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Abstract

This paper presents a parallel out-of-core algorithm to invert huge ma-
trices, that is when size of matrices is larger than the available physical
memory by one or more orders of magnitude. Preliminary performance
results are shown for a commodity cluster. An accurate prediction perfor-
mance model of the algorithm is given. Thanks to the prediction model,
optimizations which avoid the overhead of the out-of-core algorithm are
derived. Performances of the optimized algorithm using a O(/N) memory
size are similar to the performances of the best known parallel in-core
algorithm using a O(N?) memory size (where N is the matrix order).
There is no memory restriction for inversion of huge matrices!

Keywords: Data-parallelism, out-of-core, matrix factorization

Résumé

Ce papier présente un algorithme out-of-core pour l'inversion de ma-
trices de taille supérieure a la capacité mémoire physique disponible.
Une modélisation de ’algorithme est proposée dans ce rapport. Cette
modélisation est ensuite validée par des expérimentations menées sur
une architecture de type grappe. Outre, le fait que ce modéle nous per-
met de prédire les temps d’exécution, nous pouvons également extraire
les surcotits out-of-core et proposers des optimisations pour en éviter les
effets. L’algorithme ainsi optimisé utilise une taille mémoire en O(N)
pour des performances similaires au cas in-core qui utilise une taille mé-
moire en O(N?2) (oit N est 'ordre de la matrice). Il n’y a plus de limite
mémoire pour l'inversion matricielle !

Mots-clés: Parallélisme de donnée, out-of-core, factorization de matrices
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1 Introduction

Many of important computational applications involve solving problems with very large data sets
[9]. For example astronomical simulation [10], crash test simulation [5], global climate modeling,
and many other scientific and engineering problems can involve data sets that are too large to fit
in main memory. Using parallelism can reduce the computation time and increase the available
memory size, but for challenging applications the memory is always insufficient in size: for instance
in a mesh decomposition of a mechanical problem, a scientist would like to increase accuracy by an
increase of the mesh size. Those applications are referred as “parallel out-of-core” applications.

Matrix inversion is used by many applications as a direct method to solve linear systems. Thus,
the importance of optimizing this routine has not to be proved because of the increasing demand of
applications dealing with large matrices. To increase the available memory size, a trivial solution is
to use the virtual memory mechanism present in modern operating system. Unfortunately, in [2] we
shown this solution is inefficient if standard paging policy is employed. To get the best performances,
the algorithm must be generally restructured with explicit I/O calls.

This paper presents a new algorithm for parallel out-of-core matrix inversion. This algorithm is
derived of our works on the parallel out-of-core matrix factorization [3], where we revisited previous
parallel out-of-core factorization algorithms [1, 11, 8]. We implemented our algorithm with the
ScaLAPACK library. Preliminary performance results are shown for a commodity cluster. An
accurate prediction performance model of the algorithm is given. Thanks to the prediction model,
optimizations which avoid the overhead of the out-of-core algorithm are derived.

In Section 2 we describe the mathematical basis of the matrix inversion from LU factorization,
and its parallelization. In Section 3, we present the parallel out-of-core algorithm. In Section 4
we derive a performance prediction model of the algorithm for commodity cluster. We show the
accuracy of this model by experimentation. In Section 5 we analyze the overhead of the algorithm
and show how to avoid it.

*This work is supported by a grant of the “Pole de Modélisation de la Région Picardie”.
"This work has been done while the author was at LaRIA, Amiens, France.



2 Matrix Inversion from LU factorization

The computation of the inverse of a matrix A = (a;;)1<s,j<n can be derived from its LU factorization.
The LU factorization of a matrix A = (ai;)i<i j<n is the decomposition of A as a product of two
matrices L = (I;;)1<i,j<n and U = (ujj)1<ij<n, such that A = LU where L is lower triangular (i.e.
lij=0for 1 <j<i<N)andU is upper triangular (i.e. u;; =0for1 <i<j < N).

From this decomposition, the inverse matrix A~! can be obtained by two triangular solve (or
backward substitution). Let I be the identity matrix : AA™! = I implies LUA™" = I. Let
Y =UA"!, Y is determined by backward substitution such that LY = I. The inverse matrix A~!
is determined by a second backward substitution UA™! =Y.

Generally, for numerical stability, the LU decomposition is computed using partial pivoting. The
pivoting information is represented by a permutation matrix P, such that PA = LU. So A™! is
derived from the permutation of the identity matrix PI.

First, we present the LU factorization and the backward substitution by block, then their par-
allelization in ScaLAPACK.

2.1 Blocked LU factorization

A well known method for parallelization of the LU factorization is based on the blocked right-looking
algorithm. This algorithm is based on a block decomposition of matrices A, L and U:

( Ao Aot ) _ ( Loo 0 ) < Uoo Uot )
Ay An Ly L1 0 Un
This block decomposition gives the following equations:

AOO = LU()UU() (1) Al[] = LIOUUO (3)
Ag1 = LooUy (2) Ay = LioUp + L11Uny (4)

These equations lead to the following recursive algorithm:

1. Compute the factorization Agy = LooUpp in equation (1) (may be by another method).

2. Compute Lg; (resp. Ujp) from equation (2) (resp. (3)). This computation can be done by
triangular solve (Lgo and Uy are triangular).

3. Compute Ly; and Uy from equation (4):

(a) Compute the new matrix A’ = Ay; — L1oUp; .-
(b) Recursively factorize A’ = L11Uq;.

This algorithm is called right-looking because once new matrix A’ is computed, the left part (Lo
and Lg;) of the matrix is not used in the recursive computation. It is also true for the upper part
(Upp and Uyg). Moreover, it is easy to show that this computation can be done data in place: only
one array is necessary to hold initial matrix A and resulting matrices L and U.

For numerical stability, partial pivoting (generally row pivoting) is introduced in the computa-
tion. Then, the result of the factorization is matrices L and U plus the permutation matrix P such
that PA = LU.

In right looking algorithm with partial pivoting, the factorization of Ay and the computation of
Lg; are merged in the first step. For the sake of presentation, we present an algorithm with partial
pivoting (data in place) where row interchanges are applied in two stages.
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Figure 1: A recursive call to the right-looking algorithm. Horizontal lines represent pivoting. Dashed
lines represent part of rows which are not yet pivoted.
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Compute factorization P( AOO ) = < LOO ) Upp where P is permutation matrix which
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represents partial pivoting: the left part of matrix A (i.e. ( AOO )) is factorized.
10

Apply pivot P to the right part of matrix A (i.e. < jﬂl >)
11

. Compute Up; from equation (2).

Compute new matrix A’ = A1 — L1oUp1.

Compute Liy, Upp and P’ by a recursive call of factorization P'A" = Ly1Uyy (P’ is the
permutation matrix.)

Apply pivot P’ to the lower left part of matrix A (i.e. the Lig computed in the first step).
Finally, return the composition of P and P’.

Figure 1 shows the different steps for the second recursive call of the right-looking factorization:

2.2

Blocked triangular substitution

This approach is also based on block decomposition of matrices. Consider

<L00 0 )(Xoo X01> _ (Ioo Im)
Ly L1 X Xu Loy In

This block decomposition gives the following equations:

LooXoo = Ioo (5) L1oXoo + L11 X190 = I (7)
LooXo1 = In (6) LioXo1 + L Xt = In (8)

This equations lead to the following recursive algorithm:

1.

Solve the triangular resolution LgyXoo = Ipo (equation (5)) and solve Lo Xo1 = Ip1 (equation

(6)).

2. Determine X from equation (7) and (8):

° Compute matrices IiO = Ilg - LmX[)(), and Iil = IH — L10X01

3. Solve recursively Ly X9 = I}, and L1 X1 = I},



2.3 Parallelization in ScaLAPACK

In ScaLAPACK the parallel LU factorization corresponds to the pdgetrf function. This paral-
lelization is based on a data-parallel approach: the matrix is distributed on processors and the
computation is distributed according to the owner compute rule. The matrix is decomposed in k x k
blocks.

As noticed above, at each recursive application of the right looking algorithm, the left and upper
part of the matrix is factorized (modulo a permutation in the lower left part of the matrix). So, for
load balancing, a cyclic distribution of the data is used.

As shown in figure 2, the matrix is distributed block cyclic on a
(virtual) grid of p rows and ¢ columns of processors. The block decom- k-
position of the algorithm (shown in Figure 1) is corresponding to the
block distribution of the matrix. So step la of the algorithm is com-
puted by one column of p processors; step 2 is computed by one row of p=3
the g processors ; step 3a is computed by the whole grid. Pivoting step
1b (resp. 4) is executed concurrently by computation step la (resp.
3b). Figure 2: Data-

Now let us describe more precisely the different steps of the al- distribution for ScaLA-
gorithm. Step la is implemented by ScaLAPACK function pdgetf2, PACK. &k x k blocks
which factorize a block of columns. For each diagonal element of the are cyclically distributed
upper block (i.e. Agy) the following operations are applied: among p X ¢ processors .

-k,

1. determine pivot by a reduce communication primitive and ez-
change the pivot row with the current row;

2. broadcast the pivot row on columns of processors;

3. scale, i.e. divide, the column under pivot by the pivot value and update the matrix elements
on the right of the column.

Step 2 of the algorithm is implemented by ScaLAPACK function pdtrsm: the left-upper block
(i.e. Agg) is broadcast to the processors line followed by a (BLAS) triangular solve.

Step 3a is implemented by ScaLAPACK function pdgemm: the blocks corresponding to Up; are
broadcast on columns (of processors); the blocks corresponding to Lqg are broadcast on rows (of
processors); then the blocks are multiplied to update A'.

In ScaLAPACK the function pgdtrsm implement the parallel substitution. The matrix is dis-
tributed like the LU decomposition (Figure 2). Step 1 of the algorithm is computed by one row of
q processors; step 2 is computed by the whole grid.

The Figure 3 describes the different steps of the algorithm. Step 1 is implemented by ScalLA-
PACK function pdtrsm, which perform a parallel triangular substitution with a square matrix. First
the algorithm broadcast the data needed for the triangular solve (step la) and compute it (step
1b). In another words this step solve equations (5) and (6). Step 2 is called by ScaLAPACK with
function pdgemm, which upgrades the rest of the matrix by multiplication. We can see again two
parts, data communication part (step 2a) and the computing part (step 2b). This step compute
equations (7) and (8) in the same time.
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Figure 3: One stage of block triangular solve (forward substitution,).

3 Parallel out-of-core algorithm

Now, we consider the situation where matrix A is too large to fit in main memory. First we present
the parallel out-of-core LU factorization (left-right looking algorithm) and the parallel out-of-core

triangular substitution.

3.1 Parallel out-of-core LU factorization

We present the parallel out-of-core left right looking LU factorization algorithm used by the ScalLA-
PACK routine pfdgetrf for parallel out-of-core LU factorization [6]. Similar algorithms are also
described in [11, 8]. In the algorithm the matrix is divided in blocks of columns called superblocks.
The width of the superblock is determined by the amount of physical available memory.

Like the previous parallel algorithm, the matrix is logically block cyclically distributed on the
p % q grid of processors. But only blocks of the current superblock are in main memory, the others

are on disk.

The parallel out-of-core algorithm is an extension of the parallel in-
core algorithm. It factorizes the matrix from left to right, superblock
by superblock. Each time a new superblock of the matrix is fetched in
memory (called the active superblock), all previous pivoting and update
of a history of the right-looking algorithm are applied to the active su-
perblock. To do this update, each superblock lying on the left of the
active superblock is read again. Once the update is finished, the right-
looking algorithm resumes on the updated superblock, and the factorized
active superblock is written on the disk. Once the last superblock is fac-
torized, the matrix is read again to apply the remaining row pivoting of
the recursive phases (step 4).

The update of each active superblock is summarized in Figure 4.
When a left superblock is considered (called the current superblock), the
update consists in applying row pivoting to the active superblock and:

1’. reading the under-diagonal part of a current superblock;

2’. computing the Uy, part of the active superblock by a triangular
solve (function pdtrsm);

;
g z 2
282 | 7| E%S
Figure 4: Superblock
updating  for  left-
looking out-of-core
algorithm



3’. updating Ai1, i.e. sub the product of Uy; part of the active superblock by Liy of the current
superblock (function pdgemm).

3.2 Parallel out-of-core triangular substitution

Superblock decomposition of the matrix is also used. The algorithm performs this substitution
between two out-of-core matrices. The X matrix is computed superblock per superblock. For each
superblock, the whole L matrix is also read superblock per superblock. In another words for each
superblock of X the algorithm performs a triangular out-of-core substitution with L.

Let Lo, L1,...,Lp the superblocks of the matrix L. Let Xy, Xi,...,Xp the superblocks of the
matrix X. The Figure 5 shows a macroscopic view of one step of the out-of-core triangular sub-
stitution. For each superblock ¢ of X and I, the parallel computation described in this figure is
applied for each superblock j of L. Note that in the real program X and I are the same matrix.

WL Xi=1 pdrsm
BXi=17- L5Xi  pdgemm

Figure 5: Macroscopic view of one step the out-of-core triangular substitution

The parallel computation done in this step is similar to the original parallel triangular substi-
tution (section 2.2). The difference is the matrix is rectangular instead of square. In first, the
algorithm perform a parallel triangular substitution on the diagonal L}XZ-1 = I}. Using the parallel
algorithm previously described in section 2.2. In second, the algorithm compute a parallel matrix
multiplication to upgrade X7, with X? = I? — L7 X].

4 Performances Prediction

In this section we present an architectural model for cluster and a execution time prediction of the
parallel out-of-core matrix inversion algorithm previously described.

4.1 Architectural Model

Our architectural model of a cluster is a distributed memory machine with an interconnection
network and one disk on each node. Each node stores its blocks on its own disk. Let characterize
this kind of architecture by some constants representing the computation time, the communication
time and the IO time.

Computation time. It is usually based on the time required for the computation of one floating
point operation on one processor and is represented by a constant a. In fact, this time is not
constant and depends on processor memory hierarchy and on the kind of computation. For
instance a matrix multiplication algorithm exhibits good cache reuse whereas product of a
vector by a scale has poor temporal locality. So we distinguish three times for floating point
operations which appear in the algorithm: a4 for matrix multiplication, oy for triangular solve,
and «; for scaling of vectors.
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Figure 6: Data-distribution for out-of-core LU decomposition

Communication time. As usual, the communication time is represented by the 8 4+ V7 model,
where (3 is the startup time and 7 is the time to transmit one unit of datum and V is the
volume of data to communicate. We consider only broadcast communication in our model.
The constants 3 and 7 are dependent on the topology of the virtual grid: G is the startup
time for a column of p processors to broadcast data' on their rows, and 1/ 74 represents the
throughput. Similarly 85 and 72 denote time for one row of ¢ processors to broadcast data
on their columns. These functions depend on the communication network. For instance, for a
cluster of workstations with a switch, the broadcast can be implemented by a tree diffusion.
Then 31 = logyq x B and 7] = log, q X 7 where (3 is the startup communication time for
one node and 1/7 the throughput of the medium. With a hub (i.e. a bus), the model is:
Be=plg—1)xBand 7l =7if¢g>1, 7/ =0if ¢g=1.

IO time. The IO time is based on the throughput of a disk. Let 7 be the time to read or write
one word for one disk, then 7;° = 72 is the time to read or write p words in parallel for p
independent disks.

4.2 Modeling

To model the algorithm, we estimate the time used by each function. For each function, we distin-
guish computation time and communication time, and we distinguish the intrinsic cost time of the
parallel right-looking algorithm and cost time introduced by the out-of-core extension.

Let N be the matrix order, K be the column width of superblock, the block size is k x k .
The grid of processors is composed of p rows of ¢ columns. We have the following constraints for
the different constants: N is multiple of K and K is multiple of k¥ and ¢q. Let L = % be the
block width of the matrix, $ = & the number of superblocks, and B = £ be the block width of a
superblock. The Figure 7 shows the blocks used in the three main functions for a fixed active and
current superblock.

In the next section we recall performance prediction model for the out-of-core parallel LU factor-
ization presented in [3]. Then we present a performance prediction model for the parallel out-of-core
triangular substitution.

4.3 LU Factorization modeling

The Figure 8 collects costs of the different steps of the algorithm. For the sake of simplicity, we
don’t consider the pivoting cost in our analysis. This cost is mainly the cost of reduce operations
for each element of the diagonal and the cost of row interchanges, plus the cost of re-read/write of
the matrix. This time can be easily integrated in the analysis if necessary.

'Data are equi-distributed on processors.
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Figure 7: Blocks involved in the 3 main functions of the factorization. Figure shows blocks from
the active superblock and from a current one (there are 4 superblocks).

pdgetf2 cost : Step 1 of the algorithm (ScaLAPACK function pdgetf2) is applied on block
columns (of width k) under the diagonal. There are L such blocks. This computation is
independent of the superblock size. For the computation cost, we distinguish the compu-
tation of blocks on the diagonal (9) and the computation on the blocks under the diagonal
(10). The total computation time for pdgetf2 function for the whole N x N matrix is (11).
For communications in pdgetf2, for each block on the diagonal and for each element on the
diagonal, the right part is broadcasted to the processor column (12).

pdtrsm cost : Step 2 of the algorithm (computation of Uy ) is applied on each block of row lying on
right the diagonal: there is a triangular solve for each. The computation cost of a triangular
solve between two blocks of size k x k is ayk3. The total computation cost for every pdtrsm
applied by the algorithm is (13). The communication cost for pdtrsm is the broadcast of
diagonal blocks onto the processors row. One broadcast is done during the factorization of
the active superblock (14), and another one is needed during the future updates (15).

pdgemm cost. Step 3 of the algorithm updates the trailing sub-matrix A’. The computation is
mainly matrix multiply plus broadcast. For a trailing sub-matrix of order H, there are (4£)?2
block multiplications of size k£ x k. The cost of such a multiplication is 2agk3. The total
computation cost is (16). For the communication cost, we distinguish cost of factorization of
the active superblock and cost of the update of the active superblock. For the factorization of
the superblock, the cost is the broadcast of one row of blocks and the broadcast of one columns
of blocks (17). The Figure 4 illustrates the successive updates for an active superblock. Each
block of column under diagonal in left superblock read are broadcasted (18). In the same time
symmetric row of blocks of the current superblock are broadcasted (19).

IO cost : The IO cost corresponds to the read/write of the active superblock (20) and the read of
left superblocks (21).

4.4 Parallel out-of-core substitution modeling

After the LU factorization, the algorithm makes two out-of-core triangular substitutions. The cost
of forward and backward substitution are the same. We give the cost for one triangular substitution.
Costs are sum up on Figure 9



pdgetf2:

as E;illc (222{71(2i72)+25§f+1(2]?1))
+2 SI=E (kx5 2125 2(i-1))

—as (N> N’k Nk_N
T p 6 2 2 6

S((B-1)Bp+ BBV p2rr)
+ DS (B-)a+ BBk

+(i—1)B(B—1)k27) (17)

pq

Lx (kgp+EEED 1) Nx(BP+EED Py (12)
pdtrsm:
Ly T ak®xi = SEx(N%k—Nk?) (13)
(S(B=1)+X 571 (ix B)) x (8% +k271)
= S(B-1)(Bg+kPri)+ (14)
S (Bg k2 (15)
pdgemm:
LI kS
= o (XN N2 (16)

=51 i (BAg+ BB k204 (1) B2k2TE)
N(N—=K)(68%+(Kk+4Nk—3k2)rd)
- L 12Kk L (18)
SG1(BaE 4+ K21P) (19)
I0:
2SNKT9 (20)
=5 ix (BB 2o 1 (i—1) B2k>7i9)
N(N—EK)(Kk+4Nk—3k2)ri0)

- 12Kk b (2]‘)

Figure 8: Costs of the different steps of the left-right looking algorithm for out-of-core LU factor-

ization
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Figure 9: Costs of the different steps of parallel out-of-core substitution algorithm.




To perform triangular substitution, two main functions are called. Triangular substitution on
square blocks (pgdtrsm) and upgrade the rest of the matrix by blocks multiplication (pdgemm). For
each function we distinguish two parts: communication and computation.

pgdtrsm cost : The computation time for out-of-core triangular substitution is equal to the blocks
in-core version. The algorithm performs S triangular substitution for each superblock of the
first matrix, i.e. S? triangular substitution (22). The pgdtrsm communication consists of
diagonal blocks broadcast to the row of processor. This block is send $? times. Thus, this
cost is divided into the active superblocks communication (23) and the out-of-core overhead
communication (24). The data communicated for upgrade the rest of matrix are broadcast
through processors (25). The cost is like in-core version. The column broadcast is (26).

pdgemm cost : The upgrade multiplication is applied under the diagonal. For each L superblock,
the height is decreased by K (27). Broadcasts needed for multiplication out-of-core upgrade
are sent through the processors row. The size of this blocks is K for the width. The height
is determined by the diagonal. We assume that broadcast is performed by blocks. The active
blocks cost is (28) and the out-of-core overhead is (29). The row block K x K is broadcast on
processors column like in in-core version (30).

IO cost : IO accesses correspond to reading and writing the superblocks of result matrix (31) and
reading superblocks of matrix L and U (32).

4.5 Experimental validation of the analytical model

To validate our prediction model, we ran the ScaLAPACK out-of-core factorization program on a
cluster of 8 PC-Celeron running Linux and interconnected by a Ethernet switch. Each node has
96 Mb of physical memory. The model described in the previous sections is instanced with the
following constants (experimental measurements):

1/ay =237 M flops,1/ay = 123 M flops,1/as =16 M flops,

ﬁg = ﬁg = 1.7 ms, 1/7';)] = 1/7’5 =1.1 Mo/s,1/7i, = 1.8 Mo/s

The Figure 10 show the comparison between the running time and the predicted time (in italics)
of the program. This Figure shows the comparison between the different functions of matrix inverse
algorithm (for the triangular substitution we distinguished the communication and the computation
time). For computation and communication, running time was close to the predicted time. There
were some differences for IO times. It is mainly due to our rough model of IO: IO performances are
more difficult to model because access file performances depend on the layout of the file on the disk
(fragmentation).

5 Out-of-core overhead analysis

In comparison with the standard in-core algorithm, the overhead of the out-of-core algorithm is the
extra IO cost and broadcasts (of columns) cost for the update of the active superblock: for each
active superblock, left superblocks must be read and broadcast once again!

In [3], we demonstrated that with a correct distribution and with the overlap of IO by computa-
tion, it is possible to avoid the out-of-core overhead of the algorithm: we achieve the performance of
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the in-core one. In the following, we demonstrate this result hold for the parallel out-of-core matrix
inversion.

This overhead cost of matrix inversion is represented by equations (24) and (29) for communi-
cations and (32) for IO. It is easy to show that if K = N (i.e. S = 1) then this cost is equal to zero:
it is the #n-core algorithm execution time.

The overhead cost is O(N?), and is non negligible. In the following paragraph, we will show
how to reduce this overhead cost. Let O¢ = (24) + (29) be the overhead communication cost and
Oro = (32) be the overhead IO cost.

5.1 Reducing overhead communication cost

As shown by the model and experimental results, the topology of the grid of processors has a great
influence on the overhead communication cost:

Fact 1 If the number of columns q is equal to 1, then Oc = 0/

If there is only one column of processors, there is no broadcast of column during the update. If we
consider a communication model where broadcast cost is increasing with the number of processors,
then the greater the number of columns is, the greater O¢ is.

Figure 11 shows the influence of topology on the performances for the matrix inversion. In the
same figure, there are plots for the predicted performances of the in-core algorithm. The constants
are the constant of our small PC-Celeron cluster. The communication and IO costs for the update
are prominent. The figure 12 shows the IO and communication ratio on the total execution time in
this case.

5.2 Overlapping IO and computations

A trivial way to avoid the IO overhead is to overlap this IO by the computation. In [3], we
presented an overlapping scheme for LU factorization. During updates of the active superblock,
the left superblocks are read from left to right. An overlapping scheme is to read the next left
superblock during the update of active superblock with the current one: if the time for this update
is greater than the time for reading the next superblock, then the overhead IO cost is avoided.

In [3] we obtained the following result for the LU part. Let M be the amount of memory devoted
to a superblock in one processor. For a matrix order N the width of a superblock is then K = %.
Let Of, the overhead IO cost not overlapped in this new scheme.

Theorem 1 If the number of columns of processor q is equal to 1 and if

pM > Nie
2
then
070 =0

We propose a similar overlapping scheme for the triangular substitution. When the algorithm
perform the computation part, ie. triangular solve and matrix multiplication, between L;, X; and
I;, the next superblock L;,; is prefetched. If the prefetch time is less than the computation time,
then the overhead IO cost is null. We proved this theorem also holds for inversion (see Annexe).
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Figure 11: Theoretical performances of the matrix inversion on a cluster of 16 PC-Celeron/Linux
(64Mb) interconnected by Fast-Ethernet switch: comparison of the parallel in core (IC) right-looking
algorithm and the parallel out-of-core (OoC) left-right looking algorithm, with 3 kinds of topology
(1 x 16,4 x4, and 16 x 1). N is the matrix order.

5.3 Toward a more general overlaping scheme

To avoid the communication overhead, we considered only one dimentional distribution (processor
column). With IO overlaping, the performance of the OoC algorithm is then equal to the perfor-
mance of the IC algorithm with the same distribution. Unfortunately, for the IC algorithm one
column distribution is the worst distribution (Fig. 11):

e the parallelism is reduced because the computation of Up; in the LU part (see Section 2.3) is
done by only one processor;

e due to partial pivoting the step la of LU decomposition (see Section 2.3) is fine grained and
involves small communication (so a lot of communication latencies).

In [4], it is show that best performances are obtained with a grid width few rows. So, to
improve performance, we have to use a two dimentional distribution. To avoid communication
update overhead, another overlaping scheme must be introduced. They are two approaches.

e The first is to reuse the work of Desprez et al. [7] where computation and communication are
pipelined in basic ScaLAPACK routines (like pdtrsm and pdgemm).

e The second is to read ahead the second next superblock and communicate the next left su-
perblock during the update of the active superblock with the current one.
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Figure 12: Matrix Inversion: Overhead ratio for communication and IO.

The last approach requires more memory for the prefetched and communicated superblock. But
in our description we considered that width of the active and the width of current superblock are
equal. An idea to reduce the need for physical memory is to specify different widths for the active
and the current superblock during the update: increase width of active superblock (i.e. computation
time) and reduce width of current superblocks (i.e. read and communication time). These widths
are function of differents architectural constants (network and IO throughput, computation rate).

6 Conclusion

In this paper we have presented a parallel out-of-core matrix inversion algorithm with a performance
prediction model of it. Performance model was validated by experiments. This algorithm is derived
from the ScaLAPACK out-of-core LU factorization. Thanks to this modelling, we isolated the
overhead introduced by the out-of-core version. We observed that the best virtual topology to
suppress the communication overhead is one column of processor. We show that a straightforward
overlapping scheme of the IO by the computations allows us to reduce the IO overhead of the
algorithm. We determined the memory size which is necessary to avoid the IO overhead. The
memory size needed is proportional to the square root of the matrix size.

To see if this result is practicable, consider a small cluster of PC-Celeron with 16 nodes and
with a Fast-Ethernet switch. To invert a 80 Gigabytes matrix (a 100000 matrix order) we need 26
Mega Byte of memory per superblock (active, current and prefetched) per node, i.e. 78 Mbyte per
node! The predicted execution time to factorize the matrix is 11 days without overlapping, and 9



days otherwise?. If we substitute the Intel Celeron processors of 237 Mflops by Digital Alpha AXP
processors of 757 Mflops, then the needed memory size per processor is 252 Mbytes! The predicted
computation time is about 6 days without overlapping and about 4 days otherwise (1.5 faster). This
last time is the estimated time for the in-core algorithm with the same topology (i.e. one column of
16 processors). With a better topology for the in-core algorithm (4 columns of 4 processors), the in
core algorithm takes 3 days to factorize the matrix, but the memory needed by node is 5 Gigabytes:
20 times greater than the memory necessary for the out-of-core version!

This result demonstrate that for some compute bound algorithm, like the matrix inverse com-
putation, cluster computing is able to compete whith clasical supercomputer. A supercomputer has
usualy more memory than commodity cluster, but thanks to the out-of-core computation technics,
this advantage disappears.

We plan to integrate the general overlapping scheme (communication and IO) described above.

Acknowledgment: Special thanks to Olivier Cozette (LaRIA) for his help in the development.
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Annexe: proof of Theorem 1

Let consider the resource needed to achieve such a total overlapping: We verify that the Theorem
1 also holds for the triangular substitution.

Proof 1 From modelling we know that the reading time of the next left superblock is (33) where H
1s the superblock height.

(H— K)K7io + o (33)

We underestimate the update computation time, and we consider only the main cost of this
update: the pdgemm part.

2(H - 1)K?
pq
Let add the communication cost. We assume, from theorem 1, we have just one processor column

(g=1):

ay (34)

BEKT! + B (35)

Now consider the situation where the 10 is overlapped by computation (i.e. Of, = 0), that is
(34)+(35) > 1. Note that if (G5} > 1 then (B+35) > 1. So we restrict the problem to the following:

(33) 33 (33)
determinate for which superblock width K :
2(H71)K2a
pL__9_ > (36)

(H - K)Krio =

H-1 2K
X C.yg >1 (37)
H-K PqTHY

The first part of this expression is always greater than 1. We know that ¢ =1 and Tég = ?—;. We
can evaluate boundary for K :

2K
% > (38)
tio
i.e.
K >t (39)
T 2q4

To sum up K = pgM/N and q =1, if pM > N';i—& then % > 1, in another words O%, = 0.



