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Abstract
In this paper, we show how to design a perfect simulation for Marko-
vian fork-join networks, or equivalently, free-choice Petri nets. For pure
fork-join networks and for event graphs, the simulation time can be
greatly reduced by using extremal initial states, namely blocking states,
although such nets do not exhibit any natural monotonicity property.
Another approach for perfect simulation of pure fork-join networks is
based on a (max,plus) representation of the system. For that, we show
how the theory of (max,plus) stochastic systems can be used to provide
perfect samplings. Finally, experimental runs show that the (max,plus)
approach couples within fewer steps but needs a larger simulation time
than the Markovian approach.

Keywords: Perfect simulation, Petri nets, fork and join

Résumé
Dans cet article, nous montrons comment simuler de manière exacte les
réseaux fork-join markoviens, ou réseaux de Petri à choix libres. Pour les
réseaux fork-join purs, ou graphes d’événements, le temps de simulation
peut être très fortement réduit en utilisant des états initiaux extrémaux,
bien que ces réseaux ne satisfassent aucune propriété naturelle de mo-
notonicité. Une autre approche pour la simulation parfaite des réseaux
fork-join purs est basée sur la représentation (max,plus) de ces systèmes.
Pour cela, nous montrons comment la théorie (max,plus) des systèmes
stochastiques peut être utilisée pour fournir une simulation parfaite. En-
fin, des expérimentations montrent que l’approche (max,plus) couple en
moins d’étapes, mais nécessite un temps d’exécution plus long que l’ap-
proche markoviene.

Mots-clés: Simulation parfaite, réseaux de Petri, fork et join.
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1 Introduction

Queueing systems with fork and join nodes have been used to model communication networks
involving some synchronization schemes such as networks with window control, Kanban sys-
tems, finite queues with blocking [2]. Under Markovian assumptions, it can be shown that
such networks can be seen as multidimensional Continuous Time Markov Chains. In the pres-
ence of fork and join nodes the steady state distribution is not a product form and no general
technique can be used to compute it (it is an NP hard problem in general, [5]). Simulation
approaches are alternative methods to estimate the stationary behavior of such systems. Us-
ing an approach similar to Propp and Wilson’s algorithm ([11]), we derive an algorithm for
perfect simulation of such networks. When the network is pure fork-join (to be defined later),
then we show how to improve drastically simulation time by reducing the number of initial
states to be simulated. Indeed, pure fork-join networks do not have classical monotonicity
properties. The state space does not contain a minimal state (e.g. all buffers are empty) nor
a maximal state (e.g. all buffers are full), as for example in open networks with blocking and
rejection (see [13]). However, it is possible to exhibit extremal initial states (called blocking
states later) such that whenever coupling from the past occurs with those states, the coupling
state is distributed according to the stationary distribution of the chain. When the network
has Q buffers, these extremal states are obtained by blocking one buffer (no exits are allowed)
and let the system evolve until a deadlock is reached. Doing this, one gets the Q blocking
states of the network.

A second method for perfect simulation, based on a (max,plus) representation of the dy-
namics of network, is also given. This method works under more general stochastic assump-
tions (basically under i.i.d. assumptions) and does not need the network to be Markovian.
It uses the theory of (max,plus) stochastic systems developed in [1, 10, 3]. This powerful
theory has been used mainly to prove existence theorems in full generality. To the best of our
knowledge, this is the first time it is applied to perfect simulation.

In the last part of the paper, we compare the two methods for perfect simulation of fork-
join networks. It is interesting to notice that while the (max,plus) algorithm couples faster
than the Markov chain algorithm, the simulation lasts longer with the (max,plus) method
because each step involves large matrix products.

2 Fork-Join networks, Petri nets and perfect simulation

Fork-join queueing networks are made of queues (buffer and server), fork nodes and join nodes
and communication links between these nodes. A fork node splits one packet into several new
packets, independent of each other. A join merges several packets into a single new one.
It is a well-known fact that such networks can be transformed into an equivalent Petri net
(see for example [12]). Petri nets only have two kinds of nodes (instead of much more for
fork-join networks), places (circles in the graphical representation) which replace buffers and
transitions (rectangles) which play the role of servers. An example of such a transformation
is given in Figure 1. This network contains buffers, servers, forks and joins. The black node
routes packets up with probability 1− p and down with probability p.

Furthermore, a fork-join network is pure if it is possible to transform it into a Petri net
where all places have exactly one input link and one output link. The example given in
Figure 1 is not pure since the corresponding Petri net contains one place (a) with two output
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p

A fork-join queueing network

1− p

forkjoin
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1− p

pa

The corresponding Petri net

transitionplace

Figure 1: transformation of a fork-join network into a Petri net.

arcs. Basically, the pure fork-join networks have no routing and no superposition of flows into
buffers. They are perfectly synchronized networks (hence the name pure). The corresponding
Petri nets, with one input and one output per place are also called event graphs. For more
on this, see for example [9].

Figure 2 show a pure fork-join network, bounded and without deadlocks, which is typical
in cyclic distributed computing.

Figure 2: Pure fork-join network

2.1 Perfect simulation

The perfect simulation algorithm that we will be using in Sections 2, 3 and 4 is given in Figure
3. Note that the same variables U0, U−1, U−2, · · · are used for all the simulations.

The following theorem (proved in [8]) shows the correctness of the algorithm.

Theorem 1 ([8]). Let the stationary distribution of the finite ergodic Markov chain (Xn)n∈N
be π = (π1, · · · , πk). If the algorithm PSA terminates, and returns X, then for all i, P (X =
i) = πi.
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Input A recurrent representation φ of an ergodic finite Markov chain:
Xn+1 = φ(Xn, Un+1), a sequence of increasing integers N1, N2 . . . and
a sequence U0, U−1, U−2, . . .of i.i.d. r.v. uniformly distributed over
[0, 1].
m := 1
repeat

for all state si do
Simulate the chain Xn+1 = φ(Xn, Un+1), starting at time −Nm

with initial state si, up to time 0 using the random variables
U−Nm+1, · · · , U0.

end for
m := m + 1

until all simulations end up in the same state (X)
Output X

Figure 3: Perfect Simulation Algorithm (PSA) of Markov chains

Note that a given Markov chain has many representations under the form of a recurrence
equation xn+1 = φ(xn, un+1). Using Borel-Cantelli arguments, it is possible to show [8] that
for each such representation, the perfect simulation algorithm will terminate with probability
t ∈ {0, 1}. Therefore, for a given representation, it is usually very easy to show that the
algorithm will terminate (or not) so that it is well suited (or not) for PSA.

3 Perfect simulation of fork-join networks

In the following, we consider a Petri net (resp. a fork-join network) with N places (resp.
buffers) and Q transitions (resp. servers), which is bounded (the total number of packets
present in the system cannot exceed some bound B) and with no deadlocks. In particular,
the boundedness assumption implies that the network is closed. The initial state (packets in
buffers) is denoted M0 ∈ Nn, the set of all reachable states from M0 is R. All servers are
mono-servers. One service at server s removes one packet in all incoming buffers of s and
sends one packet in all outgoing links. The service times in the transition (resp. server) s
are i.i.d. random variables exponentially distributed with parameters λs. The evolution of
the state M of the system can be written under the form of a finite continuous time Markov
chain which infinitesimal generator is Q = (QM1,M2)M1,M2∈R with

QM1,M2 =


λs if M1

s→ M2

0 otherwise
−

∑
M ′ 6=M1

QM1,M ′ if M1 = M2.

To construct a perfect simulation, we uniformize this continuous time Markov chain.
The usual uniformization coefficient supM{

∑
M ′ 6=M QM,M ′} does not provide a discrete time

Markov chain amenable to perfect simulation. The trick here is to choose q =
∑

s λs (the total
event rate) instead, allthough this may result into a loss of efficiency for the uniformization
(in general q > supM{

∑
M ′ 6=M QM,M ′} ). This choice makes it possible to find a recurrence

equation that defines a discrete time Markov chain with the same stationary distribution as
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the initial continuous time chain and for which perfect simulation terminates in finite time
with probability one.

Let us choose a Markov chain Zn defined over R(M0) such that

Zn+1 = φ(Zn, un+1), (1)

with (un)n∈N i.i.d. uniformly distributed over [0, 1] and φ defined as follows.
After numbering all servers (transitions),

if u ∈

[∑i−1
j=1 λj

q
,

∑i
j=1 λj

q

)
, then

φ(M,u) =
{

M ′ if M
si→ M ′

M otherwise.

Using this definition of φ, each server si is associated with an interval Ii =
[∑i−1

j=1 λj

q ,
∑i

j=1 λj

q

)
.

At step k, a service at si occurs if uk ∈ Ii and such a service is possible under state Mk−1.
To simplify the notations, we denote Mk = φk(M0, u1 . . . uk), k steps of the Markov chain:
M1 = φ(M0, u1), . . . ,Mk = φ(Mk−1, uk).

Theorem 2. The prefect simulation algorithm based on recurrence equation (1) terminates
in finite time, with probability one.

Proof. First, it should be clear that the Markov chain Zn has a finite state space by bounded-
ness. This chain is aperiodic because φ(M,u) = M with positive probability and is irreducible
because the network does not contain any deadlock. Hence Zn is ergodic.

The rest of the proof is based on the following property of the chain Zn. For any couple of
states M1, M2 in R, there exists a finite variable k such that the chain starting in M1 and the
chain starting in M2 reach the same state after k steps with positive probability. Since the
state space is finite, this means that starting with all possible states, the simulation reaches
a unique state after a finite number of steps with positive probability (by coupling the states
one by one). The result then follows using Borel-Cantelli arguments (see [13] for more on
this).

To prove convergence after k steps of two chains, starting with M1 and M2, one can use
the notion of blocking states. The blocking state Ba for transition (server) a is the state
reached eventually, after blocking server a.

It has been proved in [7] that for the class of bounded Petri nets used here with no
deadlocks, such states are unique, no service is possible under Ba except at server a, and that
Ba is reachable from any state in R without ever using server a. Basically, in simple closed
systems with no forks and joins, state Ba corresponds to the state where all packets are at
server a. With fork and join nodes, the situation may be more complicated since some packets
may be blocked in some other fork nodes of the system under Ba. For more on blocking states
(in particular on their regeneration properties, see [7]).

Here is the end of the proof. Pick a arbitrarily, and consider the associated blocking state
Ba. There exists a sequence of service events that leads from M1 to Ba. Let us consider the
corresponding sequence of intervals I1, . . . I`. If u1 ∈ I1, . . . , u` ∈ I` then φ`(M1, u1, . . . , u`) =
Ba. Under the same exogenous sequence, but starting from M2, we get φ`(M2, , u1, . . . , u`) =
M3 for some M3. Now, starting from M3, there exists a sequence of services (not including
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a) that leads to Ba. The corresponding sequence of intervals I`+1, . . . Ik are such that if
u`+1 ∈ I`+1, . . . uk ∈ Ik,

φk(M2, u1, . . . , uk) = φk−`(M3, u`+1, . . . , uk) = Ba

and
φk(M1, u1, . . . , uk) = φk−`(Ba, u`+1, . . . , uk) = Ba,

since under the sequence u`+1, . . . , uk, server a never serves so that no state change happens
starting in state Ba.

Such a sequence u1, . . . , uk occurs with positive probability (
∏k

i=1 |Ii|). This finishes the
proof.

The problem with this perfect simulation scheme is that one needs to start with all states
in R and look for coupling at time 0. The size of R can be exponential in the size of the net
so that only small nets can be simulated using this approach. In the following, we will show
how to reduce the number of starting states. This only works for pure fork-join networks.

4 Simulation of Pure Fork-Join networks

We consider a pure fork-join network (or an event graph) which is bounded and has no
deadlock. Since every buffer has a single input server (t) and a single output server (s), we
denote by (s, t) such a buffer and by M(s, t) the number of packets in that buffer in state M .

We will show in the following that starting the simulation with the blocking states only,
{Ba, a transition}, will provide a perfect sampling when coupling occurs.

4.1 Blocking states

Theorem 3. Consider a bounded pure fork-join network (or an event graph) with no deadlock,
with exponential service times. The perfect simulation algorithm using blocking states as
starting points terminates in finite time with probability one and outputs a state distributed
according to the stationary distribution of Zn.

Before we prove this theorem, which is the main result of this section, let us first make
several comments.

First, this result means that one can run the perfect simulation algorithm starting with
the blocking states only. This decreases the number of sample paths from an exponential
number to a linear number (there is one blocking state per server).

Another remark is that, although pure fork-join do not exhibit usual monotonicity prop-
erties (such as open networks with finite queues, see [13]), they do possess extremal states in
some sense: the blocking states. Simulating starting with those states will insure convergence
to a state distributed according to the stationary distribution.

The proof of the theorem comes in several steps. Let us first state a structural lemma.
If σ is a sequence of service, s a transition (server) and M a state of the net, we denote by
Ns(σ,M) is the number of times service actually occurs at s, starting from M and trying to
proceed through the sequence of service σ in that order (after k steps, if service σk is allowed,
then it is performed, otherwise nothing happens and the next service is tried). This is also
called running σ from M .
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Let M be a state under which only two servers are enabled, say a and b. Let us denote
by σa the shortest sequence of services that leads from M to Ba, not including a and by σb

the shortest sequence of services that leads from M to Bb, not including b. One knows that
two such sequences exist according to [7].

Lemma 4. Under the foregoing notations, if σ is an arbitrary sequence of services and s an
arbitrary server,

Ns(σ,M) = min(Ns(σa,M) + Ns(σ,Ba), Ns(σb,M) + Ns(σ,Bb)).

Proof. The proof goes by induction on the length of σ. If |σ| = 0, then it is enough to show
that the supports of σa and of σb are disjoint. First, since only a and b are allowed under M ,
the first service in σa must be b because σa does not contain a and and the first service in σb

must be a for similar reason. Let s be the first service in σa common with σb. Since s was
not allowed under M , then some other services must have brought packets in the incoming
buffers of s. But these services must have occurred in both σa and σb, contradicting the fact
that s was the first common service. This ends the case |σ| = 0.

Now, we assume that the lemma holds for all sequences of length n, and we consider a
sequence σ such that |σ| = n + 1. Let σ = σ′s.

If
min

t input server of s
(Nt(σ′,M) + M(t, s)) > Ns(σ′,M), (2)

then Ns(σ,M) = Ns(σ′,M) + 1 else Ns(σ,M) = Ns(σ′,M).
By induction,

min
t

(Nt(σ′,M) + M(t, s)) = min
t

(min(Nt(σ′, Ba) + Nt(σa,M) + M(t, s),

Nt(σ′, Bb) + Nt(σb,M) + M(t, s)))
= min

t
(min(Nt(σ′, Ba) + Ns(σa,M) + Ba(t, s),

Nt(σ′, Bb) + Ns(σb,M) + Bb(t, s)))
= Ns(σa,M) + min

t
(Nt(σ′, Ba) + Ba(t, s))

∧ Ns(σb,M) + min
t

(Nt(σ′, Bb) + Bb(t, s)).

Using this equation, it should be clear that Ns(σ,M) increases by one them if and only if
the minimum of Ns(σ,Ba) and Ns(σ,Bb) increases by one.

Now, we generalize to the general case: under state M an arbitrary number of servers are
allowed. We partition the set of all allowed server into two disjoint sets S1 and S2. Starting
from M , let σ1 (resp. σ2) the shortest service sequence (containing no server in S1 (resp. S2)
that leads to a blocking state B1 (resp. B2 ) for S1 (resp. S2) , where only services in S1

(resp. S2) are allowed.
The same method used in the proof of Lemma 4 can be used to show the following result.

Lemma 5. If σ is an arbitrary sequence of services and s an arbitrary server,

Ns(σ,M) = min(Ns(σ1,M) + Ns(σ,B1), Ns(σ2,M) + Ns(σ2, B2)) (3)
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We are now ready for the proof of the theorem.

Proof. (of Theorem 3) First, it should be obvious that the simulation starting with blocking
states terminates with probability one, since they form a subset of all states, and then by
using Theorem 2. Let us assume that coupling from the past occurs for all blocking states
after k steps. The corresponding sequence of services is denoted σ and the coupling state is
denoted by C.

Let denote by M any initial state. The proof that the simulation starting from M also
couples in the k steps holds by induction on the number m of services allowed under M .

If m = 1 then M is a blocking state and the result holds by definition of k.
If m > 1 we split the set S of servers allowed under M into S1 = {a} and S2 = S \{a}. As

in lemma 5, we consider the states B1 and B2. Using the induction assumption, the simulation
starting in B2 ends up in C after running the sequence σ from B2. Using the fact that B1 is
the blocking state of server a, the simulation starting in B1 has also reached C after running
the sequence σ.

Lemma 5, says that after running σ from M or from B1 (and B2), a new service occurs in
both cases together or for none of them. This is true for any new sequence of services. This
means that all three states are equal after running σ. This common state must be C.

One interesting corollary of this result is the fact that one can get all stationary functionals
of interest with a good confidence interval using the central limit theorem by merely running
several independent simulations.

For example, the global throughput D (number of services per unit of time) can be ob-
tained using the following formula:

D−1 =
∑

M∈R

πM

λM
,

where λM is the sum of all servers allowed under M .

4.2 Counter examples for more general cases

In this section, we show that blocking states are no longer extremal states for the simulation
in more general cases. They may couple into a state which is not distributed according to the
stationary distribution.

4.2.1 Multiple servers

While the general simulation scheme can be readily adapted for multiple servers (taking into
account the number of active servers) the blocking states are not extremal anymore. Consider
the example displayed in Figure 4.

The blocking states are (2, 0, 0), (0, 2, 0), (0, 0, 2). Now, consider the following sequence of
services (the corresponding rates are given in parenthesis) 3(λ3), 3(λ3), 2(λ2), 1(2λ1), 3(λ3),
where a service with rate 2λ1 means that both servers are active and therefore there must be
two packets in queue a. Running this sequence starting from all blocking states ends up in
state (1, 1, 0) while starting from the initial state given in the figure, reaches (2, 0, 0).
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a b

3 c

21

Figure 4: A pure fork join with multiple servers.

4.2.2 Non pure fork-join networks

If the network only has single servers but is not pure. Blocking states are not extremal either
as shown by the example displayed in Figure 5.

5

2

1

7 6

3

4

Figure 5: A non-pure fork-join network

The network in Figure 5 is not pure because node 2 has several inputs which are not forks
or joins. Mono servers 3,4,6 have a common buffer. This is not pure either.

We will now show that running a given sequence starting from all the blocking states may
lead to a state which is not reached from all other states using the same running sequence.
Here, the blocking state are all of the form (0, . . . , 0, 2, 0, . . . , 0). Let us run the service
sequence 1, 1, 2, 2, 7, 5, 2, 4, 4, 3, 7, 2, 4. All blocking states end in the state with two packets
in buffer 5, while starting with the initial state given in Figure 5, the net reaches the state
with one packet in buffer 5 and one packet in buffer 1.

5 Perfect Simulation using the (max,plus) algebra

There exists a second method for perfect simulation of pure fork-join networks that will
be explained in the following and which is not based on the Propp and Wilson algorithm.
This method also works under non Markovian assumptions. The techniques used here where
used in the past (see for example [10], [1]) to prove the existence of stationary regimes for
(max,plus) systems. We will show here how they can also be used to get perfect samplings of
this stationary regime.

In the following we consider a bounded pure fork-join network with no deadlock under
the following stochastic conditions (SC): service times are all i.i.d. and at least one of them
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(say s1) has an unbounded support. Actually, under even more general conditions (in partic-
ular without the unbounded support assumption) are given in [10]. Everything done in the
following is true under these general conditions, but they are difficult to write in terms of
assumptions on the service times.

The time evolution of pure fork-join networks (or event graphs) can be written under the
form of a (max,plus) linear equation of size Q. If Xi(n) is the instant of the end of the nth
service at server si, then

X(n) = X(n− 1)⊗A(n),

where (A(n))n∈N is a sequence of i.i.d. matrices with a fixed support where uniformly in
n, Aij(n) is −∞ or is a sum of several service times, depending on the initial state. For more
on this, see [1], for example.

The profile of a vector v ∈ Rk
max is the vector γ(v) defined by γ(v)i = vi −minj vj .

Definition 6. A deterministic matrix Q ∈ Rk×k
max is of rank 1 if all lines are equal up to an

additive constant:
∀i, j ∃ cij s.t. cij + Q.,i = Q.,j .

Alternatively,

Q is of rank 1 ⇔ ∀i, j, γ(Q.i) = γ(Q.j) ⇔ ∀i, j, γ(Qi.) = γ(Qj.).

Lemma 7. If Q is of rank one, then ∀u, v ∈ Rk, γ(u⊗Q) = γ(v ⊗Q).

Proof. For all i and j, using the definition of matrices of rank one, (u⊗Q)j = cij + (u⊗Q)i.
If i0 = argminic1i, then the profile γ(u⊗Q)i = cioi for all i. This does not depend on u.

Let us now consider the sequence of stochastic matrices corresponding to a pure fork-join
network with Q servers which is bounded and with no deadlock, A(1), . . .. The algorithm for
perfect simulation of the corresponding (max,plus) linear system is given in Figure 6.

Input A ( max,plus) representation X(n) = X(n − 1) ⊗ A(n) and a
sequence of increasing integers N1, N2, . . .
m := 1
repeat

Compute Bm := A(−Nm)⊗ · · · ⊗A(0)
m := m + 1

until Bm is of rank one
X(0) := X(−Nm)⊗Bm

Output γ(X(0))

Figure 6: Perfect Simulation Algorithm of (max,plus) linear systems

Under the foregoing assumptions (SC), it is proved in [10] that the system X(n) = X(n−
1)⊗A(n) admits a stationary regime, i.e. that γ(Xn) converges almost surely to a stationary
profile γ∞, independent of the initial conditions X(0).

Theorem 8. If the (max,plus) perfect simulation algorithm terminates, then its output has
the distribution of the stationary profile of the (max,plus) system.
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Proof. Using Lemma 7, if the matrix Bm has rank one, and if X∞ is a state with a stationary
profile (γ(X∞) = γ∞ in distribution), then X ⊗ Bm = X∞ ⊗ Bm for all X. Since γ(X∞) is
stationary, so is γ(X∞ ⊗Bm) = γ(X ⊗Bm).

The rest of this section is devoted to the proof that under conditions (SC), the (max,plus)
perfect simulation algorithm terminates with probability one.

Lemma 9. Under the foregoing assumptions, the product A(1) ⊗ · · · ⊗ A(k) is of rank one
with positive probability, as soon as k > Q.

Proof. For all k, event Ek,ε is defined by

Ek = {ω | Ai,j(n) ∈ [hij − ε, hij + ε] ∀n ≤ k},

where hij is in the support of Ai,j(n) for all n ∈ N, hij 6= hi′j′ for all (i′, j′) 6= (i, j) if the
support of Ai,j(n) is continuous, and h11 > Q(max(i,j) 6=(1,1) hij + ε).

By construction of the deterministic matrix H = (hij), and using the theory of determin-
istic (max,plus) matrices (see [1, 4]), for all i there exists a sequence i1 . . . i` and for all j there
exists a sequence j1 . . . jr such that for all k > Q,

Hk
ij = hii1 + · · ·+ hi`1 + (k − `− r − 2)h11 + h1j1 + · · ·+ hjrj .

Using this form of the matrix Hk, it is straightforward to show that Hk is of rank one, indeed
the difference Hk

ij −Hk
i′j does not depend on j.

Now, if k > Q and ε is small enough, the product A(1) ⊗ · · · ⊗ A(k) will also be of rank
one, for the same reason:

(A(1)⊗ · · · ⊗A(k))ij = A(1)ii1 + · · ·A(` + 1)i`1

+ A(` + 2)11 + · · ·+ A(k − r − 1)11

+ A(k − r)1j1 + · · ·+ A(k)jrj ,

so that (A(1)⊗ · · · ⊗A(k))ij − (A(1)⊗ · · · ⊗A(k))i′j does not depend on j.
To finish the proof, it is enough to notice that under Conditions (SC), P (Ek,ε) > 0 for all

k ∈ N and all ε > 0.

Using Lemma 9 and Borel-Cantelli theorem, it is now direct to show the following result.

Theorem 10. Under assumptions (SC), the (max,plus) perfect simulation algorithm termi-
nates with probability one.

From a stationary profile γ∞, it is possible to get a stationary state of the fork-join network
by appending the following steps in the (max,plus) simulation algorithm. The output is a
state distributed according to the stationary distribution.



Perfect Sampling for Fork-Join networks 11

Draw a non-negative random variable d independent of everything
k := 0, M := M0 (initial state)
repeat

X(k) := X(k − 1)⊗A(k)
k := k + 1

until Xi(k) > maxj Xj(0) + d, ∀i
for all sever si do

ni := max{n | Xi(n) < maxj Xj(0) + d}
Update M by serving ni times at server si.

end for
Output M

6 Comparison of the two methods

We have implemented the two methods presented here to simulate a pure fork-join network:
the Markov chain algorithm starting at blocking states only and the (max,plus) algorithm.
Although the (max,plus) algorithm is more general (does not need exponential service times),
we have used exponential service times to be able to compare both methods. The programs
are both written in Caml, using in both cases the most efficient methods known to us. In
particular, in the Markovian case, the sequence of integers Nm used at each step is Nm = 2m

which was proved optimal in average for the Markov chain algorithm in [11]. The Markov
chain algorithm also uses an aliasing technique that enables one to compute φ(X, U) in almost
constant time for any U ∈ [0, 1]. This technique replaces the real-valued random variable U
by a couple (U, V ) where U is real-valued, uniformly distributed over [0, 1/Q] and V is integer
valued, uniformly distributed over {1, . . . , Q}. This technique was first developed in [14] and
has been used in [13], for perfect simulation.

In the experiments given below, the (max,plus) algorithm computes a stationary profile.
The additional products needed to get a stationary state are not included. They should
increase the simulation time by a rather small quantity.

The pure fork-join network used in the simulations is a simple circuit made of K servers
(and K buffers) and W packets in total. The (max,plus) representation of such a network
uses a matrix A(n) with size Q = max(K, W ). The total number of states is (K+W−1

K−1 ). In
the experiments, K = 40 and W ranges from 1 to 80, so that the number of states goes up
to 3.819 1031.

Figure 7 displays the number of iterations for both algorithms, while Figure 8 displays
the total simulation time. Each point is the average of many simulations (in order to provide
a confidence interval of 95% ).

While the number of iterations before coupling is much smaller for the (max,plus) case,
the actual simulation time however is much larger. This is because one step in the (max,plus)
algorithm is a product of a large matrix (of size Q). One can notice that the time complexity
of the (max,plus) algorithm starts to increase rapidly when the number of packets W becomes
larger than the number of servers K. One explanation is that from that point on, the size
of the matrices starts to increase from K to W . The same kind is behavior (fewer iteration
but larger simulation time) has been observed when the number of servers K changes. The
corresponding curves are similar to those in Figures 7 and 8 and are not reported here.

While the Markov chain method is faster, the (max,plus) one is more general in terms
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Figure 7: Average number of iterations for a circuit with K = 40 servers when the number
of packets varies
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Figure 8: Average simulation time for a circuit with K = 40 servers when the number of
packets varies
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of service distributions. The (max,plus) method can also be used to simulate perfectly the
stationary distribution of (max,plus) systems where the support of the matrices is not fixed.
These models, also known as heaps of pieces, can be simulated using the (max,plus) algorithm
6 as is. In that case, the conditions for termination with probability one can be found in papers
dealing with the existence of stationary regimes, such as [6].
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