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Abstract

In this paper, we discuss the existence of an algorithm to decide if a given set
of 2 x 2 matrices is mortal: a set F' = {A4;,..., A} of 2 X 2 matrices is said
to be mortal if there exist an integer £ > 1 and some integers iy,is,...,5; €
{1,...,m} with 4; A, --- A;, = 0. We survey this problem and propose some
new extensions: we prove the problem to be BSS-undecidable for real matrices
and Turing-decidable for two rational matrices. We relate the problem for
rational matrices to the entry equivalence problem, to the zero in the left upper
corner problem and to the reachability problem for piecewise affine functions.
Finally, we state some NP-completeness results.

Keywords: Mortality, Matrices, Decidability

Résumé

Dans ce papier, nous discutons l’existence d’un algorithme pour décider si un
ensemble donné de matrices 2 x 2 est mortel: un ensemble F' = {A4y,...,A,,}
de matrices 2 x 2 est dit mortel s’il existe un entier £ > 1 et des entiers
Qi1,02,...,0 € {1,...,m} avec 4; A;, -+ A;, = 0. Nous présentons une syn-
thése des résultats connus sur ce probléme et présentons quelques extensions:
nous prouvons que le probléme est BSS-indécidable pour les matrices réelles
et Turing-décidable pour les matrices rationnelles. Nous relions le probléme
au probléme de I’égalité des coefficients, au probléme du zéro dans un coin et
au probléme de 'atteignabilité pour les fonctions affines par morceaux. Enfin,
nous établissons des résultats de NP-complétude.

Mots-clés: Mortalité, Matrices, Décidabilité
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Abstract
In this paper, we discuss the existence of an algorithm to decide if a given
set of 2 x 2 matrices is mortal: a set F' = {A1,..., An} of 2 x 2 matrices is said
to be mortal if there exist an integer k > 1 and some integers i1, 42, ...,% €

{1,...,m} with A;, Ai, --- A;;, = 0. We survey this problem and propose some
new extensions: we prove the problem to be BSS-undecidable for real matrices
and Turing-decidable for two rational matrices. We relate the problem for
rational matrices to the entry equivalence problem, to the zero in the left
upper corner problem and to the reachability problem for piecewise affine
functions. Finally, we state some NP-completeness results.

1 Introduction

Several undecidability results are known about problems involving matrices [5, 13].
For example, given a finite set F' of matrices with integer entries, it is undecidable
whether the semi-group generated by M contains a matrix having a zero in the right
upper corner [16], is free [10, 7], or contains the zero matrix [19]. These problems
have been proved to be undecidable when restricted to 3 x 3 matrices. But for both
of them the question of their decidability or undecidability when restricted to 2 x 2
matrices remains open [5].

In this paper, we focus on the decidability of the last problem. A set F' =
{4;,...,Ap} of d x d matrices is said to be mortal if there exist an integer k > 1
and some integers i1,12,...,ir € {1,...,m} with A4; A4;,---A;, = 0. Hence, we
focus on the following problem:

Open problem 1 Is the decision problem Mortg(2) decidable?
o Instance: a finite set F' of 2 x 2 matrices with rational entries.

e Question: is F mortal?

The decidability of problem Mortg(2) remains unknown despite a lot of interest
(see [14, 15] for some references and discussions).

The question of the decidability of Mortg(2) was first mentioned as an open
problem in [21] and was formulated as follows “ Find an algorithm, which given a
finite set H of non-singular linear transformations of the complex plane and lines L



and M through the origin, determines whether some product from H maps L onto
M.

When K € {R,Q}, the problem Mortg(d) (respectively Mortg(d,m)) will
denote the following decision problem:

e Instance: a finite set F' of d x d matrices with entries in K (respectively a
finite set F' of m d x d matrices with entries in K).

e Question: is F' mortal?

One of our motivation is the following: deciding the mortality problem is equiv-
alent to deciding the controllability of switched linear systems: given a system of
the form z(¢ + 1) = A(t,u)x(t), where for all ¢ the set of possible values of A(t,u)
is a finite set F' of d X d matrices, the question of mortality of F' corresponds to the
controllability (to the origin) of such a system. Cf. [3].

One other motivation is to understand the frontier between decidability and de-
cidability for discrete time dynamical systems: proving that Mortg(2) is decidable
or undecidable would really clarify the situation for discrete time hybrid and dy-
namical systems: cf [11] and [8]. For example the reachability problem for piecewise
affine dynamical systems has been proved undecidable for 2-dimensional systems,
but is open and related to the mortality problem (see section 4.3) for 1-dimensional
systems [11].

Note that, if Mortg(2) turned out to be undecidable, it would surely give a way,
which would extend the results of [1, 11, 18, 23], to simulate a Turing machine by a
dynamical system of low dimension since most of the undecidability results known
up to this date rely on simulations of Turing machines.

2 Links between dimension and number of matrices

Paterson proved in [19] that the problem restricted to 3 x 3 matrices is not decidable:
Theorem 1 ([19]) Mortg(3) is recursively unsolvable.

More precisely, Paterson proved in [19] that, if the Post Correspondence Problem
(PCP) is undecidable with p rules, then Mortg(3,2p + 2) is undecidable.

Using the Modified Post Correspondence Problem (MPCP) instead of PCP, we
improve this result and obtain:

Proposition 1 Suppose that the Post Correspondence Problem is undecidable with
p rules. Then problem Mortg(3,p + 2) is undecidable.

Proof: The Post Correspondence Problem (PCP) is the following: “given a a
finite set of couples of words {< U;,V; > |i = 1...p}, determine if there exist a
sequence of indexes 41,12, ...,i in {1,2,...,p} with U;,U;, ... U;, = V3, Vi, ... V3,
It is proved in [19] that, to any instance {< U;,V; > |i = 1...p} of PCP can be
associated a finite set F' = {S,T, W (U;,V;),W'(U;,V;) for j =1,...,n} of rational
matrices which satisfy:

1. F is mortal if and only if there exists i1,i2,...,%; in {1,2,...,p} with

SW’(UiU‘/h)W(Uiz)‘/iz) s W(Ulk7‘/lk)T =0

2. for all integers iy,14s,...,4; in {1,2,...,p},
SW' (Ui, , Vi)W Uiy, Vi,) ... W (U, Vi, )T = 0
if and only if Uy, Us, ... Us, = Vi, Vi .. Vi, .



We replace the Post Correspondence Problem (PCP) by the Modified Post
Correspondence Problem (MPCP) ! [9]: “Given a finite set of couples of words
{<U;,V; > |i =1...p}, determine if there exists a sequence of indexes is, ..., in
{1,2,...,p} with U1 U;, ... U;, =WV V;, ... V5,7 Since PCP can be solved by p calls
to MPCP, MPCP is undecidable with p rules when PCP is.

There remains only to prove that MPCP with p rules reduces to Mortg(3,p+2).
Observing that in MPCP the first index ¢; must be 1, the set of matrices F' =
{T, SWi, vy, W, v; for j = 1,...,n} is mortal if and only if there exist is, ..., i
in {1,2,...,p} with SW'(Uy, W)W (U,,,Vi,) ... W (U, V;,)T = 0, which in turns
holds if and only if {< U;,V; > |i = 1...p} is a positive instance of MPCP. a

Now, the following result is proved in [2] and in [5]:

Lemma 1 /2, 5] For alln > 2,m > 1, Mortg(d, m) undecidable implies M ortg(dm, 2)
undecidable.

The minimal number p of rules for which PCP is undecidable is not known, but
p is an integer between 3 and 7: see [17].
We obtain:

Corollary 1 The following problems are undecidable:
e Mortp(3,9)
e Mortp(27,2)

3 On the decidability of Mort(2,2).

We come back now to the decidability of the mortality problem for 2-dimensional
matrices. We prove first that Mortg(2,2) is BSS-undecidable. Then we prove that
Mortg(2,2) is Turing-decidable.

We will use several times the following lemma:

Lemma 2 A finite set F' = {A1,...,An} of 2 X 2 matrices is mortal if and only
if there ezist an integer k and integers iy, ..., i € {1,...,m} with A;, ... A;, =0,
and

1. rank(A;;) =2 for 1 < j <k,
2. rank(A;;) < 2 for j € {1,k}.

Proof: Only the direct sense requires a proof. Suppose F' is mortal. There
exists a null product 4;, ... A4;, =0 with £ minimal. We may assume k > 2, since
otherwise the assertion is immediate. The matrices A;, and A;, of this product are
non-singular because otherwise a null-product with few matrices could be obtained
by multiplying A;, ... A4;, by their inverse(s).

Let j > 1 be the smallest integer with rank(A4;;) < 2. From A; ... A; =0,
it follows that matrix A;, ... A;;_1 sends the image I of matrix A;; ... A; to 0.
Now, I is also equal the image of A;; and is of dimension 1. Indeed, firstly, I is
clearly included in the image of A;;, secondly, by definition of k, I can not be of
dimension 0, and thirdly, the dimension of the image of A;; is at most 1 because
rank(A;;) < 2. Hence Ay, ... A;;_1A;; = 0, which implies j = &, which in turns
implies the direct sense of the lemma. a

1The difference between PCP and MPCP is that in the latter the first index ¢; must be equal
to 1



3.1 BSS-undecidability of Mortg(2,2)

Talking about the decidability or undecidability of Mortg(2) requires to talk about
machines that manipulate real-numbers.

One first approach would be consider the problem as a recursive analysis prob-
lem. However, this approach is non-appropriate because one can not decide whether
a real number is equal to zero in this model [24].

A more natural approach is to consider the problem as a decidability problem
for the real Turing machine proposed by Blum Shub and Smale in [4]. We assume
that our reader knows this model: see [4] otherwise. Roughly speaking, a BSS-
machine is a Random Access Machine [9] extended with real numbers: it has an
unbounded number of real registers 1, ..., Ty, ... which can contain any real num-
ber in unbounded precision and a finite number of built-in constants A1, ..., Ap,-
Its program is made of arithmetic operations between its real registers of type
x; = xjFak, for # € {+,—,%,/}, or of type x; := Aj, or of tests of type x;#x;
with # € {>,>,<,<,=,#}. Let R® = UjenR!. An input z € R® (i.e. of type
x=(x1,...,2;0,...,0,...) for some 7) is said to be accepted by the machine if the
program of the machine eventually halts when started with its real registers set to
z. A language L C R* is said to be BSS-recursively enumerable if it consists of the
accepted inputs of some BSS-machine. The language L is said to be BSS-recursive
if, in addition, its complement is BSS-recursively enumerable.

In other words, BSS recursive sets are those that can be decided using only
arithmetical operations and tests. The reader should refer to [4] for more formal
descriptions.

We recall a lemma proved in [4]: a set S C R™ for some n is said to be
a  basic semi-algebraic set if there exists a finite number of polynomials of n
variables p1,p2,...,Pny,Pls-- 5Py, With S = {(@1,...,2,) | pi(z1,...,20) >
OA .. Apn (1, sn) > OAPI(zr, . 2) = OA ... Apy (21,...,3,) = 0}
A semi-algebraic set is a finite union of basic semi-algebraic sets.

Lemma 3 Let L C R* be a BSS-recursively enumerable set. Then L is a denu-
merable union of semi-algebraic sets.

Scketch of proof: Write L = U;enAce;, where Ace; is the subset of the inputs
that are accepted by the machine at time t. Check that each subset Acc; is a
semi-algebraic set: see [4] for the formal details. ad

The remaining arguments of this subsection are inspired from [12] (observe that
their seems to be a close relation between mortality and stability [12]).

We start by the following preliminary result:

Lemma 4 Leta,b,\ € R be some real numbers with a®> +b% # 0,\ # 0. Let 6 be an
argument of complex number a + ib. The couple of matrices F(a,b,\) = {41, A2}

with
a —b -2 1
w=(02) e ()
is mortal if and only if there exists an integer n € N with X\ = tan(n#).

Proof: By lemma 2, F(a,b, \) is mortal if and only if there exists an integer
n € N with A»A A5 = 0. This is in true if and only if there exists a nth power
of A; which sends the image of A, to its kernel. Since Im(4s) =< (1,0) >,
Ker(A2) =< (1,\) >, and since A; is the composition of an homothety and a
rotation of angle #, this is true if and only if there exists an integer n € N with
A = tan(nh). ad
The following observations are easy:



Lemma 5 Let 6 be a real number. Let E(0) be the subset of R defined by
E(8) = {\| there exists an integer n € N with A = tan(né)}
1. E(0) is a dense subset of R if and only if 6 /7 & Q.

2. There exist two rational number a,b € Q such that any argument 0 of complex
number a +ib satisfies 0 /7 & Q: take for example a = 1 and b= 2 (see lemma

6).

3. When 8/n & Q, the complement E°(6) of E(f) in R has an uncountable
number of connected components: actually, every point of E°(8) is its own
connected component.

We can now prove that Mortg(2,2) is BSS-undecidable:
Theorem 2 Mortgr(2,2) is BSS-recursively enumerable but is not BSS-recursive.

Proof: Since building a BSS-machine that semi-recognizes Mortg(2,2) is easy,
the problem is BSS-recursively enumerable.

Representing the matrices by their coefficients, the space of the instances of
problem Mortr(2,2) is R®. Denote by Pos C R® (resp. by Neg C R®) the subset
of the positive (resp. negative) instances of the problem. Using lemma 3, we only
need to prove that Neg is not a countable union of semi-algebraic sets.

Let a,b € Q with a +ib = pe?, 8/ ¢ Q like in lemma 5. Let v : R — R® be the
function that sends A € R to the couple of matrices F'(a,b,A). By definition of ~,
the image Im. of v is an algebraic subset of R® and ~ realizes an homeomorphism
between R and Im.,. By lemma 4, y~!(Pos) = E(6) and y~'(Neg) = E¢(6). Since
v is an homeomorphism, E°(f) and v(E°(f)) = Neg N Im, must have the same
number of connected components: i.e., by remark 3 of lemma 5, they must have an
uncountable number of connected components.

Suppose Neg = U;enS; where each S; is a semi-algebraic subset. It follows
NegNIm, = Ujen(Im,NS;). Each of the (Im+NS;) must be a semi-algebraic subset
because it is the intersection between an algebraic set and a semi-algebraic set.
Since a semi-algebraic set has a finite number of connected components, NegNIm-
must have a countable number of connected components. This is impossible by the
previous paragraph. O

We get immediately:

Corollary 2 e Forn > 2 m > 2, the problem Mortg(n,m) is BSS-recursively
enumerable but not BSS-recursive.

e Mortr(2) is BSS-recursively enumerable but not BSS-recursive.

However, observe that it is easy to extract the following fact from the proofs of
the next section:

Theorem 3 Problem Mortg(2,2) restricted to matrices with real eigen-values is
BSS-recursive.

Let us discuss the result of theorem 2 and of corollary 2: deciding whether a
set of matrices is mortal using only arithmetical operations is not possible. But it
does not mean that the problem can not be decided by an algorithm which uses
non-arithmetical operations or which uses arguments about the semi-ring K of the
entries for K # R.

Thus, using some number-theoretical arguments, we prove in the next sub-
section that the problem Mortgp(2,2) is Turing-decidable (that is, decidable in the
classical sense).



3.2 Turing-decidability of Mortg(2,2)

The decidability of Mortg(2,2) has already be claimed [5, 20]. But the proofs was
either wrong or incomplete (for example, contradicting the previous section) [20] or
missing [5]. We present here a full proof.

The previous section shows that Mortg(2,2) require the use of some number-
theoretical arguments. Actually, the arguments we will use are given by the follow-
ing result extracted from [22]:

Lemma 6 ([22]) e The following decision problem is decidable:

— Instance:

* a rational number p € [—1,1]
* a rational number q € [—1,1]

— Question: does there exist § € R and an integer n € N with cos(8) = p
and cos(nf) = q?

e When p & {0,1/2}, there are at most a finite number of such n and those n
can be computed effectively.

Proof: Write p = r/s,q = u/v where r, s,u, v are some integers with ged(r, s) =
ged(u,v) = 1. The decidability of the problem when p = 0 or p = 1/2 is trivial.
Suppose p ¢ {0,1/2}. Cos(nf) is a polynomial in cos(f) with integer coefficients.
If this polynomial is written cos(nf) = p,(r/s), then s"p,(r/s) is some integer ¢,
which satisfies

2rCnq1 — §°Cp = Cpgo (1)
with ¢; =7 et ¢y = 2r2 — s (if we denote a,, = sin(nz) and b, = cos(nz), this
recurrence comes from a1 = a1b, + byay,, bpy1 = b1, — ara,, etc).

Suppose that s is not a power of 2. Write s = 2%, s' = 2%'b’ with b > 1, b’ > 1
odd. We are searching an integer n such that ¢,/(20"b") = u/(2*1'). We claim
ged(ey,b™) =1 for all n € N. Indeed, if some odd integer d divides simultaneously
s et cp, then, since ged(r, s) = 1, the assertion d|c,—1,d|cp—2, . . .,d|cs implies d|r?,
which in turns implies d = 1. As a consequence an integer n candidate must satisfy
b1 = b™. There are at most a finite number of such n and those n are computable.

Suppose now that s is a power of 2. Write s = 2%,k > 1 (remember that we
supposed r/s # 1/2). Write every ¢, as ¢, = 2 v, where v, is an odd integer.
Recurrence (1) becomes

A1+l Ant2k,,  _ odn
A1t gy — 2Mn 2Ry = Aty Ly (2)

We prove first that there exists an integer n with A, + 1 < 2k + A\,—_1: if it was
false, we would always have A\, + 1 > 2k + A\,—1, so that A\, +1 > 2(n — Dk + Xy
would hold for all n. Since |cos(nf)| < 1, we have kn > A, which implies kn >
2(n —1)k+ A — 1 for all n € N. Clearly this is impossible.

Let ng be the smallest integer such that A\, +1 < 2k + A,,: no can be computed
effectively by testing this condition for increasing n. We have A, 12 = Apo+1 + 1,
Ano+2 + 1 = g1 + 2 < Apoy1 + 2k, so that for all integer h > 0, Apgt2+n =
Ano+1+n+1 holds. Hence, for each positive integer i, we must have Ay, +n = Ap, +h.

Now return to the existence of an integer n with cos(nf) = u/v. For cos(8)
having denominator 2¥, v must be a power of 2. Suppose v = 2™. It may happen
that there exists a solution for n < ng. Forn > ng, a solution n = ng+h must satisfy
cos((ng + h)B) = vpyn2 ot /2koth) — 4 /9m hence k(ng + h) — A\py, — h = m,
or h = (m+ Ay, —kno)/(k—1). That is, the only integer n candidate exceeding ng
is ng + (m + A, — kno)/(k — 1). Hence, there at most ng + 2 integers n candidate
to satisfy cos(nf) = u/v and those candidates are computable. ad

We get:



Theorem 4 Problem Mortg(2,2) is decidable.

Proof: Let F' = {A;, A>} be an instance of the problem. Suppose without loss
of generality that the rank of A, is greater than the rank of A;. If A; is of rank 2,
then the two matrices are non-singular and F' is non mortal by lemma 2. If A; is
of rank 0 then F' is mortal. If the two matrices have rank 1, by lemma 2, it suffices
to test whether one of the products A%, A; Ay, Az Ay, A2 is null.

There remains only the case where A, is non singular and A; is of rank 1. By
lemma 2, F' is mortal if and only if there exists an integer n € N with

We want to check this relation algebraically using the Jordan forms of the ma-
trices A; and As. Write

Ay =P P, Ay =Py thhb

0
J1:<ISO>7
A0 Al
s(12) w (1)

with P, and P, non-singular. Eigen value & is rational since « is equal to the
trace of rational matrix A;. Eigen values A and p are the (possibly complex) roots
of the characteristic polynomial of rational matrix A,.

Equation 3 becomes

and

P/t PP PP I P =0
or, since P; is non-singular,

JPIPP™ T =0

rene=(70)

Now, after substituting P, P~! and J, when .J; is of the first form, the problem
is equivalent to testing whether there exists an integer n € N with psA™ —qru™ = 0,
and when Js is of the second form, the problem is equivalent to testing whether
there exists an integer n € N with (ps — qr)\"™ — rpn = 0.

Suppose A, of the second form. Eigen value A is rational because A is equal to
half the trace of rational matrix As. It follows that the coefficients x, p, q,r, s are
easily computable rational numbers. Testing whether there exists an integer n with
(ps — qr)\™ — rpn = 0 is easy: compute numerically an approximation up to 1/2
of real roots of equation (ps — qr)\* — rpz = 0. It gives at most two integers n
candidate to be solution and check if one of the candidates is solution.

Suppose As of the first form. We want to test the existence of an integer n
with psA™ — qru™ = 0. Observe that A # 0, u # 0 since A, is of rank 2. A, u and
the coefficients p,q,r, s can be complex numbers but are computable elements of
Q(A): that is, they are of the form a + Ab for some computable rational numbers
a,b € Q. By computing in Q(\), the cases ps = 0 or gr = 0 are trivial. Suppose
now ps # 0 and ¢gr # 0. The problem is equivalent to testing whether there
exists an integer n with (A/u)™ = (pq)/(rs). We must have |A/u|™ = |pq|/|rs|.
When |A/p| # 1, n must be equal to |pg|/(|rs|log|\/u|) and it suffices to compute

where



numerically an approximation up to 1/2 of this real quantity to get at most two
integers n candidate to be solutions. When |[\/u| =1 and A et p are real numbers,
we have necessarily A = g or A = —u. In both cases, by computing in Q(A) the
problem is trivial. When |[A/u| =1 and |pg|/|rs| # 1 the problem has no solution.

There remains only the case where A and p are two conjugated complex roots
and (pq)/(rs) is a complex number of modulus 1. In that case \ is a complex number
with rational real part because A is a root of the characteristic polynomial of matrix
A, with rational coefficients. Therefore, complex numbers A/ and (pg)/(rs) of type
a + Ab with computable a,b € Q must also have rational computable real parts. If
0 denotes an argument of complex number A/u of modulus 1, an integer n solution
must satisfy cos(nf) = r' where ' is the real part of (pq)/(rs). When the real part
p' of A/ is equal to 1/2, n — (A/p)" is a periodic sequence of period 6: it suffices
to check (A\/u)™ = (pq)/(rs) for n =0,1,...,5. Case p' = 0 can be dealt similarly.
Now, when p’ ¢ {0,1/2}, by lemma 6 there are at most a finite number of integers
n satisfying cos(nf) = r' and that integers are computable. It suffices to check if
equation (A/u)"™ = (pq)/(rs) holds for those integers. ad

We have just proved that Mortg(2,2) is Turing-decidable. We do not know
whether Mortg(2,3) is decidable. So our knowledge of the decidability of Mortg(2)
stops at the previous theorem. However our proof of the BSS-undecidability of the
problem shows that the problem is more a number-theoretical problem than an
simple computability problem.

In next section, we will show that Mortg(2) can be related to other open prob-
lems of the literature.

4 Relations to other problems of the literature

In this section we prove that Mortg(2) is is equivalent to the equality of entry
problem studied by [14], to the zero in the corner problem studied by [16, 5] and
can be linked to the problems studied by [11].

When C' is a matrix, C; ; will denote the jt* coefficient of the i" line of C.

4.1 Equality of entries

Here is a variation of theorem 2 of [14] (unlike theorem 2 of [14], we do not suppose
F' to be made only of non-singular matrices):

Lemma 7 Let F be a finite set of 2 x 2 matrices with rational entries. There
exists an integer k and some integers i1, ...,1; such that A;, ... A;, is a matriz C
satisfying C21 = Ca o if and only if the finite set F' made of the matrices of F' and
of the matrix

is mortal.

Proof: First observe that HCH = 0 holds if and only if C5; = Cs». That
proves the direct sense.

Conversely, by lemma 2, if F' is mortal there exist 41, ...,4; with 4;, ... 4;, =0,
A;; # H for 1 < j <k, and rank(A;;) < 2 for j € {1,k}. If A;) = A;, = H the
remark of the previous paragraph implies that C = A;, ... A;, , satisfies Cy1 =
Cho. If A;; # H and A;, # H then A;, ... A;, is a product of matrices of F' equal to
the null-matrix and the null-matrix O satisfies Oz 1 = O3 2. Now, for the remaining
cases, observe that equation HC = 0 (resp. CH = 0) implies C5 1 = Cs 5. m|

We can now extend a result of [14]:



Theorem 5 (Equality of entries) Problem Mortg(2) is equivalent to the follow-
ing decision problem:

o Instance: a finite set F = {Ay,..., Apn} of 2X2 matrices with rational entries.

e Question: does there exist an integer k and some integers iy, ...,i such that
A, . Ay is a matriz C satisfying Ca g = Cap ?

and to the following decision problem:

e Instance: a finite set F = {A;,...,An} of non-singular 2 x 2 matrices with
rational entries.

e Question: does there exist an integer k and some integers iy, ...,i Such that
Ai, .. Ay, is a matriz C satisfying Co1 = Ca 2 ?

Proof: Clearly the second problem reduces to the first. The first problem
reduces to the mortality problem for 2 x 2 matrices by lemma 7 and a reduction

from the mortality problem for 2 x 2 matrices to the second problem is given in
[14]. O

4.2 Zero in the left upper corner

It is known that the problem of deciding whether the semi-group generated by a
finite set of 3 x 3 non-singular matrices contains an element with a zero in the right
upper corner is undecidable [5, 16]. However, the decidability of the problem for
2 x 2 matrices is left open [5].

Nevertheless, this problem can be related to the mortality problem by:

Theorem 6 (Zero in left upper corner) Problem Mortg(2) is equivalent to the
following decision problem:

e Instance: a finite set F = {A;,..., A} of 2 X2 matrices with rational entries.

e Question: does there exist an integer k and some integers iy, ...,i Such that
Ai, . A, is a matriz C satisfying C1p =07

and to the following decision problem:

e Instance: a finite set F' = {A;,..., A} of non-singular 2 x 2 matrices with
rational entries.

e Question: does there exist an integer k and some integers iy, ...,1 such that
Ay, . Ay is a matriz C satisfying C1qp =072

r-(21)

Observing that, for all matrix C, matrix ¢’ = PCP~! satisfies C] ; = 0 if and
only if Cy1 = (52, the above problems are equivalent to the equivalent problems
of theorem 5 by conjugations by matrix P. O

Proof: Denote



4.3 Restriction to lower triangular matrices

It was proposed in [14] to restrict the previous problems to lower triangular matrices.
Indeed [19] also proves that the equality of entry problem is undecidable for lower
triangular 3 x 3 matrices with rational entries.

Problem Mortg(2) restricted to lower triangular matrices is trivially decidable
[14]: a finite set F' of lower triangular matrices is mortal if and only if there exist
two matrices A, B in F' with 411 = 0 and Bz = 0. The zero in the left upper
corner problem when restricted to lower triangular matrices becomes also trivial.

However, the answer to the following question is not known:

Open problem 2 (Lower triangular matrices) Is the following decision prob-
lem decidable?

o Instance: a finite set F = {Ay,..., An} of non-singular lower-triangular 2x 2
matrices with rational entries.

e Question: does there exist an integer k and some integers iy, ...,i such that
A, . Ay is a matriz C satisfying Ca g = Cap ?

We prove that this problem can be related to an non-deterministic version of
the open problem mentioned in [11]:

Theorem 7 Open problem 2 is equivalent to the decidability of the following deci-
sion problem:

o Instance: a finite set F' = {f1,..., fm} of non-constant rational affine func-
tions of dimension 1 (i.e. a set of functions of type f; : © — a;x+b;, a;,b; € Q,

o Question: does there exists a composition f;, o fi, o...0 f; of these functions
that maps point 0 to point 17

Proof: Call this problem the composition problem. Suppose that a finite set
F ={A,..., Ay} of non-singular lower-triangular matrices is given. Without loss
of generality, we can suppose A » = 1 for each matrix A € F. Indeed, each matrix
A € F must satisfy A2 # 0 to be non-singular, and replacing each matrix A by
matrix A/Az > in F' does not change the mortality of set F.

Problem 2 reduces to the instance F' = {fi,..., fm } of the composition problem
where f; : x — (Ai)112 + (4;)2,1: any product C' = A;, ... A4;, of lower-triangular
matrices with (A;, )22 = 1 satisfies C» = 1 and Co1 = fi; o fi, - .- fi, (0).

Conversely the composition problem reduces to problem 2: when a finite set
F ={fi1,..., fm} of non-constant affine rational functions is given, f; : x — a;z+b;,
it suffices to consider F' = {4,,...,A,,} with

a; 0
w=(0 )

and to observe that any product C = A;, ... A;, of matrices of this form satisfies
0272 =1 and 0271 = fil o fi2 A f“c (0) g

5 NP-completeness results

5.1 K-length mortality

Aset F = {A,,..., A} of dxd matrices is said to be K -length mortal if there exist
an integer k < K and some integers iy, is,...,4 € {1,...,m} with 4; A4;, --- A
0.

ik
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Theorem 8 Given a set F' of m 3 x 3 matrices with rational entries and an integer
K <1+ m/2 the decision problem “Is F K -length-mortal?’ is NP-hard.

Proof: Via the reduction of [19] (or the proof of proposition 1) and the NP-
completeness of Bounded PCP [6]. o

Observe that [2] proves that this result remains true whenever the matrices are
assumed to have entries in {0,1}.

5.2 Mortality without repetition

When repetitions of matrices are not allowed, the problem becomes clearly also
decidable: a set F' = {A1,..., A} of d x d matrices is said to be mortal without
repetition if there exist integers & > 1 and some integers iy, i2,...,ix € {1,...,m}
such that 4; A;, --- A;, = 0 and i;, # i, for all j; # jo.

Theorem 9 Given a finite set F' of m 2x2 matrices, and an integer K, the decision
problem “Is F' K -length-mortal without repetition?” is NP-hard in the strong sense.

The proof uses a reduction from subset product [6]. We restate this problem here:

Proposition 2 (Subset Product (Yao)) Given a finite set A, a size s(a) € N*
for each a € A, and a positive integer B, the decision problem “Is there a subset
A" C A such that the product of the sizes of the elements in A’ is exactly B?” is
NP-complete in the strong sense.

Proof:[of Theorem 9] Given an instance of subset product with |A| = n, define

n + 3 matrices as follows:
0 1 0 1
o -1’ 0o -1 /-

1 0 1 0
<0 S(a)>,f0ra€A, (B 1),

Note that we have repeated the last matrix, since we are required to use it twice.
Denote the last matrix by H. Check that for all 2 x 2 matrix A, HAH = 0 if
and only if A, = Ay 2. Hence, by lemma 2, this set of matrices is mortal without
repetition with length 4 < k£ < n + 3 steps if and only if subset product has a
solution in 1 < k — 3 < n steps. a

6 Thanks

We would like to thanks Eduardo Sontag for having pointed out the paper [12].
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