Decidable and undecidable problems about quantum automata.

Vincent D. Blondel, Emmanuel Jeandel, Pascal Koiran, Natacha Portier

To cite this version:

HAL Id: hal-02101900
https://hal-lara.archives-ouvertes.fr/hal-02101900
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Decidable and undecidable problems about quantum automata

Vincent D. Blondel,
Emmanuel Jeandel,
Pascal Koiran,
Natacha Portier

Avril 2003

Research Report N° 2003-24
Decidable and undecidable problems about quantum automata

Vincent D. Blondel,
Emmanuel Jeandel,
Pascal Koiran,
Natacha Portier

Avril 2003

Abstract
We study the following decision problem: is the language recognized by a quantum finite automaton empty or non-empty? We prove that this problem is decidable or undecidable depending on whether recognition is defined by strict or non-strict thresholds. This result is in contrast with the corresponding situation for probabilistic finite automata for which it is known that strict and non-strict thresholds both lead to undecidable problems.

Keywords: quantum computing, automaton, decidability

Résumé
Nous étudions le problème suivant : est-ce que la langage reconnu par un certain automate quantique est vide ? Nous savons que ce problème est indécidable dans le cas des automates probabilistes, que le seuil de reconnaissance soit strict ou non le soit pas. Nous montrons que pour les automates quantiques, en revanche, la réponse n’est pas la même dans les deux cas.

Mots-clés: calcul quantique, automate, décidabilité
Vincent D. Blondel
Department of Mathematical Engineering
Université Catholique de Louvain. blondel@inma.ucl.ac.be
Emmanuel Jeandel
Laboratoire de l’Informatique du Parallélisme
École Normale Supérieure de Lyon. Emmanuel.Jeandel@ens-lyon.fr
Pascal Koiran
Laboratoire de l’Informatique du Parallélisme
École Normale Supérieure de Lyon. Pascal.Koiran@ens-lyon.fr
Natasha Portier
Laboratoire de l’Informatique du Parallélisme
École Normale Supérieure de Lyon. Natasha.Portier@ens-lyon.fr
Decidable and undecidable problems about quantum automata

Natacha Portier

11th April 2003

Abstract

We study the following decision problem: is the language recognized by a quantum finite automaton empty or non-empty? We prove that this problem is decidable or undecidable depending on whether recognition is defined by strict or non-strict thresholds. This result is in contrast with the corresponding situation for probabilistic finite automata for which it is known that strict and non-strict thresholds both lead to undecidable problems.

1 Introduction

In this paper, we provide decidability and undecidability proofs for two problems associated with quantum finite automata. Quantum finite automata (QFA) were introduced by Moore and Crutchfield [MC00]; they are to quantum computers what finite automata are to Turing machines. Quantum automata are also analogous to the probabilistic finite automata introduced in the 1960s by Rabin that accept words with a certain probability [Rab67] (see also [Paz71] for a book-length treatment). A quantum automaton A assigns real values $Val_A(w)$ to input words w (see below for a precise description of how these values are computed). $Val_A(w)$ can be interpreted as the probability that on any given run of A on the input word w, w is accepted by A. Associated to a real threshold λ, the languages recognized by the automata A with non-strict and strict threshold λ are

$$L_{\geq} = \{ w : Val_A(w) \geq \lambda \} \text{ and } L_{>} = \{ w : Val_A(w) > \lambda \}.$$

Many properties of these languages are known in the case of probabilistic and quantum automata. For instance, it is known that the class of languages recognized by quantum automata is strictly contained in the class of languages recognized by probabilistic finite automata [BP02]. For probabilistic automata it is also known that the problem of determining if L_{\geq} is empty and the problem of determining if $L_{>}$ is empty are undecidable [Rab63]. This is true even for automata of fixed dimensions [BC03].

In this contribution, we consider the problem of determining for a quantum automata A and threshold λ if there exists a word w for which $Val_A(w) \geq \lambda$ and if there exists a word w for which $Val_A(w) > \lambda$. We prove in Theorem 2.1 that the first problem is undecidable and in Theorem 3.1 that the second problem is
decidable. For quantum automata it thus makes a difference to consider strict or non-strict thresholds. This result is in contrast with probabilistic automata for which both problems are undecidable.

Similarly to the languages L_\geq and L_\geq, one can define the languages L_\leq and L_\leq and ask whether or not they are empty (of course, emptiness of L_\leq is equivalent to L_\geq being equal to Σ^*). These two problems are known [Rab63] to be undecidable for probabilistic automata. For quantum automata our decidability results do again differ depending on whether we consider strict or non-strict inequalities. Our results are summarized in Table 1.

Before we proceed with the proofs, we first define what we mean by a quantum finite automaton. A number of different quantum automata models have been proposed in the literature and not all models are computationally equivalent. For the "measure-many" model of quantum automata introduced by Kondacs and Watrous [KW97] the four problems of Table 1 are proved undecidable in [Jea02]. The model we consider here is the so-called Measure Once Quantum Finite Automaton introduced by Moore and Crutchfield [MC00]. These automata operate as follows. Let Σ be a finite set of input letters and let Σ^* denote the set of finite input words (including the empty word); typical elements of Σ^* will be denoted $w = w_1 \cdots w_\ell$ where $w_i \in \Sigma$ and $|w|$ denotes the length of w. The QFA A is given by a finite set of n states, $n \times n$ unitary transition matrices X_α (one for each symbol $\alpha \in \Sigma$), a (row) vector of unit norm s (the initial configuration), and a $n \times n$ projection matrix P. Given a word $w \in \Sigma^*$, the value of w, denoted $\text{Val}_A(w)$, is defined by

\[\text{Val}_A(w) = \| s X_w P \|^2 \]

In this expression, $\| \cdot \|$ is the euclidean vector norm and we use the notation X_w for the product $X_{w_1} \cdots X_{w_\ell}$. For a vector v, the value $\| v P \|^2$ is the probability for the quantum state v to be observed in acceptance space. The value $\text{Val}_A(w)$ can thus be interpreted as the probability of observing the quantum state in acceptance space after having applied the operator sequence X_{w_1} to X_{w_ℓ}.

The rest of this paper is organized as follows. In Section 2, we reduce Post's correspondence problem to the problem of determining if a quantum automata has a word of value larger than a given threshold. Post’s correspondence problem is undecidable and this therefore proves our first result. Our reduction uses an encoding of words in three dimensional space. In Section 3, we prove decidability of the same problem for strict inequality. For the proof we use the fact that any compact matrix group is algebraic and the group we consider can be given an effective description.
2 Undecidability for non strict inequality

We prove in this section that the problem of determining if a quantum
automata has a word of value larger than some threshold is
decidable. The proof is
by
reduction from Post’s correspondence problem (PCP), a well-known
undecidable
problem. An instance of Post’s correspondence problem is given by a finite
alphabet \(\Sigma\) and \(k\) pairs of words \((u_i, v_i) \in \Sigma^* \times \Sigma^*\) for \(i = 1, \ldots, k\). A solution
to the correspondence is any non-empty word \(w = w_1 \cdots w_n\) over the alphabet
\(\{1, \ldots, k\}\) such that \(u_w = v_w\), where \(u_w = u_{w_1} \cdots u_{w_n}\). This correspondence
problem is known to be undecidable: there is no algorithm that decides if a
given instance has a solution [Post40]. It is easy to see that the problem remains
undecidable when the alphabet \(\Sigma\) contains only two letters. The problem is also
known to be undecidable for \(k = 7\) pairs [MS96] but is decidable for \(k = 2\) pairs;
the decidability of the cases \(2 < k < 7\) is yet unresolved. We are now ready to
state our first result.

Theorem 2.1 There is no algorithm that decides for a given automaton \(A\) if
there exists a word \(w\) for which \(Val_A(w) \leq 0\), or if there exists one for which
\(Val_A(w) \geq 1\). These problems remain undecidable even if the automaton is given
by \(7\) matrices in dimension \(6\), or by \(2\) matrices in dimension \(4\).

Proof. We proceed by reduction from PCP. For our reduction we need
to encode words by unitary matrices. We will take matrices that represent
rotations of angle \(\arccos(3/5)\) on, respectively, the first and the third axis:

\[
X_a = \frac{1}{5} \begin{pmatrix} 3 & -4 & 0 \\ 4 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}, \quad X_b = \frac{1}{5} \begin{pmatrix} 5 & 0 & 0 \\ 0 & 3 & -4 \\ 0 & 4 & 3 \end{pmatrix}
\]

These matrices are unitary, \(X_aX_a^T = I = X_bX_b^T\) and they generate a free
group since a result from Swierczkowski ensures us that two irrational
rotations on orthogonal axes in \(\mathbb{R}^3\) generate a free group. In addition to that, we now
prove that there exists a vector \(t\) such that \(tX_a = tX_w\) implies \(u = w\).

We will use here a method from [Su90]. One can show by induction
that for any reduced matrix product \(M\) of \(k\) matrices taken from the set
\(\{X_a, X_b, X_a^{-1}, X_b^{-1}\}\), we have

\[
(3 0 4)M = (x_1 x_2 x_3)/5^k
\]

with \(x_1, x_2, x_3 \in \mathbb{Z}\), and 5 divides \(x_2\) if and only if \(k = 0\) (and then \(M = I\)).

The result is obviously true for \(k = 0, 1\). Now, if \(M = M'X_1X_0\), then
\((3 0 4)M = (x_1 x_2 x_3)/5^k X_aX_b = (x_4 x_5 5x_3)/5^{k+1}X_b\) for some \(x_4, x_5\), and
by induction hypothesis 5 does not divide \(x_5\). Now \((3 0 4)M = (x_6 3x_5 + 20x_3 x_7)/5^{k+2}\) so that 5 does not divide the second term. The proof for all the
other cases is similar.

We will now call \(t\) the row vector \((3 0 4)\). If \(tX_u = tX_v\) then \(tX_uX_v^{-1} = t\).
As the second component of \(t\) is equal to 0, the product must be trivial, and so
\(u = v\).

A product is said to be reduced if no two consecutive matrices in the product are inverse
from each other.
Given an instance \((u_i, v_i)_{1 \leq i \leq k}\) of PCP over the alphabet \(\{a, b\}\) and a word \(w \in \{1, \ldots, k\}^*\), we construct the matrix

\[
Y_w = \frac{1}{2} \begin{pmatrix}
X_{uv} & X_{vw} & X_{uw} - X_{vw} \\
X_{uv} - X_{vw} & X_{vw} & X_{uw} \\
\end{pmatrix}
\]

These matrices are unitary, and verify \(Y_{uv} = Y_w Y_v\).

A solution of the original PCP problem is a nonempty word \(w \in \{1, \ldots, k\}^*\) such that the upper-right block of the matrix \(Y_w\) is equal to zero. We may use the previously introduced vector \(t = (3 \ 0 \ 4)\) to test this condition. We have

\[
(t \ 0) Y_w = \frac{1}{2} \begin{pmatrix}
x_{uv} & x_{vw} & x_{uw} - x_{vw} \\
2x_{uv} - x_{vw} & 2x_{vw} & 2x_{uw} - 2x_{vw} \\
\end{pmatrix}
\]

and thus a solution of the PCP problem is a word \(w\) such that the last three coordinates of \(y Y_w\) are equal to zero, where \(y = (t \ 0)\). This condition can be tested with a projection matrix. Defining

\[
P = \begin{pmatrix} 0 & I_3 \\ 0 & I_3 \end{pmatrix}
\]

we have that the solutions of the original PCP problem are the words \(w\) for which \(y Y_w P = 0\), which is equivalent to

\[
\text{Val}_A(w) = \|y Y_w\|^2 = 0
\]

The values taken by \(\text{Val}_A(w)\) are non-negative and so the problem of determining if there exists a word \(w\) such that \(\text{Val}_A(w) \leq 0\) is undecidable. Notice also that \(\|y Y_w I\|^2 = 1\) and so

\[
\|y Y_w (I - P)\|^2 \leq 1
\]

with equality only for \(y Y_w P = 0\). Thus, the problem of determining if there exists a word \(w\) such that \(\text{Val}_A(w) \geq 1\) is undecidable.

We now show how to reduce the number of matrices to two. We use a construction from Blondel [BT97, BC03]. Given the above matrices \(Y_i\) and the projection matrix \(P\), we define

\[
Z_0 = \begin{pmatrix} Y_1 & 0 & \cdots & 0 \\ 0 & Y_2 & & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & Y_7 \end{pmatrix} \quad \text{and} \quad Z_1 = \begin{pmatrix} 0 & I & 0 & 0 \\ 0 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & I \\ I & 0 & \cdots & 0 \end{pmatrix}
\]

When taking products of these two matrices the matrix \(Z_1\) acts as a “selecting matrix” on the blocks of \(Z_0\). Let us define \(x = (y \ 0)\) and

\[
Q = \begin{pmatrix} P & 0 & \cdots & 0 \\ 0 & P & & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & P \end{pmatrix}
\]

We claim that there exists a non-empty word \(w\) over the alphabet \(\{1, \ldots, 7\}\) such that \(\|y Y_w P\| = 0\) if and only if there exists a non-empty word \(\nu\) over
\{0,1\} such that \|xZ_\lambda Q\| = 0. The complete proof of this claim is given in [BT97] and is not reproduced here.

It is possible to give a stronger form to the second part of the Theorem. We prove below that, whatever threshold \(0 \leq \lambda < 1\) is used, the problem of determining if there exists a word for which \(\text{Val}_A(w) \geq \lambda\) is undecidable. This result follows as a corollary of the following lemma.

Lemma 2.2 Associated to every QFA \(A\) and threshold \(\lambda < 1\) we can effectively construct a QFA \(B\) such that the language recognized with threshold \(\lambda\) by \(B\) is the language recognized with threshold \(0\) by \(A\). Moreover, if \(\lambda \in \mathbb{Q}\) and \(A\) has only rational entries then \(B\) can be chosen with rational entries.

Proof. The idea is to construct \(B\) by adding a state to \(A\). Let \(A\) be given by the unitary matrices \(X_i^A\), the projection matrix \(P^A\) and the initial vector \(s^A\). Let

\[
X_i^B = \begin{pmatrix} X_i^A & 0 \\ 0 & 1 \end{pmatrix}
\]

and define \(s^B = (\sqrt{\lambda}s^A \quad \sqrt{1-\lambda})\). If we choose

\[
P^B = \begin{pmatrix} P^A & 0 \\ 0 & 0 \end{pmatrix}
\]

we immediately have \(\text{Val}_B(w) = \lambda \; \text{Val}_A(w)\) and the first part of lemma is proven. The entries \(\sqrt{\lambda}\) and \(\sqrt{1-\lambda}\) do in general not need to be rational. It remains to show how the parameters of \(B\) can be chosen rational when those of \(A\) are. We therefore use Lagrange’s theorem to write \(\lambda\) and \(1 - \lambda\) as the sum of the square of four rational numbers, say \(\lambda = a_1^2 + a_2^2 + a_3^2 + a_4^2\) and

\[1 - \lambda = b_1^2 + b_2^2 + b_3^2 + b_4^2.\]

Now, if we define

\[
s^B = (a_1 s^A \quad a_2 \ldots \ldots a_4 \quad b_1 \ldots b_4) \quad X_i^B = \begin{pmatrix} X_i^A & 0 \\ 0 & I \end{pmatrix} \quad P^B = \begin{pmatrix} P^A & 0 & 0 \\ 0 & I_3 & 0 \\ 0 & 0 & 0 \end{pmatrix}
\]

we have immediately \(\text{Val}_B(w) = a_1^2 \text{Val}_A(w) + a_2^2 + a_3^2 + a_4^2, ||s^B||^2 = 1\) and the lemma is proved.

Combining Lemma 2.2 with Theorem 2.1, we immediately obtain:

Corollary 2.3 For any rational \(\lambda, 0 \leq \lambda < 1\), there is no algorithm that decides if a given quantum automata has a word \(w\) for which \(\text{Val}(w) \leq \lambda\).

3 Decidability for strict inequality

We now prove that the problem of determining if a quantum automata has a word of value strictly larger than some threshold is decidable. This result points to a difference between quantum and probabilistic automata since for probabilistic automata this problem is known to be undecidable.

Once an automaton is given one can of course always enumerate all possible words \(w\) and halt as soon as one is found for which \(\text{Val}_A(w) > \lambda\), and so the
problem is clearly semi-decidable. In order to show that it is decidable it remains to exhibit a procedure that halts when $\text{Val}_A(w) \leq \lambda$ for all w.

Let a quantum automata A be given by a finite set of $n \times n$ unitary transition matrices X_i, an initial configuration s of unit norm, and a projection matrix P. The value of the word w is given by $\text{Val}_A(w) = \|sX_wP\|^2$. Let \mathcal{X} be the semigroup generated by the matrices X_i, $\mathcal{X} = \{X_w : w \in \Sigma^*\}$, and let $f : \mathbb{R}^{n \times n} \mapsto \mathbb{R}$ be the function defined by $f(X) = \|sXP\|^2$. We have that

$$\text{Val}_A(w) = f(X_w)$$

and the problem is now that of determining if $f(X) \leq \lambda$ for all $X \in \mathcal{X}$. The function f is a (continuous) polynomial map and so this condition is equivalent to $f(X) \leq \lambda$ for all $X \in \overline{\mathcal{X}}$, where $\overline{\mathcal{X}}$ is the closure of \mathcal{X} in $\mathbb{R}^{n \times n}$. The set $\overline{\mathcal{X}}$ has the interesting property that it is algebraic (see below for a proof), and so there exist polynomials $f_1, \ldots, f_p : \mathbb{R}^{n \times n} \mapsto \mathbb{R}$, such that $\overline{\mathcal{X}}$ is exactly the set of common zeroes of f_1, \ldots, f_p. If the polynomials f_1, \ldots, f_p are known, the problem of determining whether $f(X) \leq \lambda$ for all $X \in \overline{\mathcal{X}}$ can be written as a quantifier elimination problem

$$\forall X \left[(f_1(X) = 0 \land \cdots \land f_p(X) = 0) \implies f(X) \geq \lambda \right]. \quad (1)$$

This is a first-order formula over the reals, and can be decided effectively by Tarski-Seidenberg elimination methods (see [Ren92] for a survey of known algorithms). If we knew how to effectively compute the polynomials f_1, \ldots, f_p from the matrices X_i, a decision algorithm would therefore follow immediately. In the following we solve a simpler problem: we effectively compute a sequence of polynomials whose zeroes describe the same set $\overline{\mathcal{X}}$ after finitely many terms (but we may never know how many). It turns out that this is sufficient for our purposes.

Theorem 3.1 Let $(X_i)_{i \in \Sigma}$ be unitary matrices of dimension n and let $\overline{\mathcal{X}}$ be the closure of the semigroup $\{X_w : w \in \Sigma^*\}$. The set $\overline{\mathcal{X}}$ is algebraic, and if the X_i have rational entries we can effectively compute a sequence of polynomials f_1, f_2, \ldots such that

1. If $X \in \overline{\mathcal{X}}$, $f_i(X) = 0$ for all i;
2. There exists some k such that $\overline{\mathcal{X}} = \{X : f_i(X) = 0, i = 1, \ldots, k\}$.

Proof. We first prove that $\overline{\mathcal{X}}$ is algebraic. It is known (see, e.g., [OV90]) that every compact group of real matrices is algebraic. In fact, the proof of algebraicity in [OV90] reveals that any compact group G of real matrices of size n is the zero set of

$$\mathbb{R}[X]^G = \{f \in \mathbb{R}[X] : f(I) = 0 \text{ and } f(gX) = f(X) \text{ for all } g \in G\},$$

i.e., G is the zero set of the polynomials in $n \times n$ variables which vanish at the identity and are invariant under the action of G. We will use this property later in the proof.

To show that $\overline{\mathcal{X}}$ is algebraic, it suffices to show that $\overline{\mathcal{X}}$ is compact and is a group. The set $\overline{\mathcal{X}}$ is obviously compact (bounded and closed in a normed vector space of finite dimension). Let us show that it is a group. It is in fact
known that every compact subsemigroup of a topological group is a subgroup. Here is a self-contained proof in our setting: for every matrix X, the sequence X^k admits a subsequence that is a Cauchy sequence, by compactness. Hence for every ϵ there exists $k > 0$ and $l > k + 1$ such that $\|X^k - X^l\| \leq \epsilon$, that is $\|X^{-1} - X^{-k-1}\| \leq \epsilon$ (recall that $\|AB\| = \|B\|$ if A is unitary, and if $\|\|$ is the operator norm associated to the Euclidean norm). Hence, X^{-1} is in the set and the first part of the theorem is proved. For notational convenience, we will denote the group \mathbb{F} by G in the remainder of the proof.

For the second part of the theorem, we will prove that we can take

$$\{f_i\} = \{f \in \mathbb{Q}[X] : f(I) = 0 \text{ and } f(X_j X) = f(X) \text{ for all } j \in \Sigma\}$$

In words, this is the set of rational polynomials which vanish at the identity and are invariant under the action of each matrix X_j. It is clear that this set is recursively enumerable. We claim that G is the zero set of the f_i’s. By Noetherianity the zero set of the f_i’s is equal to the zero set of a finite subset of the f_i’s, so that the theorem follows immediately from this claim. To prove the claim, we will use the fact that G is the zero set of $\mathbb{R}[X]^G$. Note that

$$\mathbb{R}[X]^G = \{f \in \mathbb{R}[X] : f(I) = 0 \text{ and } f(X_j X) = f(X) \text{ for all } j \in \Sigma\}$$

(a polynomial is invariant under the action of G if and only it is invariant under the action of all the X_j). This observation implies immediately that each f_i is in $\mathbb{R}[X]^G$, so that the zero set of the f_i’s contains the zero set of $\mathbb{R}[X]^G$.

The converse inclusion follows from the fact that any element P of $\mathbb{R}[X]^G$ can be written as a linear combination of some f_i’s. Indeed, let d be the degree of P and let E_d be the set of real polynomials in $n \times n$ variables of degree at most d. The set $V_d = E_d \cap \mathbb{R}[X]^G$ is a linear subspace of E_d defined by by a system of linear equations with rational coefficients (those equations are $f(I) = 0$ and $f(X_j X) = f(X)$ for all $j \in \Sigma$). Hence there exists a basis of V_d made up of polynomials with rational coefficients, that is, of elements of $\{f_i\}$. This completes the proof of the claim, and of the theorem.

We may now apply this result to quantum automata.

Theorem 3.2 The two following problems are decidable.

(i) Given a quantum automaton A and a threshold λ, decide whether there exists a word w such that $\text{Val}_A(w) > \lambda$.

(ii) Given a quantum automaton A and a threshold λ, decide whether there exists a word w such that $\text{Val}_A(w) < \lambda$.

Proof. We only show that problem (i) is decidable. The argument for problem (ii) is essentially the same.

As pointed out at the beginning of this section, it suffices to exhibit an algorithm which halts if and only if $\text{Val}_A(w) \leq \lambda$ for every word w. Consider the following algorithm:

- enumerate the f_i’s;

• for every initial segment \(f_1, \ldots, f_n \), decide whether (1) holds, and halt if it does.

It follows from property (1) in Theorem 3.1 that \(Val_A(w) \leq \lambda \) for every word \(w \) if the algorithm halts. The converse follows from property (2).

Throughout the paper we have assumed that our unitary matrices have rational entries. It is not hard to relax this hypothesis. For instance, it is clear from the proofs that Theorems 3.1 and 3.2 can be generalized to matrices with real algebraic entries.

In the proof of Theorem 3.2 we have bypassed the problem of explicitly computing a finite set of polynomials defining \(\overline{A} \). It is in fact possible to show that this problem is algorithmically solvable [DJK03]. This implies in particular that the following two problems are decidable:

(i) Decide whether a given threshold is isolated.

(ii) Decide whether a given QFA has an isolated threshold.

A threshold \(\lambda \) is said to be isolated if:

\[
\exists \epsilon > 0 \forall w \in \Sigma^* |Val_A(w) - \lambda| > \epsilon.
\]

It is known that these two problems are undecidable for probabilistic automata [Ber75, BMT77, BC03].

The algorithm of [DJK03] for computing \(\overline{A} \) has also applications to quantum circuits: this algorithm can be used to decide whether a given set of quantum gates is complete (complete means that any unitary transformation can be approximated to any desired accuracy by a quantum circuit made up of gates from the set). Much effort has been devoted to the construction of specific complete sets of gates [DBE95, BBC+95], but no general algorithm for deciding whether a given set is complete was known.

Finally, we note that the proof of Theorem 3.2 does not yield any bound on the complexity of problems (i) and (ii). We hope to investigate this question in future work.

Acknowledgment

P.K. would like to thank Etienne Ghys for pointing out reference [OV90].

References

