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The Infinite Versions of LOGSPACE # P Are Consistent with the Axioms of Set Theory

Grégory Lafitte, Jacques Mazoyer
October 1999

Abstract

We consider the infinite versions of the usual computational complexity ques-

tions LOGSPACE = P, NLOGSPACE Zp by studying the comparison of their
descriptive logics on infinite partially ordered structures rather than restrict-
ing ourselves to finite structures. We show that the infinite versions of those
famous class separation questions are consistent with the axioms of set theory
and we give a sufficient condition on the complexity classes in order to get other
such relative consistency results.

Keywords: Computational complexity, Large cardinals, Relative consistency results

Résumé

Nous considérons les versions infinies des questions usuelles de complexité
LOGSPACE = P, NLoGSPACE ZPen étudiant, sur les structures infinies
partiellement ordonnées, la comparaison de leurs logiques, les décrivants, au
lieu de se limiter aux structures finies. Nous montrons que les versions infinies
de ces fameuses questions de séparation sont consistantes avec la théorie des
ensemble et nous donnons une condition suffisante sur les classes de complexité

comparées pour obtenir les mémes résultats avec d’autres classes de complexité.

Mots-clés: Complexité de calcul, Grands cardinaux, Résultats de consistance relative



THE INFINITE VERSIONS OF LocSpace # P ARE CONSISTENT WITH THE
AXIOMS OF SET THEORY

GREGORY LAFITTE AND JACQUES MAZOYER

INTRODUCTION

Looking at infinite versions of problems is an approach to solving problems in complexity theory : the
infinite case might be easier to solve. It is then perhaps possible to apply the proof techniques from the
infinite case to the finite complexity theory questions. In one of the best examples of this technique, Sipser
[15] showed that an infinite version of parity does not have bounded depth countable-size circuits using
ideas from descriptive set theory. By making an analogy between polynomial and countable, Furst, Saxe
and Sipser [5] used the techniques of the infinite case from Sipser’s paper to show that parity does not have
constant-depth polynomial-size circuits.

Recall that in descriptive complexity, two logically characterizable complexity classes C, C' are equal
(C = (') if and only if the corresponding logics L£¢ and L¢r correspond! on ordered finite structures. Our
study focuses on the comparison of the logics on partially ordered infinite structures. This is what we call
the infinite version of complexity class separation questions.

We settle for the infinite case the usual computational complexity question in an unusual way : “the infinite
version of (N)LOGSPACE # P” is consistent with the standard axioms of set theory. Apart from the trivial
separation of X1 and I} (NP and co-NP) on structures of cardinality x > w, little was known. Fortnow,
Kurtz and Whang [4] pointed out an open communication complexity problem whose infinite version Miller
[13] had proved to be independent. As far as we know, our results are the first known relative consistency
results for infinite versions of complexity questions, for which the infinite versions were not directly connected
to already known relative consistent propositions in set theory.

Note that the relative consistency of the infinite case does not imply anything about the provability of
the usual computational complexity questions. What it does tell us, is that any proof that LOGSPACE and
P correspond (in the usual finite case meaning) will not carry over to the infinite case.

As indicated above, the infinite separation of NP and co-NP is straight forward : it is a known fact from
set-theoretical absoluteness study that ¥ and II} separate on infinite structures, e.g. “a is an ordinal”.
Of course, the separation of NP and co-NP on infinite structures also implies, because P and PSpPACE
are closed by complementary, the separation of P and NP, P and co-NP, NP and PSPACE, co-NP and
PSPACE, and obviously also the separation of classes contained in P and of classes containing NP or co-NP
such as LOGSPACE and NP (co-NP), P and PSpACE. Thus the only non-trivial case (when considering the
combinations of the above mentioned complexity classes) on infinite structures is in comparing (N)LOGSPACE
and P.

The complexity classes that are appropriate for our method are those that verify certain conditions, named
(%), which are given in the following section. The two complexity classes C and C' must be inclusion-wise
comparable (hence NP and co-NP are not appropriate), the lower complexity class C must be logically
characterizable on ordered finite structures and C' must be characterizable in a certain precise way (as
MONOTONE-FO[OPERATOR] also on ordered finite structures) , that most of the usual computational com-
plexity classes verify. Moreover, the two fixed point logics on first order definable functions must separate on
finite structures (that are not necessarily linearly ordered). (N)LOGSPACE and P verify those (x) conditions
as well as all of the above complexity classes (apart from co-NP for which we do not know). Of course, there
is nothing surprising in obtaining the relative consistency of a provable proposition. In the rest of the paper,
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2 GREGORY LAFITTE AND JACQUES MAZOYER

we strive to show the relative consistency of the separation for classes verifying the conditions detailed above
and not only for (N)LOGSPACE and P.

Note that the result is indeed about the consistency of the separation of all infinite versions of the
complexity classes that verify certain precise conditions. One of those is that the greater complexity class
be logically characterizable by some fixed point operator on functions that are monotone for inclusion.
Any infinite version of that fixed point operator is suitable as long as we keep the restriction to monotone
functions. And so, we not only prove the consistency of the separation for fixed infinite versions of suitable
complexity classes but mainly the consistency of the separation of all the suitable infinite interpretations.
When we fix the infinite interpretation and obtain the consistency result, most of the time (at least for easy
interpretations that naturally come to mind) the separation is provable and not only relatively consistent.
Nevertheless it is quite surprising that in all cases, the separation is consistent. Those results are thus
particularly interesting in the prospect of obtaining some transfer theorems between certain infinite and
finite propositions, which could then give us hints on the finite usual case.

For the proof, we fix C,C’ that verify our conditions. We then compare MONOTONE[OPERATOR] and C. We
show that if the two logics correspond on certain partially ordered infinite structures, then the cardinality of
those structures is an inaccessible? cardinal. This means that on structures of any infinite cardinality apart
(perhaps) from inaccessible cardinals, the logics separate. We thus compare logics on structures of a certain
cardinality or greater. This is known to be the same® as comparing them on any structure.

Forcing arguments tell us that it is consistent with set theory, adjoined with some set-theoretical assump-
tions and “there is no inaccessible cardinal”, that every monotone (according to a particular convenient
partial order) function be definable in first order logic. Hence we get the consistency of the separation of
our complexity classes on infinite partially ordered structures with the axioms of set theory.

Considering large cardinals in this context is the crucial point in reaching consistency results. It had
already been considered in the study of precise fixed point operators on arbitrary structure. When one has
an operator function [' on subsets of a countable set X, the closure ordinal |I'| is the smallest ordinal a
such that A,11 = I'(4,) where A starts with (), on which we transfinitely iterate I'. If we have C, a set of
operators of a certain form on P(X), then |C| = sup{|I'| : ' € C}. Gandy (unpublished) has first shown
that |I19| = wy (operators that are definable by a 19 formula). Then Richter [14] obtained characterizations
of certain natural extensions of II? in terms of recursive analogues of large cardinals. In particular, it was
shown that even |II9| is much larger than the first recursively Mahlo ordinal, the first recursively hyper-
Mahlo ordinal, etc. Aczel and Richter proved some recursive analogues of large cardinal characterizations
of [II%] and of |Al|, |II1| and |X}|. So it was predictable that we could perhaps obtain large cardinals when
considering fixed point operators on subsets of non-countable sets. But again, the fact that we obtain large
cardinals comes mostly from considering all fixed point operators with little requirements on their forms.
The more important requirement of being definable is taken care of afterwards, by forcing techniques.

1. APPROPRIATE COMPLEXITY CLASSES

The following definitions remind us to which logic a complexity class corresponds and vice versa. To get
a much better overview of the descriptive study of complexity through finite model theory, the reader is
invited to consult [2].

Let us recall some descriptive complexity results. The computational complexity class P is logically
characterized by first order logic enhanced by a fixed point operator. A fixed point operator takes a first-
order definable* function, called operator function, F on 29°™2n and gives a new relation [OP F|] such that®
[Op F|z if and only if T belongs to the fixed point (if it exists, otherwise (}) of the iteration of F' starting
from 0 (0, F(0), F(F(()),...). To ensure that we have a fixed point, we can oblige the fixed point operator
function to be inductive (that is X C F'(X)) and this can easily be done by transforming the formula ¢ used

2This is one example of a large cardinal. Large cardinals are not only unbelievably greater than any cardinal you could
possibly think of, but their very existence is also not provable in (independent of) set theory. See Kanamori and Magidor
[12, 11] for a background on large cardinals, their properties and relative consistency strengths.

3Let K be a class of ordered structures. Cm = {A € K | |A| > m}. For any usual complexity class C, K € C iff K, € C.

4F is definable if there is a first-order formula ¢, with free first-order variables x1,z2,...,z; (noted Z) and second-order
variable X, such that F'(X) is the set of T which verify ¢(Z, X).

5T is x1,...,xy for a certain k.
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to define the operator function to XT V ¢(Z, X). First order logic enhanced by this operator is called the
inductive fixed point (IFP) logic, which characterizes P on finite linearly ordered structures.

Gurevich and Shelah [8] have shown that this logic is equivalent to first order logic enhanced by least fixed
points, which gives for an F' (derived again from ¢ as above) its least (according to the subset order) fixed
point starting from (J. It has been shown that those fixed points are obtained by monotone functions (for all
X,Y subsets of the domain, X C Y implies F(X) C F(Y)), which are described by formulas positive in X
(loosely speaking, there is an even number of — before each occurrence of X). This is the logical description
of P that we use.

Abiteboul, Vardi and Vianu [1, 2.2] found similar logical descriptions for NP and PSPACE with the use
of inflationary fixed point operators. By using Gurevich’s and Shelah’s techniques in [8], it seems straight
forward to show from those later logical descriptions that NP and PSPACE are characterizable by fixed point
logics on functions that are monotone (for C) and definable in first order logic.

Another fixed point operator that can be defined is the (non-deterministic) transitive closure operator,
which (over first order logic) captures the complexity class (N)LOGSPACE (see [2]).

P, NP and PSPACE are thus characterizable by fixed point logics on functions that are monotone (for C)
and definable in first order logic. We use the notation MONOTONE — FO[OPERATOR] for such logics, where
OPERATOR is different depending on the complexity class we are characterizing. There may be multiple
fixed point operators extending MONOTONE — FO (as it is the case for NP and PSpPACE), but it does not
affect our study.

1.1. Definition. Working on an ordered structure .4, we consider functions from 24" to 24" We say that
such a function F'is :

e monotone if forall X CY, F(X) C F(Y);
e definable if there is a first order formula ¢(z1, ..., zk,u, X,Y) such that F(R) = {(ay,...,a;) | A=
olai,...,ax, b, R,S]}, where b and S are interpretations of 7 and Y.
We can now define the following logics : (MONOTONE—)FO[OPERATOR]| contains first order logic and is
closed under operation OPERATOR (which to every function F assigns OPERATOR[F], a k-ary relation on A)

on (monotone) definable functions : A = [OPERATOR FJE[b] if and only if (¢1[b], ..., tx[b]) € OPERATOR[F].

To be able to go through the following section, the two complexity classes, C and C’ containing C, that
we compare should verify the three following conditions :
e C is characterizable by a FO[OPERATOR®] logic;
(%) e (’is characterizable by a MONOTONE — FO[OPERATOR®] logic;
e FO[OPERATOR®] < FO[OPERATOR®] on finite (not necessarily ordered) structures.

Hence apart from all known, thus relatively consistent, infinite separation results such as NP# co-NP, the
following are interesting possible computational class combinations : LOGSPACE C P and NLoGSprACE C P.
The third condition is a known result for (N)LOGSPACE and P in finite model theory (see [2][7.6.22]).

In the following, we compare, as indicated previously, the infinite versions of the logics behind usual
complexity classes that verify the above (x) conditions and therefore we do not talk anymore about the
complexity classes themselves.

2. u(L), v(L) AND STRONG LIMIT CARDINALS

In the remainder of this paper, as we compare logics, we actually compare them on infinite partially
ordered structures.

Our goal is to show that “MONOTONE — FO[OPERATOR®] is not equal to a certain class C on infinite
structures” is consistent with ZFC. To begin with, we are going to show that if MONOTONE[OPERATOR®]
and C correspond on k-structures (structures of cardinality k), then x is a strong inaccessible cardinal.

MONOTONE on a structure A is the class of functions from 24* to 24* which are monotone (not necessarily
definable).

Let £ = (L,<,...) be a partially ordered structure. We take the structure A = (A, <,...) to be the
power set of £, with < being defined as a suitable combination of < (pointwise) and C (we will precisely
define 5 when we come to v’ later on). We can then use A to shift the comparison of the logics to the
comparison of the functions used in the logics’ fixed point operators.
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We show that if there is a structure L (by abuse of language, L also denotes the structure £) where the
inclusion of our two logics is not proper, then the cardinality of that structure is an inaccessible cardinal
(strong limit regular cardinal).

Such a structure, where every monotone function with an OPERATOR® operator is equivalent to a formula
in C, will be called a nice structure.

The approach consists in studying the properties of some cardinals p(L) and v(L), where L is a partially
ordered set with certain properties, which are defined below.

We now define some of the notations that we hereafter use.

2.1. Definition. Let (L, <) be a partial order.

(1) We say that a set A C L is “co-well-ordered” iff (A, >) is a well-ordered set.
(2) We call aset A C L “uniform” iff A is either an antichain, or a well-ordered chain, or a co-well-ordered
chain.

First, let us now recall some common set theoretical definitions (see [10]) to be used later on :

2.2. Definition. For any cardinals «, A,

e kT is the least cardinal > k. k is a successor cardinal iff K = AT for some \. & is a limit cardinal iff
k > w and is not a successor cardinal.

Kk is a strong limit cardinal iff VA < &, 2} < k.

if f:k— A, f maps & cofinally iff ran(f) is unbounded in A (V€ < A, 3y € ran(f), £ < 7).

the cofinality of A (cf(\)) is the least x such that there is a map from & cofinally into A.

k is regular iff cf(k) = k (singular otherwise).

K is a strong inaccessible cardinal iff k is a regular strong limit cardinal.

A strong inaccessible (which is sometimes called inaccessible) cardinal is called a large cardinal (see [12]).
Its existence is independent of the axioms of set theory.

A part of the study of p and v is from [7], it is adapted and modified for our purpose. Let (L,<) be
a partial order. We try to get some information on the structure of L by considering certain “cardinal
characteristics” (L) and v(L), which are defined as follows:

2.3. Definition. (1) u(L) is the smallest cardinal p such that there is no uniform set A C L of cardinality

u. Hence, k < u(L) iff there is a uniform subset A C L of size k.

(2) pn(L) = p(L™) for n > 0.

(3) v(L) is the smallest cardinal v such that there is no family (f; : ¢ < v) of ¥ many pairwise incomparable
(pointwise) monotone functions from L to L.

(4) vy, (L) is the smallest cardinal v such that there are no pairwise incomparable monotone functions
(fi:i<w) from L™ to L.

(5) v(L1,Ls) is the the smallest cardinal v such that there are no pairwise incomparable monotone
functions (f; : i < v) from Ly to Ls.

(6) oo =sup{pn : n € w}, Voo = sup{v, : n € w}.

From the previous definitions, we trivially have that for all n € w, p,, < pp+1 and vy, < Vpyg.
2.4. Fact. Let L be infinite. Then u,(L) < |L|* and v(L) < (2IFh)*.

Our goal is to see the link with large cardinals, in particular strong inaccessible cardinals, and how those
relations can be used to get a hint about (L) and v(L). The partition relations (see the proof of the following
proposition) help us in understanding p and we will see later how this gives us a better understanding of v.

2.5. Proposition. Let (L, <) be a partial order.

)
)
) If L is infinite, then u(L) > Ny.

) If k is a strong limit cardinal, then k < p(L) iff k < |L|.
)

)
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Proof. (a) Write p for (2¢)*. Let (a; : i < p) be distinct elements of L, and define F : [p]> — {<,>,=,]|}
by requiring F'(i,j) = “comparability® of a; and a;” whenever i < j.

To go ahead, we use partition relations’. There are some well-known partition relations such as Ramsey’s
theorem and most of them are from Erdds (see [3] for a detailed exposition from which the following partition
relations are taken) :

(1) (Ramsey) For any natural number k, Xo — (Ro)3.
(2) (Erdés, Rado) For any infinite &, (2°)* — (k1)2.
(3) (Erdds, Rado)
(a) If  is an infinite cardinal, k finite, then (2<%)* — (k)3.
(b) If x is a strong limit cardinal, then K™ — (k)3.
The Erdés-Rado partition relation (2) promises us an F-homogeneous set {ic : ( < kT } of size £+, which
naturally induces a uniform set {a; : { < £} of the same cardinality.
(a’) follows from (a).
The proofs of (b) and (d) are similar, using (1

and (3), respectively, instead of (2).
(c) easily follows from fact 2.4. (e) follows from (c)

c) and (d).
O

And the following facts are well-known results, proved using an independence lemma of Shelah and
Goldstern. It gives an evaluation (lower estimates) of v for simple (uniform) sets that we use in order to
evaluate u, as soon as we have some strong relation between v and p.

2.6. Fact. (a) If A is uniform, |A| > 2, then v(A4) > 2.
(b) If A is uniform, |A| = k > Vg, then v(A) > 2%, i.e., there are 2" many pairwise incomparable
monotone functions from A to A.
(c) If A is an antichain, |A| = k > No, then 2® < v(A,{0,1}), i.e., there are 2¥ many incomparable
(necessarily monotone) functions from A into the two-element set {0,1}.

3. RELATIONS BETWEEN g AND v

Recall that our final goal is to compare C and C' = MONOTONE — FO[OPERATOR®] that verify the
(%) conditions. We first want to show that if C and MONOTONE[OPERATOR®] correspond on structures of
cardinality , then & is a large cardinal.

We finally investigate the relation between p and v. It turns out to be slightly simpler if we look at pioo
and v, first.

First we show in proposition 3.1 that the existence of many incomparable monotone functions from L™ to
L (k < v,(L)) implies the existence of a large antichain in some L™ (k < p;, (L)), assuming that L is nice.
(This is actually the only place in the whole proof where we talk about nice structures rather than general
partial orders.)

Then we show in lemma 4.1 that a large (anti)chain in L™ (k < pm(L)) implies the existence of very
many incomparable monotone functions from L™ to L (2" < v,,(L)).

Finally, in theorem 4.2, we combine proposition 3.1 and lemma 4.1 to show that u = po, must be a strong
limit cardinal.

First, we need to precise the underlying partial order in A = (2, <). It is defined such that any monotone~
function can effectively be used with the OPERATOR® operator of C’.

a<xb iff aCbanda<b\a

and a new incomparability notion (completely independent of the incomparability due to <) :

aldb iff VeeaVdebd c|d

6 «“comparability of a and b” is <, >, = or || whenever respectively a < b, a > b, a = b or a||b.

"Let k, A and ¢ be cardinals. The “partition symbol” A\ — (k)2 means: whenever F : [L]?> — C, where [L]? is the set of

unordered pairs from L, |L| = A, |C| = ¢, then there is an F-homogeneous set K C L of cardinality k, i.e., a set K such that F
restricted to [K]? is constant.
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We now introduce v'(L) : it is the smallest cardinal v’ such that there is no family (f; : ¢ < v') of pairwise
incomparable? monotone~ functions from A = 2% to A. In the following, when considering elements of A,
incomparable stands for incomparable?. Trivially, we have v(L) < v/(L). We define also v, (L) = v'(L") as
we did for u,, and v,,.

We could as well introduce v"(L) as the smallest cardinal such that there is no family of pairwise incom-
parable monotone functions definable in first order logic but we would then get v" < v’ which would not be
of any help. So we decide to stick to monotone functions and we will end up with definable functions later
on.

3.1. Proposition. Let (L, <) be a nice structure, k a cardinal of cofinality > cf(2%°). If k < v/, (L), then
K < floo(L).

Proof. Let us assume & < v,(L).

So, let (f; : i < k) be a family of pairwise incomparable monotone functions from 2-" to 2~. Since £ is a
nice structure, each of these functions with an OPERATOR® operator can be written as ¢; in C. Thus, for each
i there is some natural number k; and a definable function g;(Z,y1,... ,yr;) and a ks-tuple b* = (bi,... ,b};i)
such that

t; = [OPErATORDy;] (DY)

Since there are only < 2%° many pairs (¢;, k;) and we have assumed cf (k) > cf(2%°), we may assume that
they are all equal, say to (t*, k*)._But then (b' : i < k) must be pairwise incomparable in 2Lk*, because, with
our assumptions on C and C', if b and &’ were comparable then f; and f; would be comparable. Hence we
have found an antichain of size & in 2 . And by definition of 2, this implies that we also have an antichain

of size k in L*".
O

4. MAIN RESULT

To show the relative consistency of the infinite versions of C # MONOTONE[OPERATOR®], we first, show
(using all the previous lemmata) that the cardinality of L is necessarily a strong limit cardinal and then
using a lemma of Goldstern and Shelah, that it is also regular.

In order to show the next important lemma, it is necessary to have a bounded (with a smallest and a
greatest element) structure, which we have because of the implication of the (x) conditions on nice structures.

4.1. Lemma. Let (L,<,0,1) be a bounded partially ordered structure, k an infinite cardinal. If k < p, (L),
then 28 < v, (L). In particular, k < poo implies 25 < vy .

Proof. Let A C L™ be uniform of size k.

Case 1: A is a chain.

If A C L™ is well-ordered of order type &, then there is A’ C L, also well-ordered of order type x%. So,
without loss of generality, n = 1.

By fact 2.6, v(A) > 2".

For every complete partial order A C L such that A C A, every monotone map f : A — A can be extended
to a monotone map f : L — A°. If f, g are incomparable, then so are f, g.

Let A= AU{0,1}. Then since A is a complete partial order, we get v(L) > v(A). Hence v(L) > 2~.

Case 2: A is an antichain. Use fact 2.6(c).

4.2, Theorem. If L is infinite and nice, then

(a) poo(L) must be a strong limit cardinal,
(b) m(L) = poo (L)
(¢) L] = p(L).

8Let a’ = (a’(1),...,a’(n)) for i < k, and i < j = @’ < a@’. For each k € {1,...,n} the sequence (a’(k) : i < k) is weakly
increasing. If the sequence (a’(k) : 4 < k) does not contain a strictly increasing sequence of length &, then it must be eventually
constant. However, this cannot happen for every k € {1,... ,n}.

f(z) =sup{f(y) : y € dom(f),y < =}
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Proof.  (a) If k < poo (L), then 2% < v (L) by lemma 4.1. So, 22" < v/_(L). Now 22" always has cofinality
greater than 280 > cf(2%0), so we get 22 < puoo (L) by proposition 3.1. And hence 2% < oo (L).
(b) Assume that u(L) < peo(L). Let A = 22" < ftoo(L). By proposition 2.5, |L| < 2#E) < X so
pn(L) < |L|T < Afor all n € w, hence ps (L) < A, a contradiction.
(c) Use proposition 2.5(e): Let k = p(L). From proposition 2.5(c) we conclude £ < |L|, and from
proposition 2.5(d), we conclude x > |L|.
o

We have already shown that for a nice structure L the cardinal characteristic x(L) must be a strong limit
cardinal. Now we need to show that p(L) must be regular.

Letting k := u(L), a lemma of Goldstern and Shelah [7, 4.1] shows that the singularity of x would imply
the existence of > k many incomparable monotone functions, and we show from there that this would imply
w(L) > k.

4.3. Lemma. Let (L,<,0,1) be a bounded partially ordered structure, and let k be a singular strong limit
cardinal, k < |L|.

Then v(L) > k.

If moreover cf (k) = No, then we even get v(L) > 2.

Proof. See [7, 4.1]. O

4.4. Theorem. If (L,<) is a nice structure, then u(L) = |L| is an inaccessible cardinal.

Proof. Let k = pu(L). From theorem 4.2, we know that & is a strong limit, and that |L| = k. Assume that &
is singular.

First, let us assume that cf(x) is uncountable. The previous lemma 4.3 tells us that v(L) > &, so
V(L) > 2%. Now, we know that  is a strong limit cardinal and so because of its singularity, 2¢1%) < g.
Moreover, cf(k) > g, so 2¢(%) > 2R0 > ¢f(2%0) and by Konig’s theorem, cf(2%) > k > cf(2%°). We can then
apply our proposition 3.1 : s (L) > 2%, a contradiction.

Now we consider the second case: cf(x) = Rg. Here lemma 4.3 tells us v(L) > 2% and so v'(L) > 2%".
Since 22" has cofinality > 280 > cf(2¥¢), we can again apply proposition 3.1 and again get pioo (L) > 22" > &,
a contradiction.

We then know that L has a strong inaccessible cardinality because |L| = p(L) when L is infinite and
nice. (]

4.5. Remark. Note that the cardinality of a nice structure cannot be a weakly compact cardinal.

4.6. Remark. Note also that this result means that the cardinality of our structure A will be the cardinality
of the powerset of a large cardinal, which, of course, cannot be anything else than a large cardinal itself.

Theorem 4.4 tells us that “MoNOTONE[OPERATOR®] is not equal to C on any infinite structures” is
consistent relative to ZFC. Recall that our goal is to compare C to MONOTONE — FO[OPERATOR®]. We are
able to come to our ends through the following modified forcing theorem of Goldstern and Shelah [6]. It is
easily shown that our partial order < (from A) still verifies the forcing conditions of the theorem whenever
we have an original partial order < (from £) that verifies them.

4.7. Theorem. The statement

“There is a partial order (P,<) such that all monotone~ functions f : P — P are definable in
P?}

is consistent relative to ZFC. Moreover, the statement holds in any model obtained by adding (iteratively)
w1 Cohen reals to a model of CH.

Hence we can reach our goal :

4.8. Theorem. “MONOTONE—FO[OPERATOR®] is not equal to C on some infinite structure” is consistent
relative to ZFC.
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Proof. “(Strong) inaccessible cardinals do not exist” is consistent with the continuum hypothesis and also
with Cohen reals. Therefore it is consistent with “MONOTONE = MONOTONE—FO on a particular structure”.
And so we have, by the previous theorem and by theorem 4.4 that “on this particular structure, MONOTONE—
FO[OPERATOR®] # C” is consistent with ZFC. O

5. CONCLUDING REMARKS

The existence of structures, such as in the previous section, cannot be derived from the “usual” axioms
of mathematics, as codified in the Zermelo-Fraenkel axioms for set theory. Moreover, also certain additional
assumptions such as the (generalized) continuum hypothesis are not sufficient to prove the existence of such
structure, or in other words, the theory ZFC+ GCH + “there is no infinite such £” is consistent. In fact, the
well-known consistent theory ZFC + “there is no inaccessible cardinal”, a natural extension of ZFC, proves
that there is no such £ and a fortiori that the involved logics separate on all infinite structures.

One natural question is then to know if those questions, in the infinite case, are independent of the axioms
of set theory. This does not appear to be an easy task.

One can also try to give some interpretation of our results in terms of special “infinite” Turing machines.
Infinite time Turing machines have been considered in the past in various ways. Hamkins and Lewis [9]
considered countable tape machines that at limit ordinal stages of the computation make their cell values the
lim sup of the cell values (0 or 1) before the limit and enter a special distinguished limit state with the head
of each tape plucked from wherever it might have been racing towards and placed on top of the first cell of
that tape. At successor ordinal stages, they behave as classical Turing machines. Hamkins and Lewis also
obtain some recursive analogues of large cardinals. For example, the supremum of the writable (countable
ordinals are somehow coded in reals) ordinals is recursively inaccessible : it is recursively IIi-indescribable.
So again, the large cardinals were predictable for special machines with non-countable tapes. With specific
special infinite time and space Turing machines, one can give analogues of usual complexity class definitions
using ordinal arithmetic (polynomial, logarithmic ... ) and even obtain the same logical characterizations
as in the finite Turing machine case. In this infinite Turing machine framework, our result then states that
the separation of most complexity classes is relatively consistent with set theory for any infinite analogue
of complexity class definitions, with the only requirement that our (x) conditions on the classes (finite and
infinite versions) are met. What do the (%) conditions mean in this Turing context?

Another open question is whether there are some other complexity classes, apart from LOGSPACE,
NLOGSPACE and P, that verify the (%) conditions and whose separations are not trivial in the infinite
case.
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