Not_provable_in_DPC "No path.")
else
let vp = valid_paths f1 all_paths in
if vp=[] then
raise (Not_provable_in DPC "Every path has a conjunctive cycle.')
else
let rec quant = function
p::rest —> try proof_of_path f1 p
with FAILURE -> quant rest
| [ -> raise (Not_provable_in_DPC
"Path(s) do not correspond to proofs.")
in quant vp

5.1.3 Complexity

Our purpose 1s to evaluate the complexity of the decision procedure.

Let F' be a formula and n the number of atomic subformulas of . This number n is of the size of F
(even if it can be very less, like in == ...=A) and we will consider them as equal. Let at be the number of
positive atomic subformulas and a~ the number of negative ones.
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The first step is to determine the set M, (i.e.) the triplets (P, P/, u) satisfying (c) and (1). There are at
most ’2—2 pairs (P, P} with P € At and P’ € A~, and so the computing of M is in time O(n?).

Then we look for paths among the subsets of M. For a subset of M of cardinal &, we must check the
conditions on paths. We admit that this check can be done in time kn.

Let pi be the number of paths of cardinal k, with 1 < k < @ = min(a*,a™). Seen the conditions (b) and

(1), we have
pr < kICE Ok

The search for all paths takes a total time

Tn S Za:knpk
k=1

IN

n > kklCE Ch
k=1

= nY kkCE_,Ck
k=1

But we have @ < n/2so C¥_, and C* are always less than C’://g, and so

—a

T, < na’al (CZ//g)Z
< o (3) (5 ()

3

n (n) 3
2 \e
using the Stirling formula.
The complexity is “reasonably exponential”, when we remember that propositional calculus decidability
is already exponential.

5.2 Overview of the system Coq

Coq [2] is a proof assistant for higher-order logic. Tt allows to write specifications and propositions, to
check mathematical proofs, and to automatically synthesize computer programs from the proof of their
specifications.

The language of Coq is the Calculus of Inductive Constructions, and its proof system is an intuitionnistic
natural deduction. We are going to briefly present the syntax and the principles of Coq, in order to explain
how we implemented the decision procedure for Direct Predicate Calculus in Cogq.

5.2.1 Terms and propositions

In Cogq, all types are terms. Given basic types, it is possible to build other types from three elementary
constructions:

e application of a term £ to a term x, denoted (f x);
e abstraction of a variable x of type T in a term /', denoted [x:T]F;

o product of a type T, and a type Th, denoted (x:71)T5. When the product is not dependent (that is x
does not appear in T3) it is also denoted T3 =>T5, and then represents the type of functional objects.

Coq allows also to define inductive types, as the type of naturals for instance. In a language of the ML
family, like Caml Light, it is possible to define such a type as:
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type nat = 0
S of nat;;

In Coq, we define the same inductive type in a similar way:

Inductive Set nat = : nat

|
The function associating = to 4+ 2 will be denoted [x:nat] (S (S x)), and it has the type nat ->nat.

0
S : nat -> nat.

In Coq, logical propositions have type Prop. Atomic propositions are obtained as the application of
predicate to terms. For instance, if P is a predicate of type nat —>Prop, then (P (S 0)) is an atomic
proposition. Propositions are built from the usual connectives and quantifiers, with the following syntax:

e If P and Q are two propositions then P—>Q is the proposition P D @,
e If P and Q are two propositions then P/\Q is the proposition P A @,

e If P and Q are two propositions then P\/Q is the proposition PV @,

True is the tautological proposition, False the absurd proposition,

If P 1s a proposition then “P is the proposition =P, defined as P O False,

If P is a proposition in which z is a free variable of type 7" then (x:T)P is the proposition V& : T. P,
e If P is a proposition in which z is a free variable of type 7" then (Ex [x:T]P) is the proposition 3z : T.P.

We can also write higher-order propositions, like (A:Prop)A->A or (P:nat->Prop) (Ex [x:nat](P x)).
If P is a predicate of type nat ->Prop, the “drinkers’ theorem” is written (Ex [x:nat](y:nat)(P x)->(P
y)).

Let us show now how to prove propositions in the system Coq.
5.2.2 Tactics and proofs
If we want to prove the proposition A D (A D B) D B in Coq, we write for instance
Coq < Lemma examplel : (A,B:Prop) A->(A->B)->B.
We obtain the following goal:
1 subgoal

(A,B:Prop) (A->(A->B)->B)

In a goal, the proposition to prove is below the double line and the context in which we do the proof —
here an empty context for the moment — 1s on top of it. We can see the goal as the sequent I' - P, where
T is the context (also called environment) and P the proposition to prove.

We call tactic every Coq command which applies one or more inference rules to the current goal. To each
tactic 1s associated a wvalidation, that is a structure which allows to verify, once the proof is done, that the
inference rules have been correctly used. Then, we are always ensured to stay in a coherent state, and to
have a sequent which can be derived from the initial one.

The tactic Intro, for instance, allows to introduce universally quantified variables and hypothesis in the
context. Let us apply the tactic Intro to our goal:

examplel < Intro.
1 subgoal

A : Prop

(B:Prop) (A->(A->B)->B)
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By applying it as many times as possible (Intros does it) we get the goal:

A : Prop

B : Prop

H: A

HO : A->B
B

We apply an hypothesis (or a lemma, an axiom,...) with the tactic Apply. Here we apply the hypothesis
Hy with the command:

examplel < Apply HO.

1 subgoal
A : Prop
B : Prop
H: A
HO : A->B
A

A 1s an hypothesis. So we can finish the proof with the tactic Assumption :

examplel < Assumption.
Subtree proved!

In a more general way, there exist for each connective an introduction and an elimination rule. The
elimination of a conective in realized through the tactic Elim. For instance, on the goal

A : Prop

B : Prop

C : Prop

H: A\ B
C

the command Elim H produces the two subgoals:

2 subgoals

: Prop
: Prop
: Prop
: A\/ B

m QW

A->C

subgoal 2 is:
B->C
5.3 Interface with the system Coq

We are now in position to interface our decision procedure with the system Coq. For this purpose, we must
first translate the goal in the language £, and then translate one of the resulting proofs, if there exist, into

a sequence of Coq tactics.
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The translation of the goal to prove into £ i1s not a problem. It is a purely syntactic translation, in which
we forget the types of terms. We have just to check if the goal i1s a first-order proposition. For this, it is
sufficient to check that none of the quantified variables i1s a predicate or a function applied to terms.

Remark. The proposition VA.(A D A) does not belong to first-order logic, but A O A is trivially provable
in Direct Predicate Calculus. More generally, if we can prove P(z1,...,2,) in DPC, then we can prove
Vay ... Ve, . P(x1,...,2,) in Coq, even if the quantifiers Ya1,... Vo, are not first-order ones. So we can first
introduce all the prenex universal quantifications, then apply the decision procedure on the resulting goal
(in which #1,..., z, have become free variables, that is constants). This way, the method is extended to a
certain class of higher-order formulas.

Once the goal is translated into a formula F' of £, we can apply the decision procedure. If it fails, we
leave the goal unchanged and we just warm the user that the tactic failed — which does not mean, of course,
that the goal is not provable in Coq — and why.

If 1t succeeds, we get a set of derivations of F' in DPC, from which we keep intuitionnistic ones. If there
is almost one intuitionnistic derivation D of F' then we translate it into Coq tactics. In the practice, we used
internal Coq functions to do this translation, but, to clarify this step, we will give here the corresponding
Coq top-level tactics.

Axioms. Every axiom

Ar A

in the derivation D means that A i1s in the local context. So we translate the rule Aziom by the tactic
Assumption.

Structural rules. The weakening rule

r-A
LAFA
means that we forget the hypothesis A. We just do nothing and continue the translation.
On the other hand, the weakening rule

(£-w)

r+
r=A
means that we replace the goal to prove by False. The command E1limType False has this effect.

(R-W)

Logical rules. Here is the translation of logical rules of Intuitionnistic Direct Predicate Calculus into Coq
tactics. We assume that this translation is recursively called on the generated subgoals. We denote C the
local context of Coq.

AR
e A(R——‘) Red, Intro,
- because —A 1s defined as A O False
FFA@ ) Apply H
W G ppLiy 4,
I,-AF where H : =A€(C
' +A FQI—BR Split
TFAAB 7N =P
A’B’FFA@ y  Elim H, Int Int
Y _(r-A im H, Intro, Intro,
ANB,TFA where H : AANB el
rrA R Left
TFAvB R b
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=B
r-AvaB

A,Fll_Al B,FQFAZ

(R-v2) Right

(c—v)  Elim H, then ElimType False on the goal ¢ such

AVB,T'EA that A; = 0§, and Intro on the other,
where H: AV BeC
Lars o Int
TFASB ™2 nero
LA BT:FA
! Y F’ I—zA -2) Cut B, then Apply H on the second subgoal (where
DB H :A D BeC) and Intro on the first one
Lep R-V Int
TFvep oV nere
P(t), T+ A
V;)’W(ﬁ_v) Cut P[x < ], then Apply (H t) on the second sub-
x.P(x), goal (where T : (z : T)P € C) and Intro on the first
subgoal
a0 R-3 Exists ¢
— " (R- xists
I+ Hl‘.P(l‘)( )
A4 £-3)  Elim H, Int Int
EIJ:.P,FI—A(_) im H, Intro, Intro,

where I : (Ex [x: T|P)€C
The resulting tactic is called Linear, and thus called with:
Coq < Linear.

However, this tactic does not allow to use previous results or hypothesis of the context. It is useful to
use lemmas in a proof, when some subgoals arise frequently, or when we need to do a part of the proof (a
higher-order reasoning) “by hand”, and to finish the proof with the tactic Linear.

For this purpose, we extended the syntax of our tactic in the following way. Assume that we have in the
context the hypotheses

Hi:e1v , Hoieo , ... , Hpy:ien

and the goal to prove
(1 :T) (w2 :To) .. (g Ti) ¢

for which we want to (possibly) use the previous hypotheses.
The idea 1s to apply the decision procedure on the goal ¢ D es D ... D¢, D ¢, seen we have ¢1,...,¢,
as hypotheses. The syntax is

Coq < Linear with H1 H2 ... Hn.

Examples. Let us illustrate the behaviour of the tactic Linear on some examples. Assume we have a
natural a, predicate P, Q, odd, even of type nat — Prop and a function f of type nat — nat.

Variable a : nat.
Variable P,Q,odd,even : nat->Prop.
Variable £ : nat -> nat.

We can show the following facts:

29



Theorem E1 : (x:nat)(Ex [y:nat]((P x)->(P y))).
Linear.
Save.

Theorem E2 : (Ex [x:nat](P x))
-> ((y:nat)(P y) -> (Q y))
-> (Ex [z:natl(Q z)).
Linear.
Save.

Theorem E3 : (even a)
-> ((x:nat)((even x)->(odd (S x))))
-> (Ex [y:nat](odd y)).

Linear.

Save.

Theorem E4 : ((x:nat)((and (P x) (odd x)) -> (even (f x))))
-> ((x:nat)((even x)->(odd (S x))))
-> (even a)
-> (P (S a))
-> (Ex [z:nat](even (f z))).
Linear.
Save.

The drinkers’ theorem is more delicate to prove. The proof by case (we have either Vo.Q(z), or 3z.-Q(z))
is done “by hand”, but the corresponding subgoals are automatically proved by the tactics Linear (with a
lemma for the second one).

Variable U : Set.
Variable Q : U -> Prop.

Axiom excluded_middle : (P:Prop) (P \/ “P).

Lemma em_Q : (x:U) (Q x) \/ ~(Q x).
Exact [x:U](excluded_middle (Q x)).
Save.

Theorem Drinker’s_theorem : (x:U)(Ex [x: UJ((Q x) -> (x: U) (Q x))).
Intro tO.

Generalize (excluded_middle (Ex [x:U]"(Q x))); Intro H; Elim H.
Linear.

Intro HO.

Exists tO.

Linear with HO em_Q.

Save.

To illustrate the use of lemmas in the decision procedure, let us consider a specification of the predicate
< on naturals, a monotonic function f of type nat — nat, and let us show

Va 3b f(a) < f(b+1)

Variable le : nat -> nat —> Prop.
Variable £ : nat —-> nat.

Axiom le_n : (n:nat)(le n n).
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Axiom le_S : (n,m:nat)(lenm) -> (len (S m)).
Axiom monoticity : (n,m:nat)(le n m) -> (le (f n) (f m)).

Lemma le_x_Sx : (x:nat)(le x (S x)).
Linear with le_n le_S.
Save.

Theorem L1 : (a:nat)(Ex [b:nat]l](le (f a) (f (S b)))).
Linear with le_x_Sx monoticity.
Save.

At last, let us show some examples on which the tactic fails:

Parameter A,B,C,D : Prop.

Theorem T1 : A -> (A /\ 4).
(* Error: Not provable in DPC (No path)
* during command Linear.
*)

Auto.

Save.

Theorem T2 : ((or & B) -> C)
-> (or (D > A) (D -> B))
->D -> C.
(* Error: Not provable in DPC (No path)
* during command Linear.
*)
Intros H HO H1.
Elim HO; Auto.
Save.

Conclusion

We have presented a decision procedure for Direct Predicate Calculus. Starting from [6, 1], we have extended
the decision procedure to non-prenex formulas and to intuitionnistic proofs. This work can be related with
[9] but it differs on two points: first, we do not consider explicitly rules permutabilities but we construct a
particular proof (discarding the others, which are equivalent); secondly, we do not wait to reach the axioms
rules to fail in proof search but we first look for potential axioms and then we construct a proof from axioms.
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