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Abstract

The main idea of the “black box” approach in exact linear algebra is to reduce
matrix problems to the computation of minimum polynomials. In most cases
preconditioning is necessary to obtain the desired result. Here, good precondi-
tioners will be used to ensure geometrical / algebraic properties on matrices,
rather than numerical ones, so we do not address a condition number. We offer
a review of problems for which (algebraic) preconditioning is used, provide a
bestiary of preconditioning problems, and discuss several preconditioner types
to solve these problems. We include new conditioners, new analyses of pre-
conditioner performance, and results on the relations among preconditioning
problems and with linear algebra problems. Thus improvements are offered
for the efficiency and applicability of preconditioners. The focus is on linear
algebra problems over finite fields, but most results are valid for entries from
arbitrary fields.

Keywords: Linear algebra, randomized algorithms, black box matrix,
sparse matrix, exact arithmetic, finite fields, linear systems, rank,
preconditioner.

Résumé

L’idée principale de I’approche & base de boites noires en algébre linéaire exacte
est de ramener la résolution de problémes matriciels & des calculs de polynémes
minimaux. Dans la plupart des cas, un préconditionnement s’avére nécessaire
pour obtenir le résultat désiré. Nous parlerons de “bons” préconditionnements
quand il s’agira d’assurer des propriétés géométriques et algébriques sur les ma-
trices plutdt que des qualités numériques, donc sans relation avec un nombre de
conditionnement. Dans ce rapport nous passons en revue divers problémes pour
lesquels on utilise un préconditionnement (algébrique), proposons une classifi-
cation des différents problémes de préconditionnement et étudions plusieurs so-
lutions. En particulier, nous envisageons de nouveaux préconditionnements, de
nouvelles analyses de leurs performances et des relations pouvant étre définies
entre eux en rapport avec les questions d’algébre linéaire qu’ils résolvent. Des
ameéliorations sont donc obtenues quant & 'efficacité et I’applicabilité des pré-
conditionnements. Ces résultats se concentrent sur des matrices & coefficients
dans des corps finis mais ils s’appliquent dans le cas de corps commutatifs
quelconques.

Mots-clés: Algéebre linéaire, algorithmes probabilistes, matrice boite noire,
matrice creuse, arithmétique exacte, corps finis, systémes linéaires, rang,
préconditionnement.
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Abstract

The main idea of the “black box” approach in exact linear algebra is to reduce matrix problems to
the computation of minimum polynomials. In most cases preconditioning is necessary to obtain the
desired result. Here, good preconditioners will be used to ensure geometrical / algebraic properties on
matrices, rather than numerical ones, so we do not address a condition number. We offer a review of
problems for which (algebraic) preconditioning is used, provide a bestiary of preconditioning problems,
and discuss several preconditioner types to solve these problems. We include new conditioners, new
analyses of preconditioner performance, and results on the relations among preconditioning problems
and with linear algebra problems. Thus improvements are offered for the efficiency and applicability of
preconditioners. The focus is on linear algebra problems over finite fields, but most results are valid for
entries from arbitrary fields.

1 Introduction

In the black box approach [15] one takes an external view of a matrix: It is a linear operator on a vector space.
Information is derived from a series of applications of this operator to vectors. By contrast most matrix
algorithms are internal, involving some sort of elimination process. The black box approach is particularly
suited to the handling of large sparse or structured matrices over finite fields. This fact — well known in
the numerical computation area — has led the computer algebra community to a considerable interest in
black box algorithms for linear algebra. Many developments have been proposed to adapt Krylov or Lanczos
methods to fast exact algorithms. Wiedemann’s paper [24] was the seminal work to these developments. He
showed how to solve an invertible n x n linear systems using O(n) matrix-vector products, O(n?) additional
arithmetic operations in the entry field, and O(n) space for intermediate results. Since matrix-vector product
costs at most O(n?) operations, Wiedemann’s algorithm is asymptotically competitive with elimination. For
many problems the operator application, the matrix-vector product Av, may be economically computed both
in time and/or in space. Problems of interest may have cost O(nlog(n)), even O(n). In these cases the black
box approach is a substantial improvement over elimination. When the matrix is sparse, and elimination is

*This material is based on work supported in part by the National Science Foundation under Grants nos. CCR-9712267,
CCR-9988177 and DMS-9977392 (Kaltofen and Turner), INT-9726763 (Kaltofen and Saunders), and CCR-9712362 (Chen and
Saunders), by the Natural Sciences and Engineering Research Council of Canada (Eberly), and by the Centre National de
la Recherche Scientifique, Action Incitative no. 5929 (Villard). This text is also available as a research report of the Institut
National de Recherche en Informatique et en Automatique http://www.inria.fr.



subject to fill-in it also has the important advantage of modest space demand. Other examples are matrices
that have efficient procedures for generating their entries, for instance, the Hilbert matrix. A black box
algorithm never constructs such a matrix, hence is substantially more space efficient.

To solve several problems using the algorithms invented by Wiedemann and his followers the black box
coefficient matrix needs to be preconditioned. As detailed in sections 2 and 3, the preconditioning allows
to reduce problems to the computation of minimum polynomials and leads to faster solutions. Common
preconditioners, some already known to Wiedemann, are matrix pre- and postmultipliers. These multiplier
matrices must have efficient matrix-vector products in order to avoid a too high slow-down of the matrix-
vector product for the resulting preconditioned matrix. Our target problems discussed are linear system
solution, determinant, and rank. Solutions to additional problems such as Diophantine problems (over the
integers) and Smith form computation [7, 8, 18], also involve these preconditioners. Future work may concern
the use of preconditioners to compute the characteristic polynomial of a matrix and matrix normal forms as
well.

We present more efficient preconditioners for most of the problems discussed above. Most of our pre-
conditioners apply to matrices over an arbitrary field, but our focus is on matrices over a finite field. Our
time cost analyses are in terms of number of arithmetic operations in the element field and our space cost is
measured in number of field elements. Finite fields are categorized as large or small, depending on whether
they have sufficiently many elements to support those randomized methods for which the Schwartz-Zippel
lemma [21, 25] (see also [3]) is used in the probability analysis. We organize solutions around this distinction
and offer new results for large and small fields.

In section 2 we offer a list of problems to which preconditioning has been applied with a discussion of the
solution methods advanced to date. In section 3 the notion of a preconditioning problem and preconditioner
are given precise definitions and a list of useful preconditioning problems is offered. The problems are
of three general types: linear independence (localizing it), nilpotent blocks (avoiding them), and cyclicity
(achieving it, for the nonzero eigenvalues). Results on relations among them are also in section 3. Notably,
Wiedemann already used three kinds of preconditioner : diagonal, Bene§ permutation network, and sparse
preconditioners. The usefulness of diagonal conditioners is extended and their effects more thoroughly
examined in section 4. Regarding Bene§’ network-based preconditioners, we show that the size can be cut in
half yielding a butterfly network, the individual switches can be simplified, and the network can generalized
to arbitrary dimensions that are not powers of 2 (see section 5). And in section 6 we prove that Wiedemann’s
sparse preconditioners can be used directly for the inhomogeneous system solution problem for matrices over
small finite fields without the need of binary search.

2 List of Matrix Problems and Solutions

We present our target linear algebra problems which we label as MINPoLy, LINSOLVEO, LINSOLVEL, DET,
and RANK. We discuss the use of various preconditioners to provide reductions between problems and list
known solutions.

The objectives are to find algorithms running within the costs stated in the introduction: with n(logn)
black box calls, n?(logn)®") additional operations in the entry field and using n(logn)°®) intermediate
storage [11, Open Problem 3]. Throughout the paper, when we say of a problem “the question is open’ or
“it is an open problem”, we mean that the question has no known solution within these resource limitations
(see for instance the certificate of system inconsistency or the computation of the determinant). Most of the
solutions listed below are randomized. Such algorithms are Monte Carlo if the answer returned is possibly
wrong (with quantified probability of error), and are called Las Vegas or are said to have a certificate if
the solution is always correct and unluck in the random choices can only cause violation of the resource
limitations promised. We say problem A is reducible to problem B if A may be solved by computing an
instance for problem B in such a way that the overall cost is within the resource limitations assuming an
algorithm for B which meets the resource limitations. Problems A and B are equivalent if reductions exist
both ways.

For a matrix A € F"*™ over a field I, and vectors uy, ..., u, € F", the black box algorithms (adaptations
of Krylov, Lanczos, or conjugate gradient algorithms) essentially compute minimal relations in Krylov spaces
constructed from the vectors. Using block size k = 1, we have scalar algorithms to compute the minimum
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polynomial of the vector with respect to A [24]. With x > 1, we obtain block algorithms to compute a matrix
minimum polynomial [22]. With high probability this will give the minimum polynomial of A or a multiple
of it and thus a solution to the first problem to consider:

MiNPoLy - Compute the minimum polynomial of A.
Over any field, a Monte Carlo solution is given by the original Wiedemann’s algorithm [24]. It is not
known how to certify the result and how to recover the minimum polynomial from the blocked versions
(only a multiple is computed).

The next problem to consider is LINSOLVEQ, the computation of a nonzero vector in the nullspace of a
singular matrix. We remark that the goal of homogeneous linear systems solving is often taken to be to
compute a nullspace basis. However, for sparse or structured matrices of low rank, to compute a basis for
the nullspace will entail construction of many dense vectors, which will be vastly more space consuming than
the original matrix. Such a project would be antithetical to the spirit of sparse methods. One may as well
use a dense method if the goal is a basis and the rank is low. Thus we pose as the basic problem to compute
one vector in the nullspace.

In the discussion of this and the following problems we refer to certain preconditioners (see section 3).
The preconditioners are categorized by purpose and given names such as PRECONDNIL, PRECONDCY(, etc.
For example, the problem PRECONDNIL is to produce a matrix equivalent to A which has no nilpotent blocks
in its Jordan form. These must be understood by forward reference to section 3 where the preconditioning
problems are discussed in detail. Summary of the existing solutions to these preconditioning problems and
presentation of improved methods for them is the central purpose of this paper. By abuse of notation we also
use the label of a preconditioner problem to refer to the use of a solution to that problem in a computation.

LINSOLVEOD - Compute w # 0 such that Aw = 0.
This also gives a singularity certificate and a Monte Carlo test for nonsingularity: If any of the algorithms
repeatedly fails, the matrix likely is nonsingular.

Over small fields, the block Wiedemann algorithm [2] together with tricks in [10] leads to (1 + €)n or
(2 + €)n matrix-times-vector products. Complete analyses may be found in [10, 22, 23]. Comparisons
with the block Lanczos algorithm are under development. Both may incorporate the early termination
strategy first observed by A. Lobo. If the minimum polynomial has small degree, the solution is found
without completing the sequence to the worst case length. This criterion, probabilistically correct for
randomly preconditioned matrices, is incorporated in Lanczos variants [6]. Over large fields, a Lanczos
variant of the block Wiedemann algorithm should be superior since [5] shows that look-ahead is unlikely.

Special case SYMREAL - If A is symmetric and F is a subfield of the real numbers then unblocked Lanczos
should be used to solve the system Az = Ay for a randomly chosen y. With high probability, z — y is a
nonzero element of the nullspace if A is singular. Here n matrix-times-vector products are sufficient.

Over a field of positive characteristic problems arise due to the possibility of self-orthogonal rows in a
symmetric matrix A and the possibility of nontrivial nilpotent blocks in its Jordan form. If ' is sufficiently
large and its characteristic is not two, then PRECONDNIL together with the above solution allows the
problem to be solved with n matrix-times-vector products [5].

It is not known whether an additional black box for AT can improve the above methods.

LINSOLVEL - Given A and b, compute x such that Az = b.

The problem of finding a random element of the nullspace (call it random-LINSOLVEQ) is equivalent to
LinSorwveEl. To solve random-LINSOLVEQ, solve Ax = Ay, where y is a random vector. In the reverse
direction, consider [A | bjw = 0.

The reduction of LINSOLVEL to LINSOLVEOQ is immediate if A is nonsingular. The preconditioner PRE-
CoNDNIL together with a block algorithm as discussed under LINSOLVEO solves LINSOLVEL (see [23]
over large fields). A solution to RANK together with the preconditioner PRECONDRXR. also solves LIN-
SoivEl [14]. A certificate for inconsistency is known only with an additional black box for AT [9].
Without a transpose box, the problem is open.



DET - Compute det(A). The problem is open over small fields except for F» where one may use the
singularity test mentioned in LINSOLVEOQ. It is also open how to certify that det(A) # 0. Over large fields,
a solution to the problem MINPOLY together with the preconditioner PRECONDCYC solves DET [24].

RANK - Compute the rank of A. A Monte Carlo algorithm uses the preconditioner PRECONDSXS and the
singularity test mentioned under LINSOLVEO to find the rank by binary search [24], using O(logn) calls
to the sparse solver. It is open how to avoid using Q(logn) of these calls. The problem is also solved
over large fields with the preconditioner PRECONDCYCNIL and a solution to problem MINPOLY, see [14].
These Monte Carlo algorithms may underestimate the rank. However, the rank can be certified over real
fields [20].

3 Preconditioners in General

Matrix problems on A may be reduced to simpler problems on a well chosen matrix A’ called a preconditioning
of A. This section is intended to define precisely what we mean by a preconditioning problem. New
preconditioners for some of the problems will be given in sections 4 and 5. We also derive reductions
between preconditioning problems that help in characterizing the preconditioners themselves and will lead
to new preconditioners with the sparse matrices of section 6.

A preconditioning problem is a pair (R,C) of a relation R and a condition C on matrices in a given
class M. A solution to a preconditioning problem is a mapping A —+ A’ on M such that (1) C(A4’) holds,
and (2) R(A, A") holds. We say that A’ is good for A with respect to the given preconditioning problem.

Generally speaking, C is a property desired so that the input conditions of some computational technique
are satisfied, R is a relation needed in order for results computed concerning A’ to yield information about A.
For most preconditioners used in linear systems solving, the relation R is matrix equivalence: A' = LAR for
L and R two invertible matrices. However some of the existing preconditioners are symmetrizing products
involving AT, for which the relation is preservation of rank [6]. All of the preconditioners discussed in this
paper are multiplicative, A’ being a product involving A, nonsingular scaling matrices, and sometimes AT.

A preconditioner A — A’ is generic if it is good for all A € M. The central issue determining the
usefulness of a preconditioner is usually that computation with A’ be as inexpensive as possible, preferably
within a constant factor of the cost with A alone. A generic preconditioner with good computational
performance is generally not possible to achieve. Generic preconditioners usually involve scaling the given
matrix by a multiplier whose entries are multivariate polynomials over the field of the entries of A. They
are useful as a step in construction of families of preconditioners whose scalings have entries in the field of
entries (or a small extension thereof). The individual members of a family of preconditioners are obtained
by substitution of random field elements for the variables in a generic preconditioner. The distribution of
the preconditioners in such a family should have the property that for all A € M the probability that a
preconditioner A — A’ chosen at random is good for A is at least p, for a specified probability p. When
we solve a preconditioner problem with a random family in this way we prefix the preconditioner name with
“p-". For example we may speak of a p-PRECONDIND preconditioner.

3.1 Preconditioning Problems

Since we reduce problems to computing minimum polynomials, the preconditioning questions we address are
related to modifications of Jordan structures of matrices. In general the purpose is to ensure diagonalizability
conditions which may themselves follow from independence properties (see paragraph 3.4). We distinguish
three main types of preconditioners : linear independence conditioners, nilpotent block conditioners (to avoid
nontrivial ones in the Jordan form), cyclicity conditioners (to ensure cyclicity — only one Jordan block — of
the nonzero eigenvalues).

Solutions to the following problems will be proposed in subsequent sections. These problems are listed
with the target conditions C on A’ and the solutions for small fields and large fields, where large means
big enough for the use of the Schwartz-Zippel lemma. Generally preconditioners to be applied to LINSOLVE
preserve the matrix equivalence relation. Preconditioners to be applied to DET or RANK may potentially



preserve a weaker condition. For example, in the following list PRECONDSQUFREE preserves (an unknown)
rank while the others preserve matrix equivalence.

Linear Independence Preconditioning.

PRECONDIND - The r leading columns of A’ are linearly independent, where r is the rank of A (see LIN-
SoLvEl). Over small fields, see the solution of [24] presented in section 6.

PRECONDRXR - The rxr leading principal minor of A’ is nonzero, where r is the rank of A (see LINSOLVEL).
Over small fields, A" = Wy - A-W, where W; are the sparse matrices constructed by [24] (see also section 6).
Over large fields, see PRECONDGEN but note that the failure probabilities are smaller for this condition.

PRECONDSXS - Given s, if s < the rank of A, the s x s leading principal minor of A’ is nonzero, (see RANK).

PRECONDGEN - All leading principal minors of A’ of size up to and including the rank are nonzero. This
condition was given the name generic rank profile in [12]. The question of efficient PRECONDGEN is
open over small fields. Over large fields, A’ = B; - A - By, where B; encode symbolic Bene§ permutation
networks [24]. A new, more efficient solution is given in section 5 below. Another is A’ = Typper - A -
Tiower, Where Typper is a random unit upper triangular Toeplitz matrix and Tiower is @ random unit lower
triangular Toeplitz matrix [14]. This is less efficient but useful for matrices of low displacement rank [10,
Appendix]. PRECONDGEN may be reduced to PRECONDIND, see theorem 3.1. If A is nonsingular, the
preconditioner may be reduced to a single multiplier, which may be on either side.

These independence preconditioners were used for instance in [24] to compute the rank by binary search.
They are also a main ingedient to construct nilpotent block preconditioners basically used for LINSOLVE1
(see theorem 3.5):

Nilpotent Block Preconditioning.

PRECONDNIL - A’ has no nilpotent blocks of size greater than 1 in its Jordan canonical form (see LIN-
SowvEl). A reduction to independence preconditioners is proposed in section 3.4. Over small fields,
A" =Wy - AW, is a solution, where W7 and Ws are sparse matrices as shown in section 6. For large
fields when A symmetric, use A’ = D-A or D-A- D where D is a random diagonal matrix as established
in section 4.

For problems as DET or RANK, independence preconditioners are too weak, known reductions to MIN-
PoLy need to modify the invariant structure of the matrix. The corresponding cyclicity preconditioners may
be classified with respect to the effect they have on the nonzeroand on the zero eigenvalues:

Cyclicity Preconditioning.

PRECONDCYC - For A nonsingular, A’ is nonsingular and cyclic: char-poly(A’) = min-poly(A’). For prob-
lem DET, the det(A) must be easily derivable from det(A’). The question is open over small fields. Over
large fields, the solution A’ = D - A given in theorem 4.2 below improves previously known solutions
that were reducing the problem to PRECONDGEN(A) - D [24]. The solution to PRECONDGEN based on
Toeplitz matrices is also sufficient here [13].

PRECONDCYC-X - The nonsingular part of A’ is cyclic: char-poly(A’) = min-poly(A4’) 2! = f(z)-z* where
f(0) #0 (deg(f) + k —1 — 1 is then a lower bound for the rank). Over large fields, A’ = D - A, where D
is a random diagonal matrix, see theorem 4.2.

PRECONDSQUFREE-X - Same as probf PreCondCyC-x with the additional condition that f is squarefree.
If the characteristic of the coefficient field is 0 or is greater than n the same solution A’ = D - A works,
see theorem 4.3.



PRECONDCYCNIL - The minimum polynomial is f(z)-2 and the characteristic polynomial is f(x)-z* where
f(0) # 0. As a consequence k = n — rank(A) [14] (see RANK). Over large fields and for A symmetric,
A'=D-Aor D-A-D where D is a random diagonal matrix, see theorem 4.5. A solution will solve
PRECONDNIL, PRECONDCYC-X.

PRECONDSQUFREE - Same as probf PreCondCyCNil with the additional condition that f is squarefree.
One also has the same solution in the case of a symmetric matrix when the field characteristic is 0
or greater than n, see theorem 4.7. In the general case, a solution here will also solve PRECONDNIL
and PRECONDSQUFREE-X. The question is open over small fields. For large fields, a solution is A’ =
PRECONDGEN(A) - D, where D is a random diagonal matrix [14]. If the transpose black-box is available,
A"= AT .D. A, where D is a random diagonal matrix [6].

3.2 Reducibility: Independence Preconditioners

A PRECONDIND scaling for F**" is a solution to PRECONDIND of the form A’ = AR with R € F**" valid
for all m x n matrices: M = J,, F™*". In this section we show that generic rank profile scaling reduces to
two independence scalings.

Theorem 3.1 Let L be a (row) p-PRECONDIND scaling for F*** and let R be a (column) g-PRECONDIND
scaling for B**™, Let t =1 — (1 — pg)n. Then

h(A) = LAR

forms a pg-PRECONDRXR (and pg-PRECONDSXS) scaling and a t-PRECONDGEN scaling for F™*™. Con-
versely, if h is a p-PRECONDRXR (or PRECONDGEN) scaling for F**"™  defined by h(A) = LAR, then R is
a p-PRECONDIND scaling for F*>™.

Proof: Let B = LA. Then B has leading r rows independent for r = rank(A) with probability at least p.
For given k, with 1 < k < rank(A), let By denote the matrix consisting of the first & rows of B. Then the
leading k columns of By R are independent with probability at least pg. This implies that the leading k& x k
minor of (full rank) By R is nonzero. This minor is also the leading k x k minor of LAR. The probability
that all these principal minors are simultaneously nonzero is at least ¢ = 1 — (1 — pg)n, since each is zero
with probability at most 1 — pgq.

To prove the second claim, consider a given m < n and A € F™*" of rank . We have that the first r
columns of

h(A) =L [g‘} R

are independent. It follows immediately that the first » columns of AR are independent. X

Remark 3.2 Considering for A any n X n matriz with exactly k nonzero columns being distinct canonical
vectors shows that if R is a q-PRECONDIND preconditioner for F**™  then any k X k determinant of a
submatriz formed from the first k columns of R is nonzero with probability at least q.

3.3 Reducibility: Matrices with Nonzero Minors

The property of independence preconditioners given in remark 3.2 is not sufficient. The minors in the leading
k columns must themselves satisfy independence conditions. We show that simply the addition of a diagonal
scaling will ensure these latter conditions.

Theorem 3.3 Let Q be a matrix such that all minors in the leading k columns of Q) are nonzero, Let D be
a diagonal matriz of indeterminates. Then DQ is a generic PRECONDIND conditioner for F**™.



Proof: Let I and J be sequences of k indices with J = (1,2,..., k). Denote the minor in rows I columns J
of matrix A by As ;. Let the matrix A be conditioned as B = A" = ADQ. Then for each I, the minor By, 5
has the expansion
Brj= Z ArkDr rkQK,J-
K

As a polynomial in the indeterminates in D, each summand is a distinct term, since the Dk x are distinct
monomials. As the QQk,; are nonzero if any A g is nonzero then By ; is nonzero and the first £ columns of
B are independent. X

3.4 Reducibility: Avoiding Nilpotent Blocks

For A € F**™ the generic nilpotency problem — PRECONDNIL — is to produce an equivalent matrix A" whose
minimum polynomial has valuation one (the nilpotent blocks of the Jordan form have dimension one). By
valuation we mean the degree of the lowest term. This problem is closely related to the LINSOLVEL problem.

Lemma 3.4 Let A € F**". Then the minimum polynomial of A has valuation one if and only if rank A? =
rank A.

Proof: Let J =T 'AT = diag (J,...Jx,MN1,...,N,) be the Jordan normal form of A4 with A blocks J;
having nonzero eigenvalues and v nilpotent blocks N;. They satisfy rank ‘7]2 =rank J;, 1 < j < A, and
rank N7 = rank NV (= 0) if and only if A = [ 0], 1 < j < v. The assertion of the lemma follows since
rank A2 =rank J?. X

This naturally leads to the fact that preconditioners ensuring independence and rank properties give
preconditioners for the generic nilpotency problem.

Theorem 3.5 Let L be a (row) p-PRECONDIND scaling for F*** and let R be a (column) p-PRECONDIND
scaling for T=X"_ If in addition, for A of rank r and Q € F"=")X" the columns of

I
ar | I } 1
K 0
are independent with probability at least q then LAR and ARL have rank r and their minimum polynomials
have valuation one with probability at least pq.

Proof: For A of rank r and two matrices L and R with appropriate dimensions, if rank ARLA = r then
rank AR = r. Thus the column space of R together with the right nullspace of A and the one of AR generates
all of F* and rank ARLAR = r. This also implies that the row space of L together with the left nullspace
of A generates all of F* and rank (LAR)? = r. In the same way we deduce from rank ARLAR = r that
rank (ARL)? = r. Since the converse statements are true we have:

rank (ARL)> =r <= rank ARLA=r @)
<= rank (LAR)? =r.

Now if L is such that the first » rows of LA are independent, let T" be an invertible matrix such that

I, 0
Lr=[ 5 0]

Then
I,
Q

Thus for L and R the preconditioners of the theorem, rank ARLA = r with probability at least pg and
using (2) together with lemma 3.4 the theorem is proven. X

rank AR [ ] =r =— rank ARLA=r.

We will establish is section 6 that a particular class of sparse matrices used in [24] fulfills the requirements
of the theorem. As for remark 3.2 we have:



Remark 3.6 Taking for A in (2) any n X n matriz with exzactly k nonzero columns being distinct canonical
vectors shows that if C' = RL is a p-PRECONDNIL preconditioner then any of its minors is nonzero with
probability at least p.

From independence preconditioners L and R, the additional condition (1) could be ensured up to a
diagonal scaling RD by analogy with theorem 3.3.

4 Diagonal Preconditioners

Recall that the invariant factors of a matrix A are polynomials fi,..., fs such that fi,...fs is the charac-
teristic polynomial of A, f; divides f;41 for 1 <i < s, and fs is the minimal polynomial of A. A matrix A
is cyclic up to nilpotent blocks if the invariant factors fi,..., fs—1 are monomials in z, that is, if the ratio of
the characteristic polynomial to the minimal polynomial is a monomial in z.

Lemma 4.1 Let A be a square matriz over an integral domain and let D = diag(d,...,d,), wheredy,..., 0,
are distinct indeterminates over the domain. Then DA is cyclic up to nilpotent blocks and the minimal
polynomial of DA is the product of a squarefree polynomial and a power of x.

Proof: It is necessary and sufficient to prove that the characteristic polynomial C(z) of DA has no repeated
factor other than z. Let C(z) = 2" +c12™ ' + 22" 2 + -+ + ¢p. Each coefficient ¢; is a sum of i x i minors
of DA and hence is either homogeneous of degree i in dy,...,d, or is zero. Therefore C'(z) is homogeneous
of degree n in the indeterminates d1,...,d, and z. Thus the factors of C(z) are homogeneous in these
indeterminates, in any factorization of this polynomial. On the other hand, each ¢; is at most linear in each
indeterminate ¢;, since each ¢ x ¢ minor of DA is.

Suppose now that C(z) has a repeated factor g(z), so that C(z) = f(z)g(z)? for some polynomial f(z).
No indeterminate &; can occur in g(z) for, otherwise, g(x)? and C(z) would not be linear in §;. Thus the
repeated factor g(x) must be homogeneous in d1,...,d,,z and free of d1,...,d,, and must be a monomial
inz. X

Theorem 4.2 Let F be a field, let A be an n x n matriz over F, and let S be a finite subset of F. If
D =diag(dy,...,d,) where di,...,d, are chosen uniformly and independently from S then DA is cyclic up
to nilpotent blocks with probability at least 1 — n(n — 1)/S].

Proof: Suppose |F| > n(n—1) — the result is trivial otherwise. By Lemma 4.1, every invariant factor of DA
except the minimal polynomial fs is a monomial of z, if D = diag(d1,...,0,) and 01, ...,d, are distinct
indeterminates over F. Let k be the degree of fs. If v1,...,v, are distinct indeterminates that are different
from &y,...,6, and Y = [y1,...,7a]T, then the vectors

V,(DA)Y,..., (DAY

are linearly independent, so there is a k x k submatrix of the matrix with these vectors as its columns
whose determinant is a nonzero polynomial in d1,...,0,,%1,...,7s- This polynomial has total degree at
most k < n in the indeterminates 7, ...,7v,. Therefore, if these indeterminates are replaced by uniformly
and independently chosen elements of S, so that ) is replaced by a vector y € F**!, then this determinant
becomes a nonzero polynomial in 4y, ..., d, with probability at least 1 — n/|S| > 0, by the Schwartz-Zippel
lemma. Fix any such vector y for which the determinant is nonzero; the determinant is now a nonzero
polynomial with total degree at most k(k —1)/2 < n(n —1)/2in é1,...,0,. Thus, if values dy,...,d, for
01,--.,0, are chosen uniformly and independently from S, then the determinant is a nonzero element of F
with probability at least 1 — n(n — 1)/|S|. In this case, if we set D = diag(dy,...,dy) then the vectors
y,(DA)y, .. (DA)’“ Ly are linearly independent, and the invariant factors of DA are fi,..., fs_1, fs, Where
fio--os fs—1, fs are the invariant factors of DA and fs is obtained from fs by replacing the indeterminates
01,---,0, with the values dy, . ..,d,, respectively. X



It follows that if F is a large field then diagonal scaling is a sufficient conditioner for PRECoNDCYC.
Choosing S to be a subset of F \ {0}, one can ensure that DA is nonsingular if A is, so that the minimal
polynomial and characteristic polynomial of DA agree if DA is cyclic up to nilpotent blocks.

A conditioner for PRECONDSQUFREE-X is also obtained, unless the characteristic of I is positive and
small:

Theorem 4.3 Let F be a field whose characteristic is either zero or greater than n, let A be an n X n matriz
over F, and let S be a finite subset of F. If D = diag(dy,...,d,) where d,...,d, are chosen uniformly and
independently from S, then the characteristic polynomial of DA is the product of a squarefree polynomial
and a power of x with probability at least 1 — (2n* —n)/|S]|.

Proof: Once again, it follows by Lemma 4.1 that if D = diag(d,...,d,), where d1,...,0, are distinct
indeterminates over I, then the characteristic polynomial of DA is the product of a squarefree polynomial
f such that f(0) # 0 and a power z* of z. The coefficients of f are clearly polynomials in d1,...,d,, since
these are also coefficients of the characteristic polynomial.

Since the degree of f is at most n, f is squarefree, and the characteristic of F is either zero or greater
than n, the discriminant of f with respect to x is a nonzero polynomial in dy,...,d,. This polynomial has
degree at most 2n — 1 in each indeterminate d; so it follows, once again by the Schwartz-Zippel lemma, that
if dq,...,d, are chosen uniformly and independently from S, and D = diag(d, .. .,d,), then the polynomial
in F[z] obtained from f by replacing 01, ...,d, with di,...,d,, respectively, is squarefree with probability at
least 1—(2n? —n)/|S|. In this case, the characteristic polynomial of DA is clearly the product of a squarefree
polynomial and a power of z. X

Suppose once again that A is an n x n matrix over F, and let r be the rank of A. Then there exist an
(n —r) x n matrix L and an n x (n —r) matrix R, each with full rank n —r, such that LA = 0 and AR = 0.

Lemma 4.4 Let A, L, and R be as above. If LR is nonsingular then A has no nilpotent blocks (of size
greater than one) in its Jordan normal form.

Proof: Suppose A is a matrix with at least one nilpotent block of size greater than one in its Jordan normal
form.

If X is a nonsingular matrix and A’ = X 'AX, then L' = XL and R’ = X 'R are clearly matrices
with full rank n — r such that L'A’ = LAX = 0 and A’'R' = X 'A4 = 0. Since L' R’ = LR, we may assume
without loss of generality that A is block diagonal, with a nilpotent Jordan block of size greater than one in
its lower right corner. In this case, the vector v = [0,...,0,1]T is a vector such that Av = 0 and uTv =0
for every vector u such that uT A = 0. Thus, v is a nonzero vector in the column space of R, and Lv = 0.
Therefore, LR is singular. X

Theorem 4.5 Let A be a symmetric n X n matriz over a field F and let S be a finite subset of F\ {0}. If
dy,...,d, are chosen uniformly and independently from S and D = diag(dy,...,d,), then the matrices A
and DA have the same rank r, and the probability that DA has a nilpotent block of size greater than one is
at most (n —r)/|S| < n/|S|.

Proof: It is sufficient to prove that the matrix D' A has no nilpotent blocks of size greater than one with
high probability, since the entries of D! are clearly chosen uniformly and independently from a finite subset
S"={s71 : s € S} with the same size as S.

Let L and R be as above, so that L and R are (n —r) x n and n x (n — r) matrices, respectively, of full
rank n — r, such that LA = 0 and AR = 0. Since A is symmetric we may assume that R = LT. In this
case, L' = LD and R' = R = L" are matrices of full rank such that L'(D~*4) = 0 and (D *A)R' = 0. It
is sufficient, by the above lemma, to prove that the (n —r) x (n — r) matrix L'R’ = LDL" is nonsingular
with probability at least (n —r)/|S|.

Consider the matrix LDLT, where as usual D = diag(di,...,d0,) and 61, ..,d, are distinct indeterminates
over F. The determinant of this matrix has total degree at most n — r in these indeterminates.



Since L has full rank, it has a nonsingular (n — r) x (n — r) minor, L'. Set D’ to be a diagonal matrix
whose i*? diagonal entry is one if the i*" row of L is included in this minor, and whose ‘" entry is zero
otherwise. Then D' = (D")2, LD'LT = L(D")2L" = L'(L")T, and the determinant of LD'LT is the square
of that of L', which is clearly nonzero. The determinant of LDLT is therefore a nonzero polynomial, and
the result follows by the Schwartz-Zippel lemma. X

A diagonal scaling that preserves symmetry will also be useful. Note that if A is symmetric and D is a
nonsingular diagonal matrix, then DAD is a symmetric matrix with the same invariant factors (and rational
Jordan form) as D?>A. The next result can therefore be established from the previous one.

Theorem 4.6 Let A be a symmetric n X n matriz over a field F and let S be a finite subset of F\ {0}. If
dy,...,d, are chosen uniformly and independently from S and D = diag(d,...,d,), then the matrices A
and DAD have the same rank, and the probability that DAD has a nilpotent block of size greater than one
is at most 2n/|S|. Furthermore, if the squares of elements of S are distinct (that is, if s> # t*> whenever
s,t € S and s #t), then DAD has a nilpotent block of size greater than one with probability at most n/|S|.

A conditioner for PRECONDSQUFREE can also be obtained unless the characteristic of F is small.

Theorem 4.7 Let A be a symmetric n X n matriz over a field F whose characteristic is zero or greater
than n and let S be a finite subset of F\ {0}. If d,...,d, are chosen uniformly and independently from S
and D = diag(dy,...,d,), then the matrices A and DAD have the same rank, the minimal polynomial of
DAD is squarefree, and the characteristic polynomial is the product of the minimal polynomial and a power
of @, with probability at least 1 —4n?/|S|. This probability increases to 1 —2n?/|S| if the squares of elements
of S are distinct.

Proof: Once again, it should be noted that the matrices DAD and D? A have the same minimal polynomial.

Consider the first claim. If |S| < 4n? then this is trivial. Otherwise there is a subset S’ of S with
size greater than 2n? whose squares are distinct, and one can apply Theorem 4.3 to establish the existence
of a nonsingular diagonal matrix D such that the characteristic polynomial of D?A (and DAD) is the
product of a squarefree polynomial and a power of . The argument used to prove Theorem 4.6 can now
be applied, with the matrix DAD instead of DA, where D is as above, to conclude that if dy,...,d, are
chosen uniformly and independently from S then the characteristic polynomial of DAD is not the product
of a squarefree polynomial f and a power of z;, with probability at most (4n* —2n)/|S|. On the other hand,
Theorem 4.6 implies that DAD has a nilpotent block of size greater than one with probability at most
2n/|S|. Consequently, the characteristic polynomial is the product of a squarefree polynomial f such that
f(0) # 0, and a power of z, and the minimal polynomial of DAD is either f or zf, with probability at
1 — (4n?)/|S|, as needed.

If the squares of elements of S are distinct, then the set S’ of squares of elements of S is another
subset of F \ {0} of the same size, and, since DAD and D?A have the same minimal polynomial for any
nonsingular diagonal matrix D, the likelihood that the minimal polynomial of DAD is squarefree, and that
the characteristic polynomial is the product of the minimal polynomial and a power of z, is the same when
the entries of D are chosen uniformly and independently from S as the likelihood that these properties hold
for DA when the entries of D are chosen uniformly and independently from S’. The second claim therefore
follows from Theorems 4.3 and 4.5. X

5 Preconditioners based on Benes Networks

Preconditioners based on Bene§ networks work on the problem of localizing linear independence. The
objective is to precondition an n X n matrix of rank r so that the first r rows of the preconditioned matrix
become linearly independent. In this section, we improve on the earlier work presented in [19] and [24] in
two ways. First, in section 5.1, instead of using Bene§ permutation networks as in [24] we use butterflies as
Parker does in [19]. However, unlike Parker, we generalize our networks to arbitrary n and are not limited
to powers of 2. Then in section 5.2, we improve on [19] again by using an exchange matrix that saves one
multiplication per switch over Parker’s.



5.1 Butterfly Networks

Let us consider the n rows of a n x n matrix. We want to make the first r of these linearly independent.
We can use a switching network to exchange rows until the first r are linearly independent. Our goal is to
switch any r rows of an arbitrary number n rows to the beginning of the network. However, we must first
consider the case of switching any r rows into any contiguous block for n = 2,

An I-dimensional butterfly network is a recursive network of butterfly switches with 2! nodes at each level
such that at level m the node i is merged with node i + 2™ 1. Figure 1 illustrates a 3-dimensional butterfly
with 8 nodes at each level.

0 1 0 0 1 0 1 1
1 0 0 0 0 1 1 1

0 0 1 0 1 1 0 1

Figure 1: Butterfly network

Lemma 5.1 Let n = 2!. The l-dimensional butterfly network discussed above can switch any r indices
1<i; <+ <, <ninto any desired contiguous block of indices; wrap around outside, for our purposes,
shall preserve contiguity. For example, in figure 1, the ones would be considered contiguous. Furthermore,
the network contains a total of nlog,(n)/2 switches.

Proof: Let us prove this lemma by induction. For n = 1 the proof is trivial because no switches are required.

Suppose the lemma is true for n/2. Then, let us divide the n nodes in half with r; given such that
ir, <n/2 <ip 1. Now, we can construct butterfly networks of dimension ! — 1 for each of these collections
of n/2 nodes. By the lemma, each of these subnetworks can arrange the indices 41,...,4,, and ip,11,...,%p,
respectively, to any desired contiguous blocks.

Let us consider the contiguous block desired from the network. It is either contained in the interior of the
network in indices 1 < j,...,j+r—1 < n or it wraps around the outside of the network and can be denoted
by indices 1,...,j —1and n —r + j,...,n. This second situation can be converted into the first by instead
thinking of switching the n — r indices not originally chosen into the contiguous block j,...,5 +n —r — 1.
Thus we only have to consider the first situation. This can then be further divided into the two cases when
the contiguous block 7,...,7 +r — 1 is contained within one half and when the block is in both halves and
connected in the center.

For the first case, let us assume the desired block is completely within the first half: j+r —1 < n/2.
Then we can use the first subnetwork to place i1, ..., 4., so they switch into j,...,j +r1 —1, and we can use
the second subnetwork to position iy, 41, ..., to switch into j+ry,...,j+r—1 asin figure 2. A symmetric
argument holds when the desired contiguous block is contained in the second half: j > n/2.

For the case when j < n/2 and j+r —1 > n/2, let us assume r; < n/2 —j + 1 and thus we need to
switch o =n/2 — j —ry + 1 indices from the second half to the first. Then we can use the first subnetwork

to place i1,...,4,, so they switch into j,...,j +m — 1, and we can use the second subnetwork to position
Iry41,---,0r in & contiguous block which wraps around the outside of the subnetwork so they switch into
j+ri,...,j+r—1asin figure 3. Once again, a symmetric argument holds for r; > n/2 —j + 1.

The switch count is that for an /-dimensional butterfly. X

This means we can switch any r rows of a n x n matrix into any contiguous block for n = 2!. Now we
are ready to consider our original goal of switching any r rows into the first block of r rows for any n. When



Figure 3: Butterfly network case 2

n is not a power of two, let us decompose n as

k
n:ZZ”’ where Iy <l < --- < p; let n; = 2%. (3)
i=1
First we lay out butterfly networks for each of the n; blocks. Then we build a generalized butterfly network
by connecting these butterfly networks by butterfly switches recursively such that Zf;ll n; is merged with
the far right nodes of n;, as in figure 4,

Figure 4: Generalized butterfly network

Theorem 5.2 The generalized butterfly network discussed above can switch any r indices 1 < i3 < -+ <
ir < n into the contiguous block 1,2,...,r. Furthermore, it has a depth of [logs(n)] and a total of no more
than n[log,(n)]/2 butterfly switches.

Proof: If n = 2!, the proof follows directly from Lemma 5.1 and equality is obtained in the number of
switches. Otherwise, from (3) we know nj > Zi.:ll n;. We prove the first part of this theorem by induction.
If kK =1 the proof is directly from Lemma 5.1. Otherwise, suppose the theorem is true for Ef;ll n;, and let
ir, be the last index in the left half of the network, that is, i,, < Z:;ll n; < iy,4+1. Then we can switch the

indices i1, ..., into the contiguous block 1,...,r; using a generalized butterfly network.
Ifr< Zi:ll n;, we can use Lemma 5.1 to position the indices ¢y, 41, -..,%, S0 they switch into positions
r1 + 1,...,r as in figure 5. Otherwise let ry = (Zf;l n;) — r1, and then we can use the same lemma to

position the indices as in figure 6.
The total number of butterfly switches is the number of switches for each of the subnetworks plus another
fz_ll n; switches to combine the two. Another way of counting the switches is the sum of the number of
switches for each of the n; blocks plus the number of switches to connect these blocks:

p . p—1 i
S:Z?zli+2; j;nj . (4)

i=1 =



ry ry r-r-r,

Figure 6: Generalized butterfly network case 2

From equation (3) we know I; <[, — (p — 1) for i < p and also Z;zl nj < ni+1. Thus, equation (4) gives us
p

P
n; n;, n n o n
sSZélp+Z?z<§lp+§:§|'log2(n)]. (5)
i=1 i=2

Furthermore, the depth of the network is I, + 1 = [log,(n)]. X

5.2 Generic exchange matrices

Wiedemann [24] uses these switching networks (Bene§ permutation networks in his case; butterflies were
shown to suffice in [19]) for the construction of left (and right) preconditioners in the following manner.
Each switch in the network implements a directed acyclic arithmetic circuit:

o b= )

Here a, b, ¢, d will be chosen appropriately later. The circuit performs the given 2 x 2 matrix operation. Here
z and y stand for rows (columns) that need to pass through the switch. The 2 x 2 matrix is embedded in
an n X n matrix in the fashion of an elementary matrix that can exchange row i and row j.

= W

Ebil(a,b,c,d) =

_ B

Similarly to Wiedemann, one observes that by setting a = d = 1 and b = ¢ = 0 the circuit passes the rows
straight through, while by setting a = d = 0 and b = ¢ = 1 the circuit exchanges the rows. We consider the



preconditioner

L= H Ex(ons Brs iy Ok)

k=1

where £, implements the k*® switch in the generalized butterfly network of s switches, and where oy, B¢, Y&, Ok
are symbols. Let A be a fixed n x n matrix of rank r. Then the first r rows of LA are linearly independent
over F(ay, ..., as, B,y Bs, Y15+ Vs, 01, - -, 0s) because one may evaluate the symbols in such a manner
that the generalized butterfly network switches r linearly independent rows to the top. In [17] the exchange
—a a

matrix is reduced to a single variable, namely 1—4

. Wiedemann actually gives a unimodular

matrix, namely B ﬂ [11) (1)] [(1) ﬂ , where the row exchange is accomplished by a = 1, b = —1, and

c=1

The preconditioner matrix L, where the symbols have been evaluated at fixed random values, is used
as a black box matrix and the expense for L times a vector needs to be optimized. We will show that for
symbolic matrices of the form

1 o

() = [1 . M} with action &(a) m - [y f(;f iyay)] (6)

the first r rows of ([}_, & (ag))A are linearly independent over F(ay , . .., a;). By (6), each switch requires
2 additions and 1 multiplication. For contrast, Parker [19] uses an exchange matrix of the form [Z _bb}
which requires 2 additions and 2 multiplications, one more multiplication than & (a).

The proof is by induction on the levels of the generalized butterfly network, where we follow the routing
of r linearly independent rows. On each level, these rows have been placed in certain row positions in
the matrix. In Figure 7 we depict the route of row z; through the network. We will set the switches by
evaluating the symbols «y, to certain values using the mixing DAG (6). The goal is to show that along the
route of the generalized butterfly network that brings the r linearly independent rows to the front, the now
arithmetically mixed rows, which originally correspond to the routed r linearly independent rows, remain
linearly independent. We simply prove this from one level to the next, and denote by mgj I the row in the
position of the original row ¢ at level j. The induction hypothesis is that the r rows a:g]l], ces ,mgi] are linearly
independent over F(ay,...,as). In the network, they are placed at certain designated positions (at level j),
which we have marked by squares in Figure 7.

Figure 7: Illustration of proof



Each position at level j + 1 that holds a designated row has a mixture of the rows above. There are six
cases, depicted from left to right in Figure 7. Case 1 is where the row is routed straight through without a
switch. This may be done at the bottom of the network if n is not a power of 2. Nothing needs to be done, as
the row remains untouched. Case 2 is where the switch mixes two designated rows. This case is surprisingly
easy: we set the corresponding symbol a = 0. By (6) the new rows are  and x + y. They span the same
two-dimensional subspace and the overall linear independence of the r designated rows remains unaffected.
In the remaining four cases, a linearly independent row is mixed with a dependent one. In Cases 3 and 4,
the designated row is on the left side of the switch, and in Cases 5 and 6 on the right side. The former is
easier: In Case 3 we again set a; = 0 and in Case 4 we set a = —1 with the effect that the designated
row gets routed through the switch unchanged. In both Cases 5 and 6 we retain oy as a symbol. We now
have fresh symbolic weights on these rows on the next level, where they appear in linear the combination
ary + ¢ +y (Case 5) or agy + z (Case 6).

The argument is concluded as follows. Select r columns in the linearly independent rows a:g]l], e ,a:ii I on
level j such that the r x r submatrix formed by the rows and those columns is nonsingular. Now consider
the same column selection on level j + 1. The coefficient of the term Hkt ay, in the corresponding minor,
where ay, are the retained new symbols of the Cases 5 and 6, is the minor (of the submatrix) on level j,
hence nonzero. Thus the new designated rows on level j + 1 are linearly independent over F(ay , ..., as).

[

Theorem 5.3 Let F be a field, let A be an n X n matriz over F with r linearly independent rows, let s be
the number of butterfly switches in the generalized butterfly network from Theorem 5.2, and let S be a finite
subset of F. If ay,...,as are randomly chosen uniformly and independently from S then the first r rows of

(H ékmk)) A
k=1
are linearly independent with probability no less than

 rflogym)] _ . nllogy(n)]
S I T

Proof: The matrix A is over the field F, so each row of A is a row vector of polynomials in aq,...,as of
degree zero. Each switch in the generalized butterfly network increases the degree of the polynomials by
one, and the depth of the network is [log,(n)]. So, the rows of ([];_, Er(ag))A are vectors of polynomials
in ay,...,as of degree [log,(n)]. Thus, the determinant of an r x r submatrix of this preconditioned matrix
is a polynomial of degree r[log,(n)].

Given that A has r linearly independent rows, we can designate these rows to be switched by the
generalized butterfly network of Theorem 5.2 to the first 7 rows of the preconditioned matrix ([T5_, &k (ax))A.
The argument above shows at every level in the network the r designated rows remain linearly independent
over F(ay,...,as). In particular, the designated rows in the last level, namely the first r rows of the
preconditioned matrix are linearly independent over F(ay, ..., as). This means, there is an r x r submatrix
of the first r rows of ([];_, (o)) A whose determinant is not identically zero. Because this is a polynomial
of degree r[log,(n)], the Schwartz/Zippel lemma tells us that (a1,...,as) is a root of it with probability
no greater than r[log,(n)]/|S|. With probability no less than 1 — r[log,(n)]/[S|, it is not a root of the
polynomial, and thus we have an r X r submatrix of the first r rows of ([T;_, & (ax))A whose determinant
is not zero. Therefore, the first r rows of ([;_, Er(ar))A are linearly independent with probability no less
than

L rllog )] | | nflog,(n)]
S| 5]

X

6 Sparse Matrix Preconditioners

For matrices over fields F with a small number of elements compared to the matrix dimension n or to n?, the
preconditioners of sections 4 and 5 may not be usable directly. Their proofs — based on the Schwartz-Zippel
lemma — require a field extension with logarithmic degree over F. An extra O(logn) factor may be involved



in the costs of the resulting algorithms. We show here that a special probability distribution on sparse
matrices with entries in F, proposed in [24], also provides preconditioners for p-PRECONDNIL. This avoids
the need of field extensions, for instance to solve LINSOLVE1 using the algorithm in [23], and may be useful
for practical implementations.

In the following, for given parameters w;; € [0,1], 1 < i,j < n, the preconditioner distributions are
defined by a random n x n matrix whose entry (7, j) is a uniform randomly chosen nonzero element of ' (or
of a subset of F) with probability w;; and zero otherwise. For ¢ = |F| and w;; = w = 1—1/q it is well
known that such matrices are invertible with probability

7(n) = (1-1/9)(1 = 1/¢*)... (1 = 1/¢") > V2/5 > 1/4 (7)

(the bound v/2/5 is proven in [4]). For w;; = w, the expected rank considered as a function of w decreases
monotonically in the range 1—1/¢ > w > 0, its value is n —O(1) for w; ; = log(n)/n [1]. To get PRECONDIND
scalings with w; ; a function w; of j only, remark 3.2 thus indicates that w; has to be greater than (logj)/j.

Definition 6.1 [24] For any given subset S of F with o > 2 elements and containing zero and for k > 1,
the distribution defined by

w;; =w; =min{l —1/0, x(logn)/j}

is called the Wiedemann distribution.

Wiedemann has shown that his distribution gives PRECONDIND p-preconditioners for S = F [24, Theorem
1]. Actually it also satisfies the additional assumption (1) of theorem 3.5:

Proposition 6.2 Let A € F**" be of rank r and let Q) be in F("=7)%"  Let W be chosen from the Wiedemann
distribution. If W) and W respectively denote the firstr and the last n—r columns of W then W satisfies (1):

rank A(W™ +WQ) = rank A

with probability at least

”

(1=1/n5" - JJ(1 =1/07). (8)

j=1

Proof: We follow the arguments in [24, pp. 56-57] and detail only what is needed to show the additional
property (1). The property is satisfied if and only if W (") + WQ together with the right nullspace of A
generates all of F". Since the entries of W are independent it is sufficient to prove that the columns of
W) 4 C for any n x r matrix C together with any given subspace V,,_, of dimension n — 7 generates all
of ™ with the announced probability.

Let V}, be a subspace of dimension k. For a given vector ¢ let a[i] be the number of vectors u having i
nonzero entries in S and such that u + ¢ € Vi,. With no loss of generality, the set of restrictions of vectors
in V}, to the k first coordinates is of dimension k. Two different vectors u; + ¢ and us + ¢ in Vj, have different
restrictions to these coordinates and the same is true for the restrictions of u; and us. Each restriction is a
vector of length k£ with ¢ nonzero coordinates chosen between o — 1 values thus:

Loalil <51 () 0=y
This coincides with the bound used in [24] for the number of vectors u, with at most j nonzero entries, which
belong to a given Vj. For any given C, the probability that the j-th column W; + C} of W) 4+ C lies in a
given subspace of dimension n — j is thus less than (1 — w;)? [24, p. 56]. The probability that it does not

belong to the subspace generated by V,,_, and the columns W; + Cj, r > [ > j + 1, is thus greater than
1 — (1 —wj)/. By doing the product, the probability that W satisfies (1) is thus at least

r

[T - —w)).

Jj=1



Let J = k(logn)(c — 1)/o. For 1 < j < J, (1 —w;)? = 1/o9. Otherwise, (1 —w;)? = (1 — r(logn)/j)! <
exp(—klogn) < 1/n". The probability that W is good is thus at least

min{J,r}

(1 _ l/nn)r—min{J,r} . H (1 _ I/Uj),

j=1

this gives the announced bound. X

Let us notice that for k > 2 and large n, bound (8) will be very close to bound (7) with ¢ = o. The
expected number of nonzero entries in W is less than n ) ; w; which is less than xn(logn)(1 + logn).

Corollary 6.3 For any A € F**"  matrices R and L chosen from the Wiedemann distribution and the
transposed one give scaling preconditioners for the generic nilpotency problem (PRECONDNIL) (A" = LAR
or A" = ARL as in section 3.4) - each with at most 2n(logn)(1 + logn) + hn nonzero entries — with
probability at least (1 —2/n)72(n) — 1/(2h?). The probability is thus bounded from below by a constant even
for {0, 1}-preconditioners.

Proof: Theorem 3.5 and proposition 6.2 with x = 2 give the first term of the probability bound. Follow-
ing [24, Theorem 1], the variance of the total number of nonzero entries in both preconditioners is 2n?/4.
Therefore, by Chebyshev’s inequality, the probability that the expected number of nonzero entries is exceeded
by hn is less than 2n2/(4h?n?) = 1/(2h%) . K

If the rank r of the matrix A to precondition is known, then preconditioners over any field with an expected
number of nonzero entries O(n logn) instead of O(n(logn)?) may be constructed using the distribution in [24,
Theorem 1’]. It may be possible to show that it also satisfies (1).
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