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An adaptive strategy for de�ection routing in meshes

Thierry Chich
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Abstract

In this paper� we describe a new adaptive routing algorithm for meshed�topology de�
�ection networks� Our algorithm is based on a local learning method which evolves in
order to produce a local spatial representation of the tra�c� We �rst prove that our
algorithm is a generalization of the Z� routing� Secondly� we prove that we can set
the parameters of the learning algorithm such that our adaptive policy cannot create
livelock situation� Then we show experimentally the e�ciency of our algorithm� First�
we compare the routing policies in a grid network� under an uniform load� Second� we
create local congestion in order to show that the adaptive routing scheme avoid the
overloaded region� Moreover� we propose a more realistic tra�c model� and show that
our algorithm is valid� even in such context� At last� we show that the algorithm is also
e�cient in a torus network� These results show the relevance of this method�

Keywords� De�ection routing� adaptive strategy� all�optical networks

R�esum�e

Nous proposons un algorithme adaptatif pour les r�eseaux maill�es �a d�e�exion� Cet al�
gorithme est fond�e sur une m�ethode d�apprentissage locale qui permet d�obtenir une
repr�esentation spatiale du tra�c et de g�erer ainsi la r�epartition de la charge� Nous
montrons que notre algorithme peut 	etre vu comme une g�en�eralisation du routage Z�

qui est optimal dans les r�eseaux maill�es r�eguliers� Ensuite� nous montrons que notre
algorithme ne peut pas cr�eer d�inter�bloquage dynamique� Puis nous montrons exp�eri�
mentalement l�e�cacit�e de notre algorithme� D�abord� nous comparons notre politique
de routage avec une politique de routage Z� dans une grille� sous une charge uniforme�
Puis nous cr�eons arti�ciellement des congestions locales pour montrer que notre algo�
rithme permet d��eviter les zones surcharg�ees� En�n� nous proposons un mod�ele de tra�c
plus r�ealiste et nous montrons que� et dans la grille et dans le tore� l�algorithme permet
l�am�elioration des performances par un meilleur partage des ressources�

Mots�cl�es� Routage par d�e�exion� routage adaptatif� r�eseaux tout
optiques
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� Introduction

Metropolitan Area Networks �MAN� have been recently introduced �see for instance 
����� The
goal of a MAN is to connect several Local Area Networks� and to integrate several services� FDDI

��� and DQDB 
��� have been �rst considered for this purpose� However� we can observe a growing
interest of a wide public for the use of communication services� This requires networks with very
large bandwidth� that FDDI and DQDB cannot provide� Hence� all�optical networks are gaining
increasing attention in this domain� Glass �ber o�ers immunity from bandwidth�limiting electro�
magnetic e�ects� and are capable of higher connection density� and lower loss� The bene�t of this
large bandwidth forces to use photonic switches to avoid the so
called �electronic bottleneck��

A fundamental method used for all
optical networks is to provide end�to�end lightpath� as in
passive star scheme 
��� However� this solution is not scalable� and cannot be extended to the
Metropolitan Area Networks� Indeed� the size of the central switch should increase proportionally
to the square of the number of nodes� Multi
hop schemes are therefore necessarily considered� In
all
optical multi�hop networks� the current method consists in limiting the conversion in electronic
format to the header� The payload remains in optical format from the source to the destination�
The photonic switch must be able to extract the header� to resolve the routing problem� and to
reinsert the regenerated header as the payload is delayed by crossing some �ber loops �see �gure ��
from 
����

The contention problem in the photonic switches must be processed as simply as possible� and
the mechanism must avoid the use of bu�er� Therefore� the de�ection routing schemes are com�
monly used and are often implemented in experimental all
optical networks 
�� �� ��� De�ection
routing consists in sending contending packets on free outputs� instead of queuing them� A unique
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Switchpackets payload payload

headers headers
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delay
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Figure �� De�ection routing in a �� � crossbar� the routing control processor in denoted by RCP�
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condition on the topology of the network is required for de�ection routing� Every router must have
equal in
degree and out
degree� Of course� the number of additional switching due to a de�ection
must be as small as possible� Thus� the number k of shortest paths beyond one node and the other
ones is an important topological parameter related to the e�ciency of de�ection routing� since the
probability of de�ection decreases in this node as e�O�k�� It is known that� for topology as Shu�e
Net or meshes� the de�ection routing scheme o�ers some advantages� such as a large �exibility in
bandwidth assignment� and the lack of internal congestion 
�� ���� De�ection routing scheme is not
only considered for all�optical networks� Indeed� the drawbacks of the store
and
forward scheme
are ampli�ed when the network operate at very high transmission rate� In 
��� some arguments in
favor of eliminating bu�ers in Gb�s multi�hop packet switching networks are stressed�

The most important part of the studies on de�ection networks assumes a global synchroniza�
tion of the network� With this synchronous approach� the routing decision can be done using more
informations than in the asynchronous case� However� it is di�cult to synchronize packet
arrivals
�see 
���� Moreover� asynchronous networks would be easier and cheaper to build� In 
��� the perfor�
mances of asynchronous de�ection routing are studied � Experiments show that the degradation of
the performances of asynchronous routing networks compared to the performances of synchronous
networks is important in a static context �i�e� every node emits at a �xed rate� randomly towards
all the destinations�� However� the di�culty of synchronizing multiple streams of optical signals in
a node could lead to build asynchronous networks� It is therefore interesting to �nd methods which
can deal with this kind of networks�

In this paper� we present a new routing algorithm that improves the behavior of asynchronous
networks� This algorithm is designed to deal with dynamical tra�c condition �i�e� every node
emits for a �xed time� only towards one destination� in mesh architecture� We will show that
our method gives better performances� even for static tra�c� First� we explain the principle of
the adaptive algorithm� and give some interesting properties of the routing algorithm� Then� we
experimentally prove the e�ciency of this routing algorithm� for grid and torus topologies� with
regular and non�regular tra�c�

� A new routing strategy

A MAN must support many kinds of tra�c to provide service integration� It has been shown that
the tra�c in an Ethernet network is self
similar 
���� On the other hand� the bursty nature of
the tra�c in Wide Area Networks was also proved 
���� Then� the tra�c supported by a MAN
would certainly be bursty too� An important advantage of de�ection routing scheme is that the
network does not su�er of internal congestion� The burstiness just causes more loss in the input
queues� It is much more tricky to deal with dynamical tra�c �ows which create important overload
locally� Usual routing algorithms in meshes can even produce local overload� For example� in a grid
topology� shortest paths routing implies that the nodes in the middle of the grid are more often
crossed by routes than nodes on the border� Such local overloads produce severe degradation of
the quality of service� In particular� it implies that the available bandwidth of the servers depends
on their position in the grid� Therefore� the solution consisting in using regular graphs only as
interconnection topologies is not su�cient� It allows to avoid local overload due to the topology�
but it does not allow to deal e�ciently with the overload due to the dynamical tra�c� Hence� it is
important to derive routing schemes that balance the load in the network�
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��� The standard algorithms

The usual de�ection routing scheme consists in sending packets which cannot be sent on shortest
paths in a another direction� rather than bu�ering them� Many variants have been proposed�
Each variant is based on the use of di�erent kinds of priority �e�g� oldest packet �rst or nearest
destination principle��
Our algorithm do not use some characteristics of the packets� It is based on the idea that shortest
paths are not equivalent� Hence� a value in 
�� �� is associated to every link for each destination�
This value changes according to the tra�c� Given a destination� links are sorted according to this
value� The larger the value associated to a link� the better the quality of service of the link is
supposed to be� The routing algorithm sends packets on the free link that has the larger value
corresponding to their destination�

Formally� we will make use of the following notations �

� Nx is the set of addresses of the neighbors of node x� When there is no ambiguity� we omit
the index�

� px�z 
y� � 
�� �� is the value attributed to the output link joining node z from node x if node
y is the destination� We assume that

P
z�Nx px�z 
y� � � for all y�

� nz 
y� is the number of shortest paths from node z to node y� This number is easily computable
by a variant of the Dijkstra�s algorithm�

In the simplest shortest�path routing scheme� the values px�z 
y� are set to�

px�z 
y� �

��
�

�P
l�Nx

nl�y�
if nz 
y� �� �

� otherwise

However� it is more e�cient to keep packets on routes on which the probability to be de�ected
is minimum� Thus� an idea is to route packets to nodes which are crossed by the largest number of
shortest paths� Values are then computed as follows�

px�z 
y� �
nz 
y�P

l�Nx nl
y�

In mesh topologies� this modi�cation gives better performances than the former algorithm�
In 
��� it is proved that this routing scheme� called �Z� routing�� is optimal in regular meshed
networks� Our experimental studies will always compare our new method with this improvement�

On �gure �� we express the probability that a packet� coming from node ��� ��� and going to
node ���� ��� has to use each node of a ����� grid� The left hand side shows the probabilities
for the simplest shortest path algorithm� The probabilities are depicted as grey levels �i�e� black
is �� and white ��� The right hand side shows the probabilities for the Z� routing algorithm� All
the packets are remaining on row � until the index of the column become larger than �� Then the
packets are routed to ���� ��� on the diagonal�

��� A new e�cient adaptive algorithm

����� Routing protocol

In order to avoid local overload� we will derive a new way of computing the values associated to
each link and each destination� We use the following structure and the following notation� in each
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�a� simple shortest path routing �b� Z� routing

Figure �� Probabilities that a packet from ��� �� to ���� ��� passes in the nodes of a �� �� grid

router� we use a set of �logical links�� Each physical link ��gure ��a�� is related to a logical link
��gure ��b��� These logical links will evolve in order to give a representation of the load� Let �a be a
�xed vector on each node x� For instance� let it be the West�East direction� We denote by ��z�z�Nx
the angles between each physical link and the reference axis �see �gure ��a��� These angles will not
change� Let ��z�z�Nx be the angles between each logical link and the reference axis� All of these
angles are normalized to be in � � �� ��� If a message arrives in node x� with destination y� let
! � ��a�

��
xy � be the angle between the reference axis and the vector router
destination ��gure ��c���
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Figure �� Notations

The values associated to each link than set to�

px�z 
y� �
j!� �z jP

l�Nx j!� �lj
Packets are routed on the physical link for which the corresponding logical link is the closest to

y� the physical link chosen zc is such that zc � argmin�j�z �!j��
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����� Learning algorithm

In order to adapt the algorithm to the modi�cation of the tra�c� angles �z are modi�ed dynamically�
Each time a packet is routed� the angles are modi�ed before considering the next packet� More
precisely� the aim of the learning algorithm is to bring each logical link closer to the last vector
router
destination� When no message is crossing the router� the system is relaxed� that is the
angles between physical links and logical links are decreased� Our algorithm use two parameters�
the learning rate �� and the forgetting rate� �o� The former is used in order to control the magnitude
of the learning� the larger is this parameter� the closer �z will be to !� The forgetting rate has
a similar function� it controls the way �z is bring closer to �z when no packet is currently in
the router� The learning rule is using to adapt the routing decision to a spatial con�guration of
the tra�c� and the forgetting rule� to decrease this in�uence if the speci�c spatial con�guration
disappears� One can formalize the learning algorithm as follows�

Algorithm � Learning��� �o�

if there is a packet in the router

for z � N

��z �
�����z�

��	�����z������z ���z��

else

for z � N
��z � �o��z � �z��

end

Figure � shows a realistic evolution of the logical links in an arbitrary node if a stream of packets
is sent to a destination y� Assume there is an other �but weaker� stream of packets at heading for
node y�� In �gure ��a�� we can see that both streams are routed on the East link� After learning�
we can see that the stream directed to y is still using the East link� But the stream directed to y�

use the South link� Thus� the contention risk is minimized�
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�a� Before learning �b� After learning

Figure �� Learning algorithm

����� Remarks on the adaptive routing

Property � For t � �� let �z�t� be the angle of the logical link corresponding to the neighbor z of
x� Assume that for all z � Nx�z��� � �z� Then if ���� the adaptive routing is equivalent to the
Z� routing algorithm�
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Proof� Assume that a packet is emitted from a node ��� �� to y � �yR� yC�� with yR � yC � The
packet will be routed on ��� �� with respect to the Z� policy� Indeed� the packet is routed to the
node which gives the largest number of shortest path ending in y� We denote nz 
y� the number of
shortest paths from z � �zR� zC� to y� We have that nz 
y� is related to the binomial coe�cient�

nz 
y� �

�
yR � zR " yC � zC

yR � zR

�

nz 
y� becomes maximum as yR�zR becomes closest to yR�zR�yC�zC
� � Thus� if yR � yC � n�����
y�

is larger than n�����
y�� For all �xR� xC� such that yR � xR � yC � xC � the horizontal link will be
chosen �i�e n�xR�xC���
y� � n�xR���xC�
y��� Now� consider the case yR � xR � yC � xC � Then
n�xR�xC���
y� � n�xR���xC�
y�� The packet is routed with a fair coin toss on one of the two links �see
�gure ��b���
In the other hand� if � � �� �z�t� � �z for all t� Then� the routing decision depends on the angle
!�t�� On �gure �� we have shown an example for which �a is set to the West�East direction� We
can see that �E � � and �S � ����� If j!�t���S j � j!�t���E j� then the packet is routed on the
East link� If !�t� is exactly between the two angles� the packet is routed on one of the two links
with a fair coin toss� and on the South link otherwise� As !�t� � arctan� yR�xR

yC�xC �� it is easy to see

that the decision routing is exactly the same that it would be using the Z� routing policy�
�

(1,1)

y -x

y -x

x=(x  ,x  )R C

CC Ry=(y  ,y  )C

R R
Ψ

Figure �� Notations for the proof of the property �

� Livelock situation

In de�ection routing networks� packets may be delayed for an unbounded time� However� if there is
no priority policy� and if packets are routed with shortest paths routing policy� the probability that
a packet arrives to its destination grows to � as the time spent in the network grows� Our algorithm
cannot avoid such probabilistic livelocks� In this section� we will prove that our algorithm does not
produce other kinds of livelock�

A packet can be routed by our algorithm on a link which does not belong to a shortest path
from the current node to the destination� even if there are free shortest path links� A set of logical
links for which this event can occur� is called a �misrouting� set� A livelock involves at least one
misrouting set� Indeed� if there is no misrouting set� packets are routed on shortest paths�
We can arbitrarily set the value of the angles in order to create one misrouting set of logical links
�for example� if the logical links are identical to the physical links with a rotation of �� all packets
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are routed on the opposite physical link than they should go�� However� the angles are not �xed
randomly� Let us study the routing cases leading to a misrouting set of logical links� and how
to avoid these situations� First� we will show that our learning rule preserves the spatial relation
between logical links� and physical links �i�e� we can set � and �o such that the angular distance
between a logical link and its physical link is bounded��

De	nition � A packet stream �Mt�t�� is denoting a sequence of packets crossing a ��input node�
since time � to the present time� denoted t� Each packet has the average length �i�e� ��� ns	�
The packets are sent to possibly di
erent destinations� A sequence �!t�t�� can be associated to the
packet stream�

Property � Let x be an arbitrary ��input node� Let �Mt�t�� be a stream of packets traversing node
x� For t � �� let �z�t� be the angle of the logical link corresponding to the neighbor z of x� Assume
that for all z � Nx�z��� � �z� Then� for any 	 � 
�� ��� there exists � and �o such that�

�t � �� �z � Nx� j�z�t�� �z j � 	�

Proof� We will create the �worst� packet stream� The destination �more precisely� the corre�
sponding angle !�t�� of each packet will be calculated such that #��!�t�� ��t�� �� �� be maximum�
We must precise the normalization condition in order to know the derivative domain of #�� The
normalization implies that j!� �j � � and j� " ��!� ��� �j � �� Under these conditions� #� is
continuous and derivable� The roots of


#�


!
�!�t�� ��t�� �� �� � �

are

!���� �� �� � � "

p
�� " � �� � ���p

� �
and !���� �� �� � � �

p
�� " � �� � ���p

� �

If � is small� i�e� smaller than �
�
p
�
� which is a realistic assumption� then j!� � �j and j!� � �j are

both larger than �� The normalization conditions we set previously� imply that this value cannot
be reached� Thus� the function #� is a growing function for the variable ! in its domain� Then�
for each realistic value of �� #� is maximum for ! � � " �� and by symmetry� is minimum for
! � �� " �� The worst packet stream is therefore composed of packets all pointed to the opposite
direction of the logical link� Assume that the link we study is the link East� Assume also that �a
is oriented as West�East direction� such as �E��� � �� Each packet of the stream �Mt�t�� is such
that !�t� � �E�t � ��� ��
As �Mt�t�� is de�ned as the �worst� packet stream� this sequence of packets implies that the
maximum value of j�E�t���E j is reached� This maximal value cannot be greatest than �� Indeed�
if ��t� "#��t� � �� then the normalization is applied and ��t" �� is set back to ��t� "#��t�� ���
Then� if this maximal value is �� the logical link evolving from this stream packet will turn in�nitely�
If this value is less than �� then the �E�t� has an asymptotic value �max

E such that �E�t�� �max
E for

t�	� We will show that we can set � and �o such that �max
E is as little as we want� An analytical

proof is not easy to do� However� we can compute the values of �max
E for �xed values of � and �o�

Figure � shows the values of �max
E as a function of �o � 
�� ������ and � � 
�� ������ Areas which are

not depicted� represent the values of �o and � for which there is no stabilization i�e� the logical link
turn in�nitely�

�
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Figure �� Asymptotic values of �E as a function of �o and �

Corollary � Let x an arbitrary ��input node� Let �Mt�t�� be a stream of packets crossing node x�
For t � �� let �z�t� be the angle of the logical link corresponding to the neighbor z of x� Assume for
all z � N � �z��� � �z� Then there exists � and �o such that ��z�t��z�N is not a misrouting set�

Proof� Without loss of generality� we consider the North and East links of an arbitrary node x� �a
is in the West�East direction ��E � �� �N � ����� Assume that y is a destination in the South�East
region of x� Let ! the angle relative to node y� If the logical links are such that a packet headed
for node y is sent on the North link� then ��z�t��z�N is a misrouting set �situation illustrated on
�gure ��� The packet is misrouted if

j! � �N j � j!� �E j ���

Note that ! is a real in �� ���� ��� because y is in the South�East region� Assume that ! � �E is
negative� Then equation � become

! � �N � !� �E ���


 �N � �E ���

Note that if� in the property �� � and �o are set such that 	 � ���� then

�z � N � j�z�t�� �z j � ��� ���

and then� �N � ���� and j�Ej � ���� Then equation � is impossible� Assume now that ! � �E is
positive� Equation � become

�! " �N � !� �E ���


 �N � �!� �E ���

�! � �E is maximal for the larger value of !� that is �� Then equation � implies that �N � ��E �
that is impossible if equation � is satis�ed� Therefore� if equation � is satis�ed� the packet cannot
be misrouted� Since this argument can be applied for all the region� the corollary is proved�

�

� Characteristics of the simulator

In order to study the e�ciency of this adaptive algorithm� we have written a network simulator�
In this section� we describe its characteristics� In the following sections� the results are presented�
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Figure �� A misrouting set

Topological characteristics The results we present are generated for a ��x�� grid� The links
are bidirectional� The distance between two nodes is � km� The time slot �i�e the maximum size
of a packet� is � �s� As the light speed in a �ber is ���C� a link can contain �� full packets�
Furthermore� all input links are preceded by a one
slot length �ber in order to be able to introduce
without loss� Hence� each link has a capacity of �� full packets�

Router characteristics Each router needs to store arriving packets from the users of the network
�application� LAN� etc��� The size of this input bu�er is �xed to ��� packets� The insertion strategy
is an asynchronous version of the classic insertion in de�ection routing networks 
��� A packet is
inserted in the network when there is a free place for it� Thus� losses are due to the over�ow of the
queues�

Packet characteristics In an asynchronous routing scheme� the packets could have di�erent
sizes� This ability is a great advantage� because the size of the packet is adapted to the need of the
application� We have considered that the length of the packets L follows a bimodal law polarized
both at ��� the length of the acknowledgment packet� and ��� the length of the slot� We have �xed
the minimum size of a packet at ���ns �the size of a header�� We set P �L � ���ns� � ���� and
P �L � ��s� � ���� The other message lengths are chosen as multiple of ����s� uniformly in the
range 
���� ����� The average of such a law is ���ns �which implies that each link has a capacity
close to �� packets��

We have also de�ne three packet types �

� background � the destination of each packet is randomly chosen in the set of the other nodes

� spy � this kind of packets is used to have some informations� such as the number of de�ection�
the number of waiting messages or the waiting time in the input queue� The destination of
these packets is �xed� The tra�c generated by these spy packets must be low� in order to not
disturb the global behavior� For instance� in our measurements� the spy tra�c is generated
by the node ��� �� to the node ���� ��� �see �gure ���� The emission frequency is set to �����

� hot
spot � as in the former case� the tra�c is directed to one destination� But the purpose is
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to generate heavy tra�c� analog to the tra�c generated by a bandwidth�requiring application�
as FTP� The emission frequency is typically set to ����

All router can emit the three kind of packets� independently� at the same time�

� Regular tra�c

��� Throughput

For all the following experiments� we have set the parameters of the adaptive algorithms such as
� � ����� and �o � ������� Note also that each experiment has been performed for ��� slots �e�g�
for an o�ered load of ���� each node has emitted ������� packets in each router��

Figure � presents the throughput and the loss in the same network �described in section ���
with the two di�erent routing modes� We measure the throughput �number of arrived packets per
slot and per node� i�e� the curve with the stars� and the loss �number of lost packets per slot and
per node� i�e� the curve with the circles� as the o�ered load varies �number of emitted packets per
slot and per node��
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Figure �� Throughput and loss under an uniform o�ered load

Even in this standard context� the adaptive routing scheme is better than the Z� routing scheme�
This is due to the topology� A grid is not a regular meshed�topology� There is an overloading in
the center of the grid� The adaptive routing scheme increases the use of the border of the network�
allowing to avoid the de�ection produced by the overload in the center �as we will see later��

The �gure � shows the evolution of the internal load in both networks� The average number
of packets per slot and per link is presented� The saturated state is apparent� For an o�ered load
below ���� �saturation threshold�� the internal load is lower in the adaptive routing network than
in the Z� routing network� Less packets are de�ected� For more intensive o�ered load� the internal
load could be more important in the adaptive routing network than in the Z� routing network� This
is due to the improvement of the throughput� which allows to insert more packets in the network�

��� Spy tra�c

The spy tra�c is a Poissonian �ow emitted from the node ��� �� to the node ���� ���� at frequency
����� Figure �� shows the average number of de�ection for a spy packet as the o�ered load grows�
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Figure �� Number of packets per slot and per link

Vertical bars represent the standard deviation� which is a very important parameter� Indeed� one of
the most important drawback of the de�ection routing scheme is the disorder in the packet arrivals�
Larger is the standard deviation� larger must be the output bu�er to sort the arrivals�
It is clear that the spy tra�c is less de�ected and less disordered in the adaptive routing network
than in the Z� routing network�
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Figure ��� Average number of de�ections during the time recquired to reach ���� ��� from ��� �� as
function of the o�ered load

Figures �� and �� characterize the behavior of the queue� Figure �� shows the average number
of packets waiting in the spy queue as a function of the o�ered load� As the saturation arises
�o�ered load � ����� the number of packets in the queue becomes close to the maximum �the size of
the queue�� This behavior is typical of the queuing systems 
���� It occurs when the rate �classically
noted 
� becomes larger than ��

In both cases �adaptive or Z� routing�� curves are very similar� It is interesting to observe the
behaviors for the waiting time in the spy queue ��gure ���� This �gure shows the average waiting
time for the packets in the queue ������ The unit time is ��� ns� For example� for an o�ered load
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Figure ��� Average number of packets waiting in the ��� �� queue at the insertion of a spy packet

of ���� the average waiting time in this queue for a Z� routing network is ���� ��� ns� i�e� ����s� In
the adaptive routing network� for the same o�ered load� the waiting time in the queue is close to
����s� Whereas the number of packets waiting in the queue are nearly the same in both cases� the
waiting time in the queue for each packet is quite di�erent� This phenomenon prove a di�erence of
internal behavior� Every packet is waiting for a longer time in the queue of the Z� routing network
than in the adaptive one�
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Figure ��� Average waiting time � ���ns� for the spy packets in the ��� �� queue

��� Local load

In this section� our purpose is to illustrate the di�erence of the load repartition for one routing
scheme to another� Figures �� and �� represent the values of the internal load in each node of
the network� Since the network is a grid� the xy�axis represents the topology� and the z�axis is
the average number of packets crossing the node for ���� slots� As the number of links by node is
limited to �� and the average length of packets is ����� slot� the maximum local load is near �����
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However� we never observe local load beyond ���� packets �because of the inter�packet space��
Figure �� shows respectively the local load in the Z� routing context� the local load in the

adaptive routing context� and the di�erence between the two previous measurements� For an
o�ered load of ���� the internal load is lower for the adaptive routing� The adaptive routing uses
more intensively the border links�
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Figure ��� Load on each node under an o�ered load of ���

In �gure ��� the o�ered load is ����� We have seen that the internal load is slightly larger in
the case of adaptive routing than in Z� routing� However� performances decreasing with the load
such as the de�ection rate is still better in the adaptive routing network than in the Z� routing
network� Indeed� even with this additional load� the adaptive routing spread e�ciently the load in
the network�
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Figure ��� Load on each node under an o�ered load of ����

Figure �� shows the spatial distribution of the losses arising for an o�ered load of ����� The
surface of the loss is more spreads for the adaptive routing network than for the Z� routing network
�although the global loss is larger in this latter case��
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Figure ��� Loss on each node under an o�ered load of ����

� Irregular tra�c

��� Central hot�spots

In this section we study what occurs when an uniform load of the grid is disturbed by an important
local overload� We have chosen to generate an heavy overloading in the center of the grid as shown
on �gure ��� Node ��� �� emits a ��� rated poissonian tra�c to ��� ��� Node ��� �� emits at the same
rate to ��� ��� As the overload generated by these two tra�cs is in the center of the grid� the spy
tra�c emitted from ��� �� to ���� ��� will be analyzed�
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Figure ��� Hot
spot and spy tra�cs

Figure �� shows the distribution of the spy packets in the network under a uniform load ����
with the two hot
spots� The comparison of the two pictures shows what are the e�ects of the
adaptive routing� The packets avoid the region where the destinations of the two hot�spots are
situated� The packet stream goes on the right side� As the hot�spots generated seem symmetrical�
this behavior seems strange� However� insertion and reception are not symmetrical processes in
de�ection networks� If a node cannot emit� the queue could become overloaded� But there is
overloaded region such that the packets headed for a node in this region cannot arrive� the packets
try to join their destinations� and contribute to overload the region� Thus� hot�spots can absolutely
not be considered symmetrical� and it is more e�cient to avoid the destination region than the
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Figure ��� Number of spy packets crossing the nodes �under an o�ered load of ����

��� A chaotic tra�c

A regular tra�c is not su�cient to conclude about the e�ciency of the adaptive algorithm in
realistic context� Indeed� realistic situations are characterized by the non�uniformity of the tra�c�
spatially and temporally� Is our algorithm able to deal with heavy variations $ However� it is
di�cult to exhibit the �typical realistic tra�c�� Hence� we have build a model of realistic tra�c�
and experiment our algorithm on this model�

We create a non�uniform tra�c such that we can control the average of the o�ered load� and
such that the average length of the path source
destination is the average length of the path in the
graph� Then� we create an arbitrary couple source
destination� with several characteristics� chosen
such that we can control the o�ered load F in sake of uniformity� The parameters are�

� Nn is the number of nodes in the graph�

� T is the average time of emission to a direction

� f is the average frequency of the emission from the source to the destination�

The random variables T et f follow respectively the distributions U�� �T � and U�� � f� �where
U denotes the uniform law�� The average number of stations emitting at each time is given by Ne �
FNn

fT
� The random variable Ne is following U�� �Ne�� It is clear that these choices are somewhat

arbitrary� However� they determine a totally non�uniform tra�c� composed of long communications
between couple of points� what is more realistic than a tra�c composed of sequences of independent
packets�

Figure �� shows the performance of both routing policies in this context� Comparing this �gure
to �gure �� we can see that the non�uniform tra�c� for the same value of the o�ered load� is less
inserted than the uniform tra�c� The input queues are frequently overloaded� Even in this context�
the adaptive routing is more e�cient than the Z� routing� More packets can be inserted in the
network� Hence� the throughput is higher�

In order to prove that the di�erence between Z� and adaptive routing policies are not only due
to the topology �we have shown that the adaptive policy is better on a grid�� we have tested this
algorithm on a torus �� � ��� The gain is less visible than in the grid� Then� we have changing
the scale in order to show the di�erences ��gure ��� � In a torus� the Z� routing policy is optimal�

��



0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
globvgp

Offered load
# 

m
sg

/s
lo

t/n
od

e 
0 0.1 0.2 0.3 0.4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
globvphotgrav

Offered load

# 
m

sg
/s

lo
t/n

od
e 

Z� routing adaptive routing

Figure ��� Throughput and loss under a non
uniform tra�c

because the torus is a regular meshed�topology� However� under non�uniform tra�c� the adaptive
routing give again better performances �e�g�� for the ��� rate� the adaptive routing network has
inserted ���������� packets� for ���������� packets for the Z� routing network� the gain is slightly
higher than �%�� This proves that the adaptive routing policy is e�cient to deal with the spatial
variations of the tra�c�
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Figure ��� Throughput and loss under a non
uniform tra�c in a torus �����

� Conclusion

In this work� we have expose a new adaptive routing strategy for de�ection meshed networks� In 
���
Badr and Poder explain that the shortest paths are not all equivalent� Thus� they introduce the
Z� routing and prove its optimality in regular meshed�topology� For non�regular meshed�topology
or non�uniform load of the network� however� the optimality is no longer true� We have generalized
this idea in order to consider that the better path is neither the least loaded� nor the more o�ering
choice path� but the path which o�ers a compromise between these features�
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Our algorithm is based on a simple spatial representation of the tra�c in the network� The routing
decision is a function of the spatial distribution of the tra�c� We have proved that this routing
can be understood as a generalization of the Z� routing� We have also proved that the parameters
of the learning algorithm can be set in order to control the in�uence of the tra�c on the routing
decision� Hence� we have proved that there exist values for the learning parameters such that this
routing scheme cannot involve livelocks�
We have implemented the adaptive routing algorithm to show the e�ciency of this scheme� Dif�
ferent experiments have been performed� Adaptive routing� dealing with uniform or non�uniform
tra�c� o�ers better performances than Z� routing�
The adaptive algorithm has been developed on meshed�topologies� However� the principle is inde�
pendent of the topology� We intend to extend this idea to a larger class of graphs�
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