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Abstract

We first prove that the set of domino tilings of a fixed finite figure is a distributive
lattice, even in the case when the figure has holes. Afterwards, we give a geometrical
interpretation of the order given by this lattice.

We extend these results to other types of tilings (calisson tilings, tilings with bicol-
ored Wang tiles).

1 Introduction

During the last ten years, A lot of advancements have been done about the study of tiling.
Especially, W. P. Thurston [15], using works of J. H. Conway and J. F. Lagarias [4], intro-
duced the notion of height functions, which encode domino tilings and calisson tilings of a
polygon P.

The notion of height function appears as a very powerful tool in tiling study. It has
later been extended by different authors [6] [11], to study tilings algorithms for other sets of
prototiles.

For domino tilings, height functions induce a lattice structure on the set of tilings of a fixed
polygon (see [13]). From this structure, some important results are obtained : linear time
tiling algorithm, rapidly mixing Markov chains for random sampling a tiling, computation
of the number of necessary flips (local transformations involving two dominoes) to pass from
a fixed tiling to another fixed tiling.

Notice that dominoes have a particular importance for theoretical physicists : for them,
a domino is seen has a dimer, a diatomic molecule (as the molecule of hydrogen), and each
tiling is seen as a possible state of a solid, or a fluid.

The present paper tries to generalize previous results to figure which are not polygons,
i. e. figures with holes. This is done by the introduction of an equilitbrium function on edges
of cells of the figure. With this tool, we prove that the set of tilings of any finite figure has
a structure of distributive lattice. Afterwards, we give a geometrical interpretation of this
structure : to do it, we use classical local flips, but, moreover, we also have to introduce two
new tools : flips around holes, and reduction of figures by critical cycles.



We finish proving that those ideas can directly be adapted for other types of tilings :
calisson tilings and tilings with bicolored Wang tiles.

2 Tilings and induced height functions

2.1 The square lattice

Let A be the planar grid of the Euclidean plane R%. A wvertex of A is a point with both
integer coordinates. Let v = (z,y) be a vertex of A.

A cell of A is a (closed) unit square whose corners are vertices. Two cells are 4-neighbors
(respectively 8-neighbors) if they share an edge (respectively (at least) a vertex).

Two vertices of A are neighbors if they both are ends of a same edge of a cell of A. Hence,
each vertex v has four neighbors which are canonically called the Fast, West, North and
South neighbors of v. An ordered pair of neighbor vertices is called an arc or an edge of A.

We assume that cells of A are colored as a checkerboard. By this way, we have black cells
and white cells, and two cells sharing an edge have different colors. For each arc (v,v') of A,
we define the spin of (v,v") (denoted by sp(v, ")) by :

e sp(v,v') = 1if (v,?) if an ant moving form v to v’ has a white cell on its left side (and
a black cell on its right side),

e sp(v,v') = —1 otherwise.

A path of A is a sequence (vg, vy, ..., v,) of vertices such that for each integer i such that
0 <7 < p, viy1 is a neighbor of v;. This path is a cycle if, moreover, v, = vy. The cycle is
elementary if v; = v; and @ # j imply that {7, j} = {0, p}.

2.2 Figures

A figure F of A is a finite union of cells of A. The set of edges of F' (denoted by Er) is the
set of arcs (v,v") such that the line segment [v, '] is a side of a cell of F.

We state ' = F} U Fy ... U F,, where, for each integer i, F; is a 4-connected component
of F. For each connected component Fj;, we fix a vertex w; of its boundary (for example, w;
can be chosen as the leftmost vertex of the lowest vertices of Fj).

The only infinite connected (for the 8-connectivity) component of R? — F' is denoted by
H,,. The other ones are called holes of F'. A connected figure such that H,, is the only
connected component of R?2 — F is called a polygon of A.

Because of problems due to both types of connectivity for cells, we replace (until the end
of the paper) each vertex v of F' such that each edge issued from v is in the boundary of F’
by two vertices v; and v, each of them being connected two exactly two neighbors of v (see
figure 1). By this way, the contour of each hole is an elementary cycle of F'.

2.3 Tilings

A domino is a figure formed from two cells sharing an edge, which is called the central edge
of the domino. A tiling T of a figure F' is a set of dominoes included in F', with pairwise
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Figure 1: vertex duplication according to 4-connectivity of F' and 8-connectivity of R? — F.

disjoint interiors (i. e. there is no overlap), such that the union of tiles of T equals F' (i. e.
there is no gap).

Definition 1 Let T be a tiling of a figure F and (v,v") be an arc of Ep. The T-value
(denoted by valy) is the function from Ep to Z is defined by :

e valp(v,v') = —3sp(v,v") and there exists a domino of T whose a symmetry azis is
[v, v'],

e valr(v,v'") = sp(v,v") otherwise.

The function valy is a tool to encode the tilings : for each pair (T, 7T") of tilings of F', if
valyr = valy, then we have T = T'.

Notice that for each arc (v,v") such that [v, '] is on the boundary of F', we necessarily
have valyp(v,v") = sp(v,v'), thus valr(v,v") does not depend on T.

2.4 Equilibrium values

Informally, we can say that we want to work as if F' had no hole. To to it, the informal idea
is to introduce values on edges which make disappear holes.
Precisely, this is done by the use of equilibrium functions defined below :

Definition 2 An equilibrium function (denoted by eq) is a function from Er to R such that

e eq(v,v) = —eq(v',v),

e for each elementary cycle C' = (vg, vy, Vs, v3,v4(= vg)) around a cell of F, we have :
E?ZU eq(vi, viy1) = 0

e for each hole H; let (vig,vi1,...,Vip, = Vip) be a cycle which clockwise follows the
boundary of H;. We have : 370" eq(vi g, vijy1) = — D550 sP(Vij, Vijr1)-

An equilibrium function can be exhibited using cut lines (also see [14]) as follows : (see
figure 2)

for each hole H; of F, we (arbitrarily) fix a vertical line segment L; = [p;, p] (which is
called a cut line issued from H;) of R? such that p; is the central point of a highest cell of
H;, there exists a positive integer n; such that p, = p; + (0,n;), the vertex p. is not in F,
and, for each integer such that 0 < n! < n;, the point p; + (0, n}) is the central point of a cell
of F'. Hence, the point pj is the central point of a cell of another 8 connected component H;
of R — F, with j # i (and, possibly j = 0o).



step(l) =-4

step(2) =4

step(3) = 8 +step(l) +step 2 =8

Figure 2: Computation of an equilibrium function by step values.

We say that H; is the (immediate) predecessor of H;. By this way, we construct a
directed tree whose vertices are 8-connected components of R?> — F. This tree is deep-rooted
in H,. We inductively define the step value of a hole H; (denoted by step(i)) as follows :
let C; = (vig, Vi1, .., Vip,(=1vip)) be a cycle which (clockwise) follows the boundary of H;.
We have :

Pi-1
step(i) = — Z sp(Vij, Vij+1) + Z step(J)
=0

j s.t. H; is the predecessor of H;

We now can define the equilibrium value of an arc (v,v') by :

e eq(v,v') = step(i) if v' is the East neighbor of v and the line segment [v, v'] crosses the
cut line L;,

e eq(v,v') = —step(i) if v' is the West neighbor of v and the line segment [v, v'] crosses
the cut line L;,

e cq(v,v") = 0 if the line segment [v, v'] crosses no cut line.

This function obviously satisfies the conditions of the definition.
In the following of the paper, we assume that an equilibrium function in F' is fixed.

2.5 Height functions
The height difference of an arc (v, v") of Ep (denoted by hdr(v,v")) is defined by :

hdr(v,v") = valr(v,v") + eq(v,v")



Let (vo,v1,...,v,) be a path of the figure F' (i. e. for each integer ¢ such that 0 < i < p,
(vi,v41) is in Ep) and T be a tiling of F'. The height difference of this path for T is the
sum : Zf;ol hdr(vi, viy1)-

Proposition 1 Let T be a tiling of a figure F'. The height difference of any cycle of F' for
T s null.

This proposition is a generalization of a theorem from J. H. Conway [4] about tilings of
polygons.

Proof. (sketch) It suffices to prove it for elementary cycles since the height difference of each
cycle is the sum of the height differences of the elementary cycles which compose it. This is
done by induction on the number of cells of A enclosed by the cycle.

We first treat the case when the cycle follows the boundary of a hole H;. This case is easily
treated, from the definition of equilibrium functions. We also verify that the proposition
holds for elementary cycles of length 4 around a cell.

Now, we can apply the induction argument. If we are not in the cases treated above,
then the area enclosed by the cycle can be cut by a path of F', which induces two new cycles,
each of them enclosing less cells of A than the original cycle. Thus, by induction hypothesis,
the height difference of both induced cycles is null, from which it is easily deduced that the
height difference of the original cycle is null. O

This proposition guarantees the correctness of the definition below.

Definition 3 Let F' be a figure with a fived equilibrium function, with F' = FyUF,...UF,,
where, for each integer i, F; is a -connected component of F', with a fixed vertex w; on the
boundary.

For each tiling T, the height function induced by T (denoted by hr ) is the function from the
set Vi of vertices of cells of F' (once necessary duplications have been done) to the set R of real
numbers, defined by hr(w;) =0 and, for each arc (v,v") of Er, hr(v') — hr(v) = hdp(v, ).

Proposition 2 For any pair (T,T") of tilings and each vertexr v of F, we have : hy(v) —
hT/(U) = 0[4]

Proof. obvious by induction on the length of a shortest path from w; to v. O

Proposition 3 Let (T,T") be a pair of tilings of F. If, for each vertex v of F, hr(v) =
hpi(v), then T =T'.

Informally, this proposition means that a height function is a way to encode a tiling.
Proof. Let (v,v") be an arc of F such that sp(v,v") =1 . We have two cases :
e the edge joining v to v’ cuts no domino of T'. Thus, hr(v') — hy(v) = eq(v,v') + 1,

e the edge joining v to v’ is a symmetry axis of a domino of 7. Thus, hy(v') — hr(v) =
eq(v,v") — 3,



Thus, the tiling 7" is formed from tiles whose central axis is a segment [v, v] such that
|hr(v") — hp(v) — eq(v,v")| = 3. The same argument can be used for 7', which yields :
T=T. O

The above proposition permits to define the distance between tilings.

Definition 4 Let (T,T") be a pair of tilings of F'. The distance A(T,T") between T and T'
15 defined by

AT, T") = > |hr(v) — by (v)] + > \hr(H;) — he (H;)|

v 18 interior of F H; is a hole of F

where |hp(H;) — hy(H;)| denotes the common value |hy(v) — by (v)| for any vertez v of
the boundary of H;.

The proposition below gives a characterization of height functions

Proposition 4 Let f be a function from the set of vertices of F to the set Z of integers
such that :

b f(wz) = 0;
e for each arc (v,v") of Er such that sp(v,v') = 1, either f(v') — f(v) =eq(v,v") + 1 or
fW') = fv) = eq(v,0") =3,

e if, moreover, the arc (v,v') is on the boundary of F, then f(v') — f(v) = eq(v,v") + 1.
There exists a tiling T such that f = hy(v).
Proof. Let (vg,v1, v9,v3,v4 = vg) be a cycle around a white cell, counterclockwise. The second
constraint of the proposition implies that we have three vertices v; such that f(v;y1)— f(v;) —
eq(vi,viy1) = 1 and a unique vertex v; such that f(v;41) — f(vj) — eq(v;,vj41) = —3. One
easily obtains a symmetric condition for black cells.

Thus, the set T' of dominoes which are cut into both halves by an edge whose extremities,

say v and v', are such |f(v) — f(v') — eq(v,v")| = 3, is a tiling of F.. One obviously verifies
(by induction on the distance from w; to v) that, for each vertex v of F', f(v) = hp(v). O

2.6 Reduction

The height functions can sometimes be used to get a decomposition of the figure. It is the
reason of the definition below.

Definition 5 A clockwise elementary cycle C' = (v, v1,...,v, = vg) of F is direct critical
(respectively indirect critical ) if

p—1

Z sp(vi, vit1) + €q(vi, vit1) =0
i=0

and, for each vertex v; of C', at least one of the following condition holds :
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e sp(v;,viy1) =1 (respectively sp(vi, viy1) = —1),
e the cell at the left side of the arc (v;,v;41) is not in F.

An insecable figure is a figure with no critical cycle (except the boundary of He).

Proposition 5 Let T be a tiling of a figure F' and C' = (v, v1,...,v, = vg) be a critical
cycle of F'. The cycle C' cuts no tile of T'.

Proof. This is a consequence of Proposition 1. Notice that, for each vertex v;, hdr(v;, viy1) <
p—1 p—1 ;
(v, vi41) + (v, vig1) and 0 = 3070 hdp (v, vi41) = 3070 p(vi, Visn) + eq(vi, visy). This
yields that, for each vertex v;, hdp(v;, vi11) = sp(vi, viy1) + eq(vs, vigq)-
Thus , when sp(v;, v;r1) = 1, we get hdr(v;,vie1) = 1+ eq(vs, v;11), which means that
the edge [v;, v;41] cuts no tile of 7. O

. From this proposition, one can assume that the figure is insecable. Otherwise, the figure
is cut along critical cycles and a new figure, with more connected components, is created.
Both figures have isomorphic spaces of tilings.

We also have the corollary below, which will be used later.

Corollary 1 If F' has a critical cycle C = (v, vq,...,v, = vy) such that for each integer i
such that 0 < i < p, v; is an interior vertex of F, then there exists no tiling of F.

Proof. Let v; = (xj,y;) be the vertex of this cycle with z; + y; maximal, and, moreover,
x; minimal with the previous constraint. We necessarily have v;_; = v; + (—=1,0), vj_o =
vj—1 + (0,—1) and (on the other hand) v;;; = v; + (—1,0). Now, follow the cycle until a
vertex vjyo such that v, or # v; + (k, —k).

Vi

Vij+2k

Figure 3: Proof of Corollary 1

Let T be a tiling of F'. Necessarily, at least one tile of 7" is cut by an edge of the path
formed from the part of the cycle from v; to vj;9,. But this is impossible, from Proposition
5. Thus there is no tiling. O

3 The lattice of tilings

Height functions canonically induce an order on the set ' of tilings of the figure F. Given
a pair (T,T") of tilings of F', we say that T <, 1" if and only if, for each vertex v of F,

hT(’U) S hTI (U) .



Proposition 6 Let (T,T") be a pair of tilings of F. The functions f = inf(hr, hr) and
f' = sup(hr, hy) are height functions of tilings.

Proof. We prove this proposition for f (the proof for f’ is similar) using proposition 4. The
first and last constraints are obviously satisfied, since hy(v') — hy(v) = hy (V') — hq(v) for
each arc (v, v’) such that [v,v'] is included in the boundary of F.

Let (v,v") be an arc of Ep such that sp(v,v’) = 1. Assume that hy(v) < hy(v). Thus,
from proposition 2, we have : hrp(v) < hg(v) — 4. On the other hand, either hp(v') =
hr(v) + eq(v,v") + 1 or hr(v') = hy(v) + eq(v,v') — 3. Thus :

hr(v') < hp(v) + eq(v, ') + 1 < (hp(v) — 4) + eq(v, V") + 1 = hyp (v) + eq(v,v') — 3
Moreover, either hy (v) = hy (V') + eq(v',v) — 1 or hp(v) = hp (V') + eq(v', v) + 3, thus
hy (v) + eq(v,v') — 3 < (hp (V') + eq(v',v) + 3) + eq(v,v") — 3 = hp (V')

We have proven that if hy(v) < hy(v) then hp(v') < hy(v'). Consequently, f(v') — f(v) =
hp(v") — hy(v), which guarantees the second constraint of proposition 4.

The cases when hy(v) > hy(v) and hr(v) = hy(v) are treated with the same kind of
argument. O

In the language of order theory (see [3] or [5]), the above proposition can be said as
follows.

Corollary 2 The order <pcignt, defined at the beginning of this section, induces a structure
of distributive lattice on the set I'p of tilings of F.

Proof. Obvious. O

For the following, for each pair (T',T") of tilings of F', the tiling whose height function is
inf(hr, hr) (respectively sup(hg, hyr)) is denoted by inf(T,T") (respectively sup(T,T")).

3.1 Local Flips

We will now give a geometric interpretation of the lattice. To do it, we first have to introduce
classical local transformations on tilings usually called local flips.

Definition 6 Let T' be a tiling of F. A local maximum (respectively minimum) of T is
an interior vertex v of F such that, for each neighbor v' of v, hy(v') — hr(v) < eq(v,v')
(respectively hr(v') — hr(v) > eq(v,v')).

Proposition 7 An interior vertex v of F is a local extremum of T if and only if v is the
center of a 2 x 2 square S which is exactly covered by two dominoes of T, with a common
large side.



Proof. 1If v is a local minimum, let v and ” be the neighbors of v such that sp(v',v) =
sp(v”,v) = 1. Notice that v is the middle of the line segment [¢v', v"]. Since one cannot have
: hr(v') = hy(v) +eq(v,v") — 1, the equality hp(v') = hr(v) + eq(v,v') + 3 necessarily holds,
thus the domino whose a symmetry axis is [v, '] is a domino of 7. The same argument holds
with ¢”, which yields that S is exactly covered by dominoes of 7. A similar proof can be
done for a local maximum of 7.

Conversely, assume that S is exactly covered by dominoes of T'. One easily sees, applying
rules which define a height function, that v is a local extremum of 7. O

Definition 7 With the notations above, a local flip (see figure 4) is the replacement in T
of the pair of dominoes which cover S by the other pair which can cover S. After the flip is
done, a new tiling T, of F' is obtained.

T — |4

Figure 4: A local flip.

What are the consequences of a flip on the height function 7 For each vertex v’ such
that v’ # v, there exists a path of F' from w; (the origin vertex of the connected component
containing v') to v’ which does not pass through v. This yields that hr(v') = hr, (V).

For v, let " be a neighbor of v such that sp(v”,v) = 1. The segment [v, v"] is a symmetry
axis of exactly one domino of TUT,,, thus : {hy(v), hy, (v)} = {hr(v")+eq(v",v)+1, hy, (V") +
eq(v",v) — 3}. This yields that |hy(v) — by, (v)| = 4.

If by, (v) = hp(v)+4, then we say that the flip is going up (remark that the local minimum
v is transformed into a local maximum), and, if hy, (v) = hp(v) — 4, then we say that the
flip is going down (the local maximum v is transformed into a local minimum).

Local flips canonically induce an order on the set I'p of tilings of the irreducible figure
F. Given a pair (T,7") of tilings of F', we say that T" <y, 7" if and only if there exists a
sequence (1,14, ...,T,) of tilings of F' such that Ty = T', T, = 1" and, for each integer ¢
such that 0 <i < p—1, T;4; is deduced from T; by an upwards (local or around a hole) flip.
If T <g, T', then, one obviously has T <j.isne T'. We will prove a partial converse of this
implication.

Definition 8 Let (T,T") be a pair of tilings of F. We say that T and T' are boundary
equivalent (denoted by T = T'[6F]) if, for each vertex v of the boundary of F', hy(v) = hy(v).

Remark that if 7= T'[0 F|, then T = inf(T,T")[0F] and T = sup(T,T")[0 F]

Proposition 8 Given a pair (T,T') of tilings of F, we have T <y, T' if and only if
T Sheight T’ and T = T’[(SF]
Moreover, in such a case, the minimal number of necessary flips to pass from T to T' is

A(T,T') /4



Proof. The direct part of the first part of the proposition is obvious, after the study of flips
above. The converse part of the proposition is proven by induction in the quantity A(7,7T").
The result is obvious if A(T,T") =0 (i. e. T =T" from Proposition 3).

Now, assume that A(T,7") # 0, T <pejgne T" and T = T"[6F]. We will prove that there
exists a vertex w such that hy(w) < hy(w) (which yields that hy(w) < hp(w) — 4 from
Proposition 2), and an upwards flip can be done from 7" around w.

Take a vertex vy such that hp(vg) < hg(vg). If for each neighbor v of v such that
sp(vg, v') = —1, we have hr(v') = hr(vo) + eq(vo, v') + 3, then we are done. Otherwise, there
exists a neighbor vy of vy such that sp(vg,v1) = —1 and hy(vi) = hy(ve) + eq(vo, v1) — 1.
Thus

hy(vi) = hr(vg) + eq(vo, v1) — 1 < hyr(vg) — 4 + eq(vg, v1) — 1 = hyv(vo) + eq(vg, v1) — 5

On the other hand, either hy (v1) = hy (vo)+eq (v, v1) —1 or by (v1) = ha (vo) +eq(vg, v1) —3.
Thus hp(v1) < hge(v1). Thus, either an upwards flip can be done around vy, or the same
argument can be repeated from v; to obtain a vertex vy such that sp(vy,ve) = —1, hy(ve) =
hr(vi) 4+ eq(v1,v2) — 1, and hr(ve) < hy(v2), which permits to repeat the process.

We have two alternatives : either a vertex v;, around which an upwards flip can be done,
is obtained, or an infinite sequence (v;);en is obtained. But, since F' is finite, the second
alternative implies that there exists a critical cycle which does not meet the boundary of the
figure, which contradicts corollary 1. Thus, this second alternative cannot holds.

We now have proven the existence of a vertex w such that an upwards flip can be done
from T around w to obtain a tiling T,,. Notice that A(T,,T") = A(T,T") — 4, which proves
the first part of the proposition by induction, and, moreover, guarantees that there exists a
sequence of A(T,T")/4 flips to pass from T to T".

To finish the proof, remark that, for each sequence (T = Ty,Ti,...,T, = T') such
that, for each integer ¢ such that 0 < ¢ < p, T;,; is deduced from T; by a flip, we have
A(T,T') < 32075 ATy, Tia) = 4p. O

Corollary 3 Let (T,T') be a pair of tilings of F. We have T = T'[0F| if and only if there
exists a sequence (Ty,Th,...,T,) of tilings of F' such that Ty = T, T, = T" and, for each
integer i such that 0 <i <p—1, T;11 is deduced from T; by a (downwards or upwards) flip.

Moreover, in such a case, the minimal possible number p of necessary flips is equal to
A(T,T")/4.

Proof. The the first part of the proposition is easily proven using inf(7T,T"). The equality
is easy once it has been noticed that A(T,T") = A(T,inf(T,T")) + A(inf(T,T"),T"). O

Corollary 4 FEach equivalence class for the boundary equality relation has a structure of
distributive lattice.

Proof. Obvious. O
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3.2 Extension : flips around holes

In order to express the whole distributive lattice of tilings of the figure F' in terms of flips,
we have to introduce a new kind of flips, which make the height function change on the
boundary of holes of F. We have to limit ourselves to the case when F' is insecable (if F’
is not insecable, then F' has first to be cut along critical cycles, according to the process of
reduction until a figure insecable figure F' is obtained).

Let H be a hole of an insecable figure F' . Notice that H has neither peak (i. e. cell of F’
with three of its 4-neighbors in F') nor isthmus (i. e. cell of F whose intersection with the
boundary of H is not connected (for the classical topology)), since otherwise, a critical cycle
would appear. Thus, the figure Fy formed from cells whose a vertex is on the boundary of
H is a 4-connected elementary cycle of cells and, consequently, admits exactly two tilings.

Definition 9 Let T be a tiling of F. A hole H is a hole maximum (respectively minimum) of
T if, for each vertex v of the boundary of H, and for for each neighbor v' of v such that [v, v'] is
not on the boundary of H, hr(v') —hr(v) < eq(v,v") (respectively hr(v') —hr(v) > eq(v,v')).

Figure 5: A hole flip.

Proposition 9 A hole H of F is a hole extremum of T if and only if T contains one of the
two tilings of Fy.

Proof. If H is a hole minimum, let v and v" be neighbors such that v is on the boundary
of H, [v,v'] is not on the boundary of H and sp(v',v) = 1. One cannot have : hp(v') =
hr(v) + eq(v,v') — 1, the equality hr(v') = hp(v) + eg(v,v") + 3 necessarily holds, thus the
domino whose a symmetry axis [v, ] is a domino of 7. The set of all dominoes obtained as
above form a tiling of F;. A similar proof can be done for a local maximum of 7.
Conversely, assume that Fy is exactly covered by dominoes of T'. One easily sees, applying
rules which define a height function, that H is a hole extremum of 7. O

Definition 10 With the notations above, a hole flip (see figure 5) is the replacement in T
of the et of dominoes which cover Fy by the other set which can cover Fy. After the flip is
done, a new tiling Ty of F is obtained.

As for local flips, one easily sees that hy = hy,, except on the boundary of H and hy,, —hyr
is constant on the boundary of H. The constant is in {—4,4} and we say that the flips is
going upwards if the constant is 4.
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Proposition 10 Given a pair (T,T") of tilings of an insecable figure F', we have T <peignt T
if one can pass from T to T' by a sequence of (local or around hole) upwards flips.

Moreover, in such a case, the minimal number of necessary flips to pass from T to T' is
A(T,T") /4

Proof. The direct part of the first part of the proposition is obvious, after the study of flips
above. The converse part of the proposition is proven by induction in the quantity A(T,T").
The result is obvious if A(T,T") =0 (i. e. T =T" from Proposition 3).

Take a vertex vy such that hr(vy) < hgr(vg). If vy either is a local minimum for 7" or is
on the boundary or a hole which is a hole minimum for 7" , then we are done.

Otherwise, either there exists a neighbor vy of vy such that sp(vy,v1) = —1 and hyp(vy) =
hr(vo) + eq(vg,v1) — 1, or vg is on the boundary of a hole H such that there exists an arc
(vh,v1) with vy on the boundary of H, [vf, v1] is not on the boundary of H, sp(vj, v;) = —1
and hp(v) = hr(v)) + eq(vy,v1) — 1. In both alternatives, hr(vy) < hq/(v1). Thus, either
an upwards flip can be done around vy, or the same argument can be repeated from v; to
obtain a vertex vy such hp(ve) < hgv(ve), which permits to repeat the process.

Figure 6: construction of a critical cycle

We have two alternatives : either a vertex v;, around which an upwards flip can be done,
is obtained, or an infinite sequence (v;);en is obtained. But, since F' is finite, the second
alternative implies that a cycle can be constructed as follows : first construct paths joining
holes using a period of sequence (v;);en. This defines a subfigure F' of F' (formed from cell
”inside” the path). The cycle is the boundary of F’ (notice the cycle contains all paths
drawn above and parts of contours of holes joined). This cycle is critical, which contradicts
the fact that f is insecable. Thus, this second alternative cannot hold.

We now have proven that an upwards flip can be done from T to obtain a tiling 7}
such that 77 <peigne T'. Notice that A(77,7") = A(T,T") — 4, which proves the first part
of the proposition by induction, and, moreover, guarantees that there exists a sequence of
A(T,T")/4 flips to pass from T to T".

12



To finish the proof, remark that, for each sequence (T' = Ty, T3, ...,T, = T") such that,

for each integer ¢ such that 0 < ¢ < p, T;,; is deduced from T; by an upwards flip, we have
A(T, T') < 3075 A(T;, Tia) = 4p. O

Notice that the process of reduction can change the structure of the lattice of tilings, as
it can be seen in the example below (figure 7). At the left side, the 2 x 2 surrounded square
form the interior part of the critical cycle of the figure. After the cut is done, the figure at
the right side is obtained, formed from a cycle of cells and a 2 x 2 square.

After the cut, on the right, the tiling given by the highest tiling one of the cycle and the
lowest, of the square and the tiling given by the lowest tiling of the cycle and the highest one
of the square, are not comparable for <je;gn:.

At the opposite, before the cut, on the left, the first tiling is higher (for <j;gn:) than the
second one, even though there is no direct flip the one.

The tiling lattices are not isomorphic. A precise study gives that, on the left, the order
<height 15 a chain of four elements, but on the right, the order <j;4s is product of two chains,
each one with two elements.

Figure 7: A figure and the figure obtained after the cut along the critical cycle.

4 Extension to other types of tilings

4.1 Calisson

The same study can easily be done for calisson (i. e. tiles formed from two neighboring cells
of the triangular lattice) tilings to get similar results. In this case, local flips are induced by
both tilings of hexagons of side of unit length, and flips around holes by both tilings of the
neighboring of a hole. We only have two small differences, detailed below :

e We have two types of connectivity for triangular cells (3-connectivity for cells which
share an edge, and 12-connectivity for cells which share a vertex) . Thus, some vertices
have to be duplicated or triplicated (see figure 8).

e For the proof of corollary 1, we have two consider a part of the critical cycle with
vertices v = (x,y) such that y is maximal.

13
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Figure 8: Example of ”triplication”.
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Figure 9: A part of a critical cycle which implies that there is no tiling

4.2 Bicolored Wang tiles

The cases of dominoes is a particular case of tilings with Wang tiles (i. e. 1 x 1 squares with
colored edges, see [8] for details). We have a tiling if colors of edges or neighbors squares are
compatible.

An instance of the problem of tiling is given by a finite figure and a coloration of edges
which are in its boundary. Hence, a domino tiling is a tiling by Wang tiles with one red edge
and three blue edges, all the edges of the boundary of the figure being blue.

4.2.1 Eulerian orientations

The same study can be done for tiling with ”"balanced Wang tiles” such that each square
has two blue edges and two red edges. In such a case, we have valy(v,v") = sp(v,v’) if the
corresponding edge is blue and valy (v, v') = —sp(v,v') otherwise. This is recognizable as the
height function for Eulerian orientations of the dual lattice, called the siz-vertex ice model by
physicists [1]. This is also equivalent to the height function for three-colorings of the square
lattice, and to alternating-sign matrices [10]. We obtain similarly result as for dominoes.

4.2.2 Examples with finite height functions

For the case of ”odd tiles” (i. e. tiles with exactly three edges of the same color (blue or red)
see [8]), we have to take a height function in Z/8Z such that valr(v,v") = sp(v,v') if the
corresponding edge is blue and wvaly(v,v") = —3sp(v,v'). By our technique of equilibrium
value, we can easily prove that the set of tilings of a fixed figure has a structure of boolean
lattice (or hypercube), even if the figure has some holes.

The case of "even tiles” (i. e. tiles with an even number of blue edges and an even number
of red edges) very similar, with valy(v,v") = (sp(v,v’),0) if the corresponding edge is blue,
and valy(v,v") = (sp(v,v'), sp(v,v")) otherwise, these values are taken in Z /47 x Z/27Z.
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