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Abstract

We prove some lower bounds for quantifier rank of formulas expressing parity
of a finite set Z of bounded cardinal embedded in an algebraically closed field or
an ordered Q-vector space. We show that these bounds are tight when elements
of Z are known to be linearly independent. In the second part, we prove that
strongly minimal structures with quantifier elimination and zero characteristic
differentially closed fields admit the active-natural collapse.

Keywords: Constraint databases, Active-natural collapse

Résumé

On prouve des bornes inférieures pour le rang de quantification de formules
exprimant la parité d’un ensemble fini Z de cardinal borné, plongé dans un
corps algébriquement clos ou un Q-espace vectoriel ordonné. De plus, ces
bornes se trouvent étre précises dans le cas ou on impose aux éléments de
7 d’étre linéairement indépendents. Dans la seconde partie, on montre que
les structures fortememnt minimales éliminant les quantificateurs et les corps
différentiellement clos de caractéristique nulle admettent le collapse actif-
naturel.

Mots-clés: Bases de données avec contraintes, Collapse actif-naturel
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Abstract

We prove some lower bounds for quantifier rank of formulas expressing
parity of a finite set Z of bounded cardinal embedded in an algebraically
closed field or an ordered Q-vector space. We show that these bounds are
tight when elements of Z are known to be linearly independent. In the
second part, we prove that strongly minimal structures with quantifier
elimination and zero characteristic differentially closed fields admit the
active-natural collapse.

1 Introduction

There are numerous works about the expressiveness obtained by embedding a
finite structure into an infinite one M. These studies have been carried out
because of their fundamental role in the constraint database model. Among
these results, the generic collapse results are of great importance. They state
that embedding a finite model into some infinite structures does not help to
express a large class of queries, called generic. These results hold for structures
M having some good model-theoretic properties : the stronger result deals with
structures without the independance property [1]. One of these generic queries
is parity, which asks if the cardinal of a finite set 7 is even. As a special case of
some general collapse theorems [7, 1, 4, 3], we obtain, for some structures M,
that there is no first-order sentence defining parity. However, when restricting
to the case where |Z| is smaller than a given bound, such a formula exists and
one can wonder which is the minimal quantifier rank possible. Can we do better
than in the case where the finite set stands alone? In section 2, we establish some
lower bounds on this quantifier rank when M is an algebraically closed field or
an ordered Q-vector space — for example (R, 0,4+, —, <). Moreover these bounds
happen to be tight when we restrict ourselves to the case where the elements of
T are known to be linearly independent in M : indeed we build formulas whose
quantifier ranks match the lower bounds. In section 3, we use these results to
give a decision algorithm for a theory defined in [4] : this theory is the one of
algebraically closed fields with an infinite discrete linear order with extremities,
composed of algebraically independent elements. The last section is motivated
by some works of Basu, where the notion of uniform quantifier elimination
is defined, and where it is proved to hold over real closed fields. There the
question of knowing if it holds over algebraically closed fields, and differentially
closed fields, is raised [2]. We can give a positive anwer to these questions. We



prove in fact a stronger result : we show that strongly minimal structures with
quantifier elimination and zero characteristic differentially closed fields have
the active-natural collapse — such a collapse is known to hold over o-minimal
structures with quantifier elimination [3]. This means that any query that can
be expressed with quantifiers running over the whole universe can be expressed
with quantifiers which run over the active domain only (the coordinates of the
points of the database).

2 Quantifier rank for parity

Here we are interested in the following problem. We embed a finite set Z in
either an algebraically closed field or an ordered Q-vector space : we shall call
M this structure, and £ its signature. Thus we add a new predicate I that
is interpreted as Z to obtain the language £*. We note QR,,(Even,n) the
smallest possible quantifier rank of a first-order formula expressing that |Z| is
even, when it is known that |Z| < n. Our aim is to find some bounds on this
number. We recall that the quantifier rank qr(¢) of a formula ¢ is defined by
induction on its structure. If ¢ is an atomic formula, qr(¢) = 0. Otherwise
ar(6V ) = ar(9 A ) = max(ar(@), qr(®)) and qr(3z6) = qr(Vae) = 1+ ar(p).

Our main tool will be back-and-forth games. We recall that if there exists
a strategy to play a back-and-forth game of length n between two structures
M and M', then the same formulas of quantifier rank at most n hold in M
and M'. We shall note qr(¢) the quantifier rank of a formula ¢. First let us
examine some bounds on the quantifier rank when the finite structure stands
alone. When no order is available, we shall write QR_(Even,n) the minimal
quantifier rank of a first-order formula expressing parity. In the same way, we
write it QR_(Even,n) when the universe is ordered. By some usual back-and-
forth games [5], we have QR_(Even,n) = n and QR_(Even, n) = logn + O(1).
These bounds are still the best ones we know in the embedded setting, so we
are going to focus on lower bounds. However, we present better upper bounds
in some restricted cases.

Now we need a simple remark. If two structures M and M’ are elementary
equivalent, then Vng, QR,,;(Even,ng) = QR,; (Even,ng). Indeed, let ng be
fixed and suppose we have a fisrt order formula ¢ such that if |Z| < no, (M,Z) E
¢ iff the property Even holds. Let ¢~)(a:1, ..., &y) be the formula ¢ where I(z) is
replaced with \/, z = z;. Let ¢, = Va1,...,2, /\i<j x; # x> (1, .. xp).
Let |Z| < no. If Even holds then (M,Z) |= ¢. Hence M = 1, then M’ |= 4,
and we obtain (M',7) | ¢. If Even does not hold, (M,Z) E —¢, and we
obtain (M',7T) | —¢ as above. This shows that ¢ expresses Even for |Z| <
no, so QR (Even,ng) < QR,,(Even, ng) and by symmetry QR/,;(Even, ng) =
QR (Even, ng). This justifies the notation QR (Even,n) for a complete theory
T.

2.1 In an algebraically closed field

We note ACF), the theory of algebraically closed fields of characteristic p (p
prime or p = 0). We note F, the field with p elements and Fo = Q. We shall
note A the algebraic closure of the field generated by A C K, where K is an



algebraically closed field. In this section, we shall prove the following lower
bound.

Theorem 1 QR cp, (Even,n) > [logn] + 1.

Thanks to the remark from the introduction, it is enough to show this lower
bound in a given algebraically closed field of characteristic p. Let K be an
algebraically closed field of characteristic p of transcendance degree 2" ! +n+1.
Let M be a set of 27! algebraically independent elements of K; the same for
N, with |[N] = 2771 + 1. We are going to prove that it is possible to make a
back-and-forth game of length n between (K, M) and (K, N).

When it remains j steps to do, we note E; the space where ¢ is defined
and Fj = ¢o(E;). Let E, = F,, = F, and ¢ = Idg. At each step, ¢; is an
isomorphism of algebraically closed field “with points” from E; onto F;. We
shall also maintain the following property P;.

First IM\ E;|,|N \ E;| > 271, Moreover, if there exists a € M \ E; such
thata € E; U A and A C M\ (E;U{a}), then |A| > 2771, And the correspond-
ing property in (K,N).

First let us check that P, is verified. We have |M \ E,| = M| > 271
Moreover, there is no a € M with a € F, U A such that A C M and a ¢ A
because elements of M are algebraically independent over F,. And the same in
(K, N).

Let us suppose that n — j — 1 steps have been done. The isomorphism ¢
is defined on Eji; and it remains j + 1 steps to do. Property P;i; is ver-
ified by induction hypothesis. By symetry, we can assume that the point is
chosen in (K, M). Let us note v this point. We can also assume v ¢ Ej1.
There are two cases. First case : v € Ej; U{ai,...,a,} with a; € M\ Ej11
distinct and r < 297!, Then we choose some distinct elements bq,...,b, in
N\ Fj41 and we define ¢(a;) = b;. Thus E; = Ejy1 U{a1,...,a,}. Let us
show that P; is verified. If there exists d € M \ E;, with d € E; U {c1,...,a},
ci €M \ (Ej U {d}) and [ < 271 — 1, then d € E;1 U {al,...,ar,cl,...,cl}.
But r +1 < 271 + 271 —1 = 2/ — 1. Therefore we should have d € E;; by
property Pji1, this is absurd. We have the same property in (K, N). More-
over, IM\ E;|,IN'\ Ej| > 2/ — 21 = 2i~1 50 P; is verified. Exactly in the
same way, we show that there are no other points from M\ E;;, in E; besides
the a; : if d € M NE;)\ (Ej+1 U{ai,...,ar}), then d € Ej11 U{a1,...,ar}
and we conclude with Pj;;. This also holds in (K,N), and it shows that ¢
is an isomorphism. Second case : let f ¢ Ej;1 UN. Such a point exists be-
cause the transcendance degree of K is big enough. Let p(v) = f. We set
E; = E;j;1 U{v}. Let us show that P; is verified. Let a € M \ E; such that
a€ EjUAfor AC M\ (E; U{a}) with |4] < 277!, Thus a € Ej11 U{v} UA.
This shows v € E;41 U{a} U A, because a € Ej11 U A is impossible by Pjy1.
But we should be in the first case since |A U {a}| < 29-1. This also holds in
(K, N) by the choice of f. Moreover, there is no point of M in E;\ E;41 because
ifa € MNE;\ Ejt1, then a € Ej11 U{v} and as a ¢ Ej11 we would have
v € Ejy1 U {a} which is absurd. This also holds in (L, N') thanks to the choice
of f, thus ¢ remains an isomorphism. Moreover, |IM \ E;| = IM\ Ej1| > 277!




which ends to show P;. This ends the back-and-forth game. Thus we have
shown QR 4¢ 5, (Even, 2771 4+1) > n. As QR 4o, (Even, ) is an increasing func-
tion, we obtain QR 4o, (Even,n) > [logn] +1. O

We note V, the theory of IFj,-vector spaces. We are now interested in a special
case, the one where the elements of 7 are known to be linearly independent over
F,. We shall use the following notations in this case : QRQ,F (Even,n) and

QR!yc 5, (Even, ).
Proposition 1 QR’V,, (Even,n) < [logn] + 1.

We shall prove that it is possible to express that |Z| > m with a formula of
quantifier rank [logm] 4 1. First we remark that |Z| > m iff

Ea:EIyl,...,ymEI:U:Zyi/\—rﬂzl,...,zm_l Elxrx=2z1+2z04+ ...+ z2m—1-
i

Now we shall design some formulas F),, (z) such that F,,(x) is true iff y;,...,ym €

T x =73 y;. Wedefine Fi(z) = I(z) and for k > 2 Fi.(z) = JyF |32 (y) A
Fiis21(x — y). One can check that qr(F,,(z)) = [logm]. In the same way,
we define F) (), meaning that 321,...,2m 1 € Z 2 =221+ 22+ ... + Zm—1.
For any m > 2, the formula F) (z) is obtained by replacing in the previous
construction of Fp,(z) one Fy(z) by Fy(z) = Jy Fi(y) ANz = y + y. Clearly
qr(F), (z)) = qr(Fn(z)). The formula G, = 3z F,,(z) A—F], (z) expresses that
|Z| > m. Of course Gy, A °Gpq1 expresses that |Z| = m. Now if we know
that |Z| < n, |Z| is even if and only if \/,, ., [Z| = 2k. Remark that |Z| > n
is equivalent to |Z| = n since we know that |Z| < n. Thus our formula will be
\/ngn Gor A =Gapy1 when nis odd, and \/,, ., (Gog A 7G2gy1) V Gy, when n is
even. That allows to obtain the desired bound. O

Corollary 1 QR;cp, (Even,n) = QR), (Even,n) = [logn] + 1.

It is just necessary to remark that the previous lower bound holds in the case
where the elements of Z are known to be linearly independent. O

Corollary 2 For ¢ a first-order formula of ACF, with an extra unary predicate
I, let a(®) be the minimum quantifier rank of an equivalent active semantics
formula. Let a(r) = max{a(¢), qr(¢) =r}. We have a(p) > 2°.

Consider the formula ¢, expressing that Z has at least n elements, assuming
they are linearly independant — see proposition 1. Let ¢¢ be an equivalent active
semantics formula. When restricting to the case where Z C D with D = {d;, i €
N} a set of indiscernibles, we obtain J)?L a pure equality formula expressing that
7 has at least n elements. As qr(¢®) = qr(¢?) > n and qr(¢,) = [logn], taking
n = 2P gives the result. O

2.2 1In an ordered QQ-vector space

We first show a lower bound. We note Quvs the theory of Q-ordered vector
spaces. We define N, the following way:

No = 1
Npy1i = (2P +1)N,



We define an algebraic measure d, as follows. For z < y, we define d (z,y) =
{z, x < z < y}|. Then, for j € N, we define d;(z,y) = do(2,y) if d(z,y) <
Nj, d;j(z,y) = oo otherwise. At last, we take d(y,z) = —doo(2,y) and
d;(y,z) = —d;j(x,y). First we need a simple remark.

Lemma 1 We consider a back-and-forth game between two finite ordered sets
A and B where it is possible to choose 27 elements (on the same side) when it
remains j moves to play. If |A|,|B| = Nyy1, then it is possible to play a game
of length n.

Let |A|,|B| =2 Np41. We show how to play a game of length n. Before the
game begins, we define our partial isomorphism « to send the extremities of A
onto the extremities of B. We can assume that it remains j moves to play. Let us
call D C A the set where « is defined. By induction hypothesis, we assume that
dj+1(a,a’) = djy1(ala),a(a")) for a,a’ € D. We proceed as in the case of back-
and-forth games between two finite linear orderings — see [5] — except that we can
take 27 elements. We shall handle all at once the elements a; < as < ... < ay ly-
ing in an interval Je,d[ with ¢,d € D, |¢,d[ND = (. First case : dj;1(c,d) < co.
By induction, djt1(c,d) = djt1(a(c), a(d)) and we chose the a(a;) in the obvi-
ous way. Second case : dji1(c,d) = 0o. Let ag = ¢ and ag+1 = d. We succes-
sively choose a(a;) for I = 1,2, ..., s such that d;(a;, ai+1) = d;(a(a), alai+1)),
where s is the smaller subscript such that d;(as,as+1) = co. We proceed in
the same way for [ = k,k — 1,...,t where ¢ is the larger subscript such that
d;(at—1,a:) = oo. If the images of all the a; for 1 < ¢ < k have not yet been de-
termined, then we successively choose the images of a; for I = s+1,...,t—1: we
choose a(a;) such that doo (a(a;—1), a(a;)) = min{N;,d;(a;—1,a;)}. Let us show
we have enough points from B in |a(ag), a(ag+1)[- As dj+1(a(ag), a(agt1)) = oo
by induction, we have doo(a(ag),a(ar+1)) > Nj41. Taking into account that
k<2 and Nj1 = (27 + 1)N;, there are indeed enough points to proceed this
way. O

We now establish the following lower bound.
Theorem 2 QR (Even,n) = Q(y/logn).

In order to prove this, we shall make a back-and-forth game of length n
between two ordered Q-vector spaces with points (V, M) and (W, ). We shall
chose M (resp. N') such that it is a basis of V' (resp. W). We note a € bor a =
o(b) if Vn € N, nla| < |b|. By decomposing a point v € V' in the basis M, it can
be written v = 22:1 a;a; with a; € Q*, a; € M and a; > ...> a,. We use the
following notations : supp(v) = {ai,...,a.}, supp(v,l) = {a;, i < min(l,r)},
2(v, ) = Gmin(2i ) and T;(v) = 222(21 ") aza;. Thus z(v, j) = 2(T;(v),j). Let
us remark that if |[supp(T,(z))| < 27 then = T;(z). We note 7 the canonical
projection from M x A onto M. Given R C M x N a one to one function from
a part of M in N, we note Lg the linear application defined on Vect(w(R)) and
extending R. We shall also use the corresponding notations in (W, ).

We it remains j steps to do, we shall have an isomorphism ;4 defined from
Eji1 onto Fjy;. We shall also need the distances d, and d; defined previously,
but relativized to the set Z.

Let V be the ordered Q-vector space spanned by M = {e1,...,&,,} with
0<e K...< ey, and ny, = Np4q — this is the same as considering Q™ with



the lexicographic order. In the same way, W = Vect(N) with N = {91, ..., 0, }
such that 0 < m <€ ... € Ny, and ny = Npp1 + 1. We set Eppq =
Vect({e1,en,}), Fnt1 = Vect({m,nn, }) and @11 is defined by p(e1) = m
et o(en,) = Nn,, - We also set Rpr1 = {(e1,m1), (EnysTny, )} © M X N. At each
step we shall maintain the following property P;.

a) For all T,y € W(Rj)a d](a:,y) = d](R](.’IZ 7R](y))

b) For all v € Ej, we have T;(¢;(v)) = Lg,;(T;(v)). Similarily, for all
w € Fj, Tj(p; " (w)) = L1 (Tj(w)).

¢) The application p; is an isomorphism of ordered Q-vector space with
points from E; onto F.

Let us remark that point b) means that Lg; (T;(v)) makes sense, so it implies
supp(T;(v)) C n(R;). Let us also remark that, as a consequence of a), R; is a
strictly increasing application from 7(R;) C M to N. Let us show that P41
holds : a) comes from | M|, |N| > N,41, the other points are clear. Let us
assume that n — j steps of then back-and-forth game have been carried out. It
remains j > 1 steps to do. The isomorphism ;4 is defined from E;;; onto
Fjt1. By symmetry, we can assume that point v is chosen in (V, M). Without
loss of generality, we assume that v € Ej;1. Let u € Vect(Ej11U{v})\Ej;1 such
that z(u,j) is minimal with respect to the order on V. Let S = supp(u,27) \
m(Rj41). Thanks to lemma 1, we now define the relation R; extending R,;i1
such that F(Rj) = 7T(Rj+1) us.

Let ¢; be the linear application extending ¢;i1 and such that ¢;(u) =
Lr;(Tj(u)). Let E; = Vect(Ej41 U {u}) et Fj = ¢;(E;). In what follows,
¢; will be noted ¢, R; will be noted R and Lg; sometimes noted £;. Let us
show we have P;. Let us first remark that ¢ is a linear application from Ej;
onto Fj. Let us show that ¢ is one to one. Let w € Ej, ¢(w) = 0. We wrote
w=oau+ewithe€ E;;; and @ € Q. If a =0, then e = 0 because ¢;41 is one
to one. Let us suppose a # 0. Thus ¢(e) = pjii1(e) = —ap(u) = —aLl;T;(u).
Thanks to Pjy1 b) for ga;_ﬁl we obtain Tji(e) = —aERJ_—Jrll T;+1L;T;u. There-
fore Tjy1(e) = _aﬁR;}l L;T;u = —aT;(u) because this expression makes sense

and R; extends Rjy1. But 27 < 29! g0 e = —aT;(u). Now if u # T;(u), this
gives w = e+ au ¢ Ej41 with w = o(2(u, j)) which is impossible by the choice
of u. As u = T;(u), we have e = —au that is to say w = 0.

Point a) stems from construction. Let us show point b) for ¢. Let v € Ej.
If v € Ej;q, it is clear by Pjiq since 2071 > 2/, R;1; C R; and ¢ extends
@j+1- Hence we suppose v ¢ E;;1 Thus v = au+ e where u is the vector chosen
above, a € Q* and e € Ej;1. The following holds.

Tj(v) = Tj(aT;(u) + Tjti(e)) - (1)

Proof:
i) Let us suppose z(T;11(e)) < 2(Tj(u)). Thus Tj11(e) = e + o(2(T;(u))) and
v=oau+e=aT;u)+ Tjri(e) +o(z(T;(u))). As z(T;(v)) > 2(T;(u)) by the
choice of u, we obtain relation (1) by truncating the previous equality at the
order 27.
i) Now let us suppose z(Tj+1(e)) = 2(T;(u)).
ii-a) If Tj11(e) = e, in particular we have T;1i(e) = e + o(2(T;(u))) and we
finish as previously.



ii-b) Otherwise, |supp(e,2/™!)| = 2/*1. Moreover v = e + au = Tji1(e) +

aT;(u) + o(z(Tj41(€))). As the sum Tji1(e) + aT;(u) has at least 2/ terms

from T, 1 (e), we obtain (1) by truncating the previous equality at the order 27.
The following also holds.

Tj(p(v)) = T;j(aT;(p(u)) + Tjti(p(e))) - (2)

Proof:

i) Let us suppose |supp(e, 2/71)| < 27+, Thus e = Tj;1(e). By Pj41, we obtain
Tj+1(p(€)) = Lj11(Tj11(e)) = Lj+1(e). But L;41(e) has strictly less than 2/+1
terms so Tj11(p(e)) = ¢(e). Let us recall that p(u) = T;(¢(u)) by the choice
of p(u). By subsituting these terms in T;(¢(v)) = T;j(ap(u) + ¢(e)) we obtain
(2).

ii) Otherwise [supp(e,2/T!)| = 291 Thus Tji1(p(e)) = Lj+1(Tj41(e)) has
2+1 terms. But (v) = ap(u)+p(e) = aT; (p(1)+Ty11 () +0((Tj41 (0(e))))-
As aT;(p(u)) + Tjt1(p(e)) has at least 27 terms from Tjiq(¢(e)), we obtain
(2) by truncating the previous equality at the order 27.

Now let us prove P; b) for ¢. Let v € E;. We write v = au+e withe € E;;
and @ € @ By (2), T;(p(v)) = T5(aT; (p(u)) + Ty 11 ((e)). But T(p(u)) =
p(u) = L;Tj(u) by the choice of p(u). Moreover, by Pji1, Tjr1(p(e)) =
Lit1Tjra(e). And L1 Tjp1(e) = £;Tjq1(e) since L; extends L£11. By the
linearity of L;, this gives T;(p(v)) = T;(L£;(aT;(u) + Tt1(e))). Clearly, if
T;L;(z) makes sense for z € Ej, then £;T;(z) = T;L;(z). Thus we have
Ti(p(v)) = L;T;j(aT;(u) + Tj+1(e)). With relation (1) we obtain T;(p(v)) =
£5(T;(0)).

We now show point b) for ¢ 1. Let w € Fj and v € E; such that w = ¢(v).
We have T, (w) = T,(p(v)) = £,(T;(v)) by P, b) for . Moreover, £ = Ly 1
therefore T;(¢ ' (w)) = Lz-1(T;(w)). This proves point b) of P; for ¢ .

It remains to prove c). Ifac E; N M, then by P; b) we have T;(p(a)) =
L;Tj(a) = Lj(a) = R(a). But [supp(R(a))| =1 < 27, so p(a) = R(a) € N.
In the same way, if z € E; is positive, then z = aa + o(a) with a € M and
a > 0. By point b) of P;, we have p(a) = aRj(a) + o(Rj(a)). But Rj(a) € N;
thus R;(a) > 0, which proves ¢(z) > 0. The same works for ¢!, so it ends the
proof of point c).

This ends the back-and-forth game. We have shown QRp,,;(Even, N, +1) >

n. As N, = [[0_, (28 + 1) < 2HDE+2)/2 this leads to QRe,,(Even,n) =
Q(Vlogn). O

Does a similar result hold in real-closed fields ? We have a weaker bound in
o-minimal structures having quantifier elimination.

Proposition 2 Let M be an o-minimal structure that admits quantifier elimi-
nation. Then QR,;(Even,n) > loglogn + O(1).

Let ¢ be a formula expressing parity of |Z| for |Z| < n. We consider a
structure M', elementary equivalent to M, that contains a sequence of indis-
cernibles D = {d;, i € N}. The same formula ¢ still works in M’. Let ¢’ be
the formula obtained by replacing I(t) by Vz (z = t — I(2)) in ¢, where 2z
is a new variable. Remark that qr(¢') < qr(¢) + 1. Here we can apply to ¢’
the algorithm of [3] to obtain an active semantics equivalent formula .. (as



mentionned there, there is no need for ¥ to be in prenex form to apply this
algorithm). One can check that qr(yee:) < 29" (#1001 Now when we restrict
ourselves to the case where 7 C D, the formula v, is equivalent to a pure
order formula v, with qr(v,) = qr(wee:). Applying the bound about the pure
ordered case recalled in the introduction, we obtain qr(¢,) > logn+O(1). Thus
qr(y) = loglogn + O(1). O

We can obtain result similar to theorem 2 for a finite graph embedded in an
ordered Q-vector space. The query Connected asks if the graph is connected.

Corollary 3 QR,,,(Connected,n) = Q(y/logn).

We use a usual first-order reduction from parity to connectivity. We consider
the graph G, = (V, E) over V = {v1, ..., v,} where E(v;,v;) holds iff |i —j| = 2
or {i,j} = {1,n}. For n > 2, Gy, is connected iff n is even. As we can express
E with a formula of quantifier rank 2 in any ordered structure M, we obtain
QR (Even,n) < QR,,(Connected, n)+2. It remains to apply this to the theory
Ovs. O

Once again we are interested in the special case where the elements of 7 are
known to be linearly independent. We use the special notation QR in this
case. The following holds.

Proposition 3 QRy,,,(Even,n) = O(y/Togn).

The rough idea is this one. To express that [Zn]a,b[| > 2°°, it is enough to
have a set S of 227 elements of 7 such that between two consecutive elements of
S, there are at least 2(P—1)” elements of 7. And the set S will be represented by
the sum of its elements, from which it is possible to extract the elements with a
formula of quantifier depth p thanks to the assumption of linear independence.
Remark that this does not work anymore if we remove this assumption : there
would be no canonical elements to extract from the sum, and intervals considered
in the recursion step could overlap.

Now let us explain this more precisely. We shall define several families of
formulas. First Sor(a, b, ) means that z is the sum of 2P distinct elements of Z
which lie in ]a, b[. We define Syo(a,b,z) = I(z) A = €]a,b[ and

Sor(a,b,x) = Je,y Syp-1(a, c,y) A Sop—1(c, b,z — y).

We define also F; 2» (a, b, z, z) for 0 < i < 2P. If Sy» (a, b, z) holds, then z = ), 2;
with 29 < ... < zep_1 and E; 20 (a,b, z, z) means that z = z;. We define

Ei,?” ((l, b,ﬁ?,Z) = chy 521”1(0’707 y) A 521”1(07 b,.’II - y) A E

where E' = E; oo-1(a,c,y,2) if i < 2P7" and E' = E;_sp-1 9o-1(c, b,z — y, 2) if
i > 2P~ Of course S;(a,b,z) = I(z) Aa < z < b. Let us define my = 1 and
mp = 2P + (2P + 1)mp_1. For a given n, we take p such that mp,_1 < n < my.
Now we can define F),(a,b) =

2P —2

3z Sz (a, b, x)A /\ {3v1, 92 Eiar(a,b,2,y1)AEiy1 90 (a,b,2,y2) AFm, , (y1,92) }AF,,

i=0



where F) handles the first and last intervals :
Frlz, = Ely E0,2P (a> b: T, y)/\FmP71 (a> y)/\ay E2P71,2P ((l, b) z, yl)/\Fn—(mp_1+1)21’ (y> b)

Thus we can express that |Z| > n for any n < m, with a formula of quantifier
rank at most p. The conclusion is the same as in proposition 1. O

Corollary 4 QR{,;(Even,n) = ©(y/logn). O

3 Application

We now give a procedure to decide a sentence of the following theory T defined
in [4], where it is shown to be complete. Let p be fixed. The theory T is defined
over £ = Lrings U {I,<}, where I is a unary predicate, and consists of the
following axioms :

e the axioms of ACF),

e < is defined exactly on the elements of I

e < is a discrete linear order with extremities

e [ is infinite

o the elements of I are algebraically independent over F,.

Here is how the decision algorithm proceeds. Let ¢ be a first-order sentence over
L, and r be the quantifier rank of ¢. We can play a back-and-forth game as
explained in the section about algebraically closed fields, except that elements
of 7 (in the first case of the proof of theorem 1) are chosen as described in lemma
1 since 7 is ordered. Therefore, T' F ¢ is and only if (K,7) E ¢ where K is an
algebraically closed field of characteristic p, Z C K, 7 is finite with |Z| = N,
where N = N, — defined in section 2.2, N, = O(2"") - and the elements of Z are
algebraically independent. Let ¢ (z1,...,zn) be the formula ¢ where I(z) has
been replaced with \/fil r=w;andz <ywithV,, ; yo=ziAy =z;. Now
either ¢(xy,...,xN) is true whenever (z1, ...,z y) are algebraically independent
(in the case where T' + ¢), or it is false. Thus it just remains to check if
dim¢(K~) = N. Here we can eliminate quantifiers and check that set obtained
is of full dimension. Another method is this one : dim(K”~) = N if and only
if K~ is covered by N + 1 translated of ¢»(K™V) - see [6]. Thus we just have to
decide the following formula of ACF), :

N+1
I, I VI @) A\ T=g+ i
i=1

4 Active-natural collapse results

We consider a relational database of signature SC = {R1, Ra,..., R}, with R;
of arity r;, embedded in an infinite L-structure M. Moreover, we deal here with
the finite case : each R; interprets a finite set of M ™. Let us note D the active
domain, that is to say the set of the coordinates of all points in the database.



Here D will be a finite subset of M. We recall that in an active semantics
formula, quantifiers are of the type 3z € D (Vx € D), that we shall write 3%z
(V2x). We shall prove several active-natural collapses, based on the algorithm
of Benedikt et Libkin for o-minimal structures with quantifier elimination [3].
This part is motivated by a question asked by Basu [2] — see section 4.3.

To prove active-natural collapse, all we need is to suppress a natural existen-
tial quantifier in front of an active formula with parameters. Let us consider the
formula ¢(Z) := 3z a(Z, z) where «(Z, z) is an active formula. We can assume
without loss of generality that a(Z, z) is under prenex form. Thus

a(z,z) = Qiyr - QnymB(Z, 9, 2)
where @; € {3,V}. Moreover we can also assume that

e every atomic subformula of a(Z, z) is either from M (more precisely L) or
from SC,

e m > 0 and «a(Z, z) has at least one atomic subformula from M,
e 2 does not appear in any subformula of SC.

Thus any atomic subformula of «(Z,z) from M is of the form 7(Z,7,z) with
g=1,-,Ym)-

Definition 1 The active domain D C M, the parameters T and a set T =
{r(Z,9,2),...,7(Z,7,2)} of atomic formulas being fized, we call sign vector
an application from T x D™ to {true,false}. We call sign vector of a point
u € M the application (7,a) — 7(Z,a,u).

Proposition 4 (Sufficent condition for active-natural collapse) Let M be
a structure with the following property. Given any finite family T = {11 (&, 7, z), . .

of atomic formulas of M, there exists B € N, a finite set ', a family of active
formulas S,[t] of M for (y,7) € T x T and a set of active formulas F, of
M for v € T such that for all T € M™, for any finite active domain D C M
and for any sign vector U, there exists z € M with sign vector U iff there exists
(v,%) € T x D® such that

i) U= (r,a) = S,[7](z,a,t)

”) (MaD) |: ‘7:7(5:77?)'

Then M has the active-natural collapse.

We take the notations from the beginning of the section. Let T be the set, of
atomic formulas of M appearing in «(Z,z). Let a.(Z,?) be the formula a(z, z)
where 7(Z, 7, z) is replaced with S, [7](Z,y,?). Let us set

Pact(Z) := 3T € DP \[ F(Z,0) Aoy (,1).
yerl

It is immediate that this formula is equivalent to ¢(Z) when the database is
not empty. We can handle this case too, just as in [3]. Let ¢n.(Z) be a
natural formula equivalent to p(Z). Let ¢g(Z) be the formula @,q:(Z) where
each subformula of the type R(...) for R in the database has been replaced
with false. Let ¢} (%) be a quantifier free formula equivalent to ¢y(Z). For the
active formula we take (37 £ = 2 A 0act(T)) V (-30 7 = 2 A (Z)). O

10
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4.1 On strongly minimal structures

For a formula ¢(a,z), we note ¢(a, M) the set {z € M, M = ¢(a,z)}. We
recall that a structure M is said to be strongly minimal if for every formula
o(y, ), there exists d € N such that for all @ € M, one of the sets ¢(a, M) and
—¢(a, M) contains at most d points.

Proposition 5 Strongly minimal structures with quantifier elimination have
the active-natural collapse.

Let M be a strongly minimal structure with quantifier elimination. We shall
use proposition 4. Let © be a finite set of atomic formulas of M of the form
0(Z,y,z). Let ¥ be the set made of the elements of ® and their negations.
Because M is strongly minimal and ¥ is finite, there is an integer d such that
for all ¢y € ¥ and all @, b we have

min{[¢(a, b, M), |M \ (a,b, M)[} < d.

In the following, 7 is fixed. Let z € M. For each (¢,7) € ¥ x D™, the formula
Y(Z,y,-) partitions M into a finite set of at most d points and its complement.
Here there are two cases : either z is in the finite set for one element of ¥ x D™,
or it always lies in the infinite set. We shall build some sign vector patterns for
both cases.

First case : there exists (¢9,%0) € ¥ x D™ such that M |= ¥o(Z, g0, M) is
finite and ¥ (%, o, z). In this case the sign vector of z is completely determined
by a formula of the type

d
IOCJ)(E,E, U) = /\ 1/11(53, i)u)
i=1
for some (¢);,1;) € ¥ x D™. Indeed the set of points of M satisfying 1o (Z, §o, -)
is finite, non empty, and contains at most d points. We set E(u) := o (Z, Jo, u).
Then we test in turn for each (¢,y) € ¥ x D™ whether ¢ (Z,y,2). For each
pair, this gives a new formula E'(u) := E(u) A ¢Y(Z,g,u). If E'(M) C E(M),
then we go on with £ = E'. Otherwise we leave F unchanged. Each time we
add an atomic formula to E, this decreases |E(M)| by at least one. This shows
that E is made of at most d atomic formulas at the end of the process. We
are now ready to define the first set of sign vector formulas. Let B = md. For
t € DB, we shall note = #;. ...#q with |;| = m. For ¢ € ¥ and £ € D5 let
Szlr](2,y,t) be a quantifier free formula equivalent to

Yu € M locy(z,t,u) = 7(,y,u).

Moreover, the formula F; will express that the set of points satisfying loc (z, t, -)

is not empty and that all these points have the same sign vector. Let NotEmpty ;(z, t)
be a quantifier free formula equivalent to Ju locy(Z,#,u). Let same(Z, 7, u, v) be

the formula /\wew Y(Z,7,u) < Y(Z,7,v) and 0,5(7, t,7) a quantifier free formula
equivalent to

Vu,v (locg(Z,t,u) Alocg(Z,t,v)) — same(Z, 7, u,v) .
At last we define PreciseLoc;(Z,t) := V*F 05(Z,t,7). Then we can set

F5(%,1) := NotEmpty;(%,t) A PreciseLocg (7, 1).

11



Second case : for all (¢, 7) € ¥ x D™, z is in the infinite set among ¥ (Z, 7, K)
and its complement. Let Infini[7](Z, ) be a quantifier free formula equivalent
to

d+1
3”17"')ud+1 /\ ul;éu]/\ AT(E>g7ui)-
1<i<j<d+1 i=1

Hence the sign vector of z is given by S¢[7](Z,7,t) := Infini[7](Z,7). And we
set Fq(z,1) := true.

For I' = ¥? U {G}, B = md, and the associated formulas defined above,
we shall check that the hypothesis of proposition 4 hold. If ¥/ is a feasible sign
vector, there is a point z € M that proves it. If the point z is in the finite part
of ¥o(Z, o, -) for a pair (o, 7o), there exists (v, ) locating precisely z. Thus the
formula F;(z,t) is satisfied and @ = Sy[-](z,-,t). Otherwise 7@ = Sg[](z,,1)
(for any ). Conversely suppose there are v € ' and # € D® such that i) and
ii) hold true. If v = i, then F,(Z,t) proves that there is a point satisfying
loc;(%,t,-) (by NotEmpty), that the points satisfying loc;(%,,) have all the
same sign vector (by PreciseLoc), and that the formulas Sy[-](Z,-,) define this
sign vector. Otherwise v = Gj let

Agen ={zeM, \ N [¢@ 5 M) <oco—azeM\i(,y M)}
YEW yeD™

Of course Age, # 0 because it is the intersection of a finite number of cofinite
sets. Moreover it is clear that points from Ag., have the sign vector given by
SG['](ja '7ﬂ (fOI' any ﬂ o

4.2 On differentially closed fields

We recall that a derivation on a field K is an application d : K — K such that
forall z,y in K, d(x+y) = d(z)+d(y) and d(zy) = zd(y) +yd(z). A differential
field K is a field equipped with a derivation. A differential polynomial in the
variables x1, ...,z is a polynomial in the d/(z;) for 1 <i < k and j € N. The
order of a differential polynomial p(x) is the greatest n such that z(") appears
in p. We say that K is a differentially closed field if for any non-constant
polynomials f and g where the order of g is strictly less than the order of f
there is an « such that f(z) = 0 A g(z) # 0 [8]. The structure M is now a zero
characteristic differentially closed field K. We begin with two remarks.

Lemma 2 Let d,n € N.Then there exists B' € N such that for all N € N and
all differential polynomials py(z),...,pn(z) of order and degree (in x,z',z",...)
bounded by n et d respectively, there exists i1,...,ip such that
B’ N
Ve e K /\pij(a:) =0— /\p]-(a:) =0.
j=1

j=1

It is enough to take for B’ the dimension of the K -vector space of polynomials
of order and degree bounded by n et d : indeed we take a family {p;,,...} that
generates {p1,...,pn}. Thus we can take B’ = (d + 1)**1. O

Lemma 3 Letd,n € N. Then there exists B" € N such that for all polynomials
P1,--.,ps of order and degree bounded by n et d, the following holds. Let V =
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{z e K, pr(z) =... =ps(x) =0}. Then for all N € N and all ¢, (x),...,qn(2)

of degree and order less that n et d, there exists iy, ...,igr such that
N BN
{zeV, \a@) #0}=0—-{z eV, \ ¢,x) #0} =0.
i=1 j=1

By lemma 2, we can assume 0 < s < B'. Now s is fixed. For k € {1,..., N},
let @y, be the tuple containing the coefficients of py,...,ps followed by the co-
efficients of g. Let 6(ay,z) := A._, pi(z) = 0A qe(z) # 0. The NFCP (Not
Finite Cover Property), which is verified in differentially closed fields — see [§]
section 2, gives us a bound B"(s). Thus B"” = max{B"(s), 0 < s < B’} works.
O

Proposition 6 Zero characteristic differentially closed fields have the active-
natural collapse.

We shall use proposition 4. Let 7 be a finite set of atomic formulas of
M : we can assume that they are of the form p(Z,y,z) = 0. Let P be the
finite set of differential polynomials p(Z,¥,z) appearing in ©. Let n and d
bounding their order and degree (in each of the variables z,z',z",...). Let B’
et B" be the integers given by lemma 2 and 3. Let T = UP U...U P
and B = mB’. We shall note £ € D? as #,.t,...tp with |[f;] = m. For
p € and t € DB, let us define locy(Z,%,u) := /\Z‘1 pi(Z,t;,u) = 0 (which is
true if [p| = 0). For ¢ € P, let Slg = 0](Z,y,t) be a quantifier free formula
equivalent to Vu locy(z,t,u) = ¢(z,y,u) = 0. Let PartialNotEmpty, .(z,%,7) —
for |r| = mB" and |g| = B"” - be a quantifier free formula equivalent to

|p| B"
Ju Api(j){ivu) =0A /\(‘Sf)[(ﬁ = 0](j)Fjvi) VQJ'(j)F]')u) #0)
i=1 j=1

Let us define

Fp(x,t):=V"r [\ PartialNotEmpty; ;(z,f,7).
gepPB"”

Let us show that I' and the associated formulas ¥, and S, defined above verify
proposition 4. Indeed, let @ be a sign vector realized by a point z € M. Lemma
2 applied to the set of polynomials ¢(Z, §o, -) for all (g,7o) € P x D™ such that
q(Z, Jo, z) = 0 gives us s pairs (p;, ;) € P x D™ with 0 < s < B’. Let us show
that y = pet t = #..... ts satisfy i) and ii). On one hand S;['](z,-,t) = 0 :
indeed = Sjlg = 0)(z, 7, t) iff ¢(z,7, K) = 0 contains (N, p;(Z,¢;, K) = 0, which
is true iff ¢(Z, 7, z) = 0. On the other hand | F;(Z,?) since z exists. Conversely,
let p, ¢ be such that |= F5(Z,%). Let & = Sp[-](Z,-,1). As we have F;(Z, 1), lemma
3 tells us that the set of points of K having this sign vector is not empty. O

4.3 Uniform quantifier elimination

In this section we are interested in a notion introduced by Basu : uniform
quantifier elimination [2]. In this article the question whether the theories ACF,,
(p prime or zero) and DCF have uniform quantifier elimination was raised. We
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can bring a positive answer to these questions, since we remark that uniform
quantifier elimination is equivalent to active-natural collapse in the case of a
single unary relation.

Proposition 7 A structure has uniform quantifier elimination iff it has the
active natural collapse for a single unary relation.

First of all, let us remark that in the case where there is a single unary
relation I, any active formula can be written without using I : just replace
I(t(w)) with 3% v = t(w). That is what we are going to do in the following.

Now to each active formula we associate a uniform family of formulas, and
conversely. We shall do it for prenex ones — but this is not imperative. Let
®(z,y) be the uniform family

(]5”(55,?) = Q%<i1<n s angimgn(b('f:yil: s 7yim)

X1 x

where @; € {\/, A}. To this family will correspond the following active formula
V() := QM ... QM DTty ... )

with Q% = 3% (resp. V@) if Q* = \/ (resp. A). Of course one can make the
correspondance the other way. Moreover ®(Z,7) and ¢(Z) are related this way

(M,I) = ¢(z) if and only if M E ¢,(Z,77) where n = |Z| and gz lists
the elements of Z. A structure has uniform quantifier elimination iff for any
uniform family ®(Z,7, z), there exists a uniform family ®(Z,7) such that VZ €
M V¥n € N (3z € M ¢,(Z,7,2) + ¢n(Z,7)). In the same way, a structure has
the active-natural collapse for a unary relation iff for any active formula ¢ (z, 2),

there exists an active formula (Z) such that VZ € M (3z € M ¢(Z, z) > (%)).
Thus it is clear that these two notions are equivalent. O

Corollary 5 Strongly minimal structures with quantifier elimination and zero
characteristic differentially closed fields have uniform quantifier elimination. O

We have the following : active-natural collapse = uniform QE = QE. More-
over, there exists a structure that eliminates quantifiers but not uniformly : the
ternary random structure [3]. Is there a structure that admits uniform quanti-
fier elimination but not the (full) active-natural collapse ? One can also wonder
about all intermediate questions.
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