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RN-coding of numbers: definition and some properties

Peter Kornerup , Jean-Michel Muller

October 2004

Abstract
We define RN-codings as radix-β signed representations of numbers for which
rounding to the nearest is always identical to truncation. After giving charac-
terizations of such representations, we investigate some of their properties, and
we suggest algorithms for conversion to and from these codings.

Keywords: Computer arithmetic, number systems

Résumé
Nous appelons RN-code une représentation de baseβ d’un nombre pour la-
quelle arrondir au plus près, à une position quelconque, est toujours équivalent
à tronquer la représentation. Après avoir donné des caractérisations de ces re-
présentations, nous analysons quelques unes de leurs propriétés, et nous pré-
sentons des algorithmes permettant de convertir vers et depuis ces RN-codes.

Mots-clés: Arithmétique des ordinateurs, Systèmes de numération
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1 introduction

We are interested in representations or integer or real numbers that are particular cases of signed-digit
representations. It is well-known that in radixβ ≥ 2, every integer (real number) can be represented
by a finite (infinite) digit chain, with digits in the digit set{−a,−a + 1, . . . ,+a − 1,+a}, provided
that2a + 1 ≥ β. If 2a + 1 ≥ β + 1 then some numbers can be represented in more than one way
and the number system is said to be redundant. Redundancy makes it possible to perform fast, fully
parallel, additions [1], or to perform the four arithmetic operations on-line, i.e., digit-serially, most
significant digit first [8, 4].

And yet, signed-digit representations, either redundant or not, naturally appear in many other
problems than parallel additions. In1840, Cauchy suggested the use of digits−5 to +5 in radix10 to
simplify multiplications [3]. The “balanced ternary” system (radix3 with digits−1, 0 and1) has some
interesting properties. Is is worth being noticed that computers using that system were actually built1,
at Moscow University, during the60’s. Knuth [6] mentions that in that number system, the operation
of rounding to the nearest is identical to truncation. When trying to design fast multipliers, it is
sometimes interesting to recode one of the input binary operands so that its representations contains
as many zeros as possible. This implies that we use, in radix2, digits equal to−1, 0 or +1. A
first attempt was suggested by Booth [2]. His solution does not always increase the number of zero
digits in the representation (what is actually used in modern multipliers, and frequently improperly
named “Booth recoding” – “modified Booth recoding” is preferable – is a somewhat different method).
See [7] for a recent presentation of this topic. Signed-digit representations also naturally appear as the
output of fast digit-recurrence algorithms for division and square root [5].

In this paper, we wish to investigate the positional, radixβ, number systems that share with the
balanced ternary system the property that truncating is equivalent to rounding to the nearest. Interest-
ingly enough, the representations generated by Booth’s recoding algorithm satisfy that property. We
will call such representationsRN-codings, where “RN” stands for “Round to Nearest”.

Most conventional representations are not RN-codings. When we truncate the conventional radix-
10 representation of a given numberx at some positionj (i.e., of weight10j), the obtained number is
not necessarily the multiple of10j that is closest tox.

Definition 1 (RN-codings) Let β be an integer greater than or equal to2. The digit sequence2 D =
dndn−1dn−2dn−3 . . . d0.d−1d−2 . . . (with−β + 1 ≤ di ≤ β − 1) is an RN-coding, in radixβ of x if

1. x =
∑n

i=−∞ diβ
i (that isD is a radix-β representation ofx);

2. for anyj ≤ n, ∣∣∣∣∣
j−1∑

i=−∞
diβ

i

∣∣∣∣∣ ≤ 1
2
βj ,

that is, if we truncate the digit sequence to the right at any position, the obtained sequence is
always the number of the formdndn−1dn−2dn−3 . . . dj that is closest tox.

Hence, truncating the RN-coding of a number at any position is equivalent to rounding it to the nearest.
For example, in radix10, the RN-coding ofπ starts with

3.142413354410213 · · ·
where (as usually)4 means−4.

1See http://www.icfcst.kiev.ua/MUSEUM/PHOTOS/setun-1.html
2It will stop at index0 if x is an integer.
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2 Some properties

In the following, we will consider radix-β symmetric number systems (i.e.with a digit set of the form
{−a, . . . + a}), that are not over-redundant (i.e., such thata ≤ β − 1).

Theorem 1 (Characterizations of RN-codings)

• if β is odd, thenD = dndn−1dn−2dn−3 . . . d0.d−1d−2 . . . is an RN-coding if and only if

∀i, −β + 1
2

≤ di ≤
β − 1

2
;

• if β = 2 thenD = dndn−1dn−2dn−3 . . . d0.d−1d−2 . . . (with di = −1, 0, 1) is an RN-coding if
and only if the non-zero digits have alternate signs (i.e.,di 6= 0 implies that the largestj < i
such thatdj 6= 0 satisfiesdi = −dj ;

• if β is even and larger than2 thenD = dndn−1dn−2dn−3 . . . d0.d−1d−2 . . . is an RN-coding if
and only if

1. all digits have absolute value less than or equal toβ/2;

2. if |di| = β/2, then the first non-zero digit that follows on the right has an opposite sign,
that is, the largestj < i such thatdj 6= 0 satisfiesdi × dj < 0.

The proof is straightforward. �

Example 1 For instance, in radix3 with digits in{−1, 0, 1}, or in radix5 with digits in{−2,−1, 0, 1, 2},
all representations are RN-codings. In these number systems, truncating is equivalent to rounding to
the nearest. In radix10 with digits{−5, · · · ,+5}, 45013 is an RN-coding, whereas45013 is not an
RN-coding.

Another consequence of Theorem1 is that, in radix2, storing ann-digit RN-coding requiresn+1
bits only: it suffices to store the sign of the first nonzero digit. The signs of all following nonzero digits
– since these signs alternate – are immediately deduced from it, so that we can represent these digits
by ones only.

Theorem 2 (About uniqueness of finite representations)

• if β is odd, then a finite RN-coding ofx is unique (comes from Theorem1: in that case, the
number system is nonredundant);

• if β is even, then some numbers may have two finite representations. In that case, one has its
rightmost nonzero digit equal to−β

2 , the other one has its rightmost nonzero digit equal to+β
2 .

Proof: If β is odd, the result is an immediate consequence of the fact that the number system is
non redundant. Ifβ is even, then consider two different RN-codings that represent the same numberx,
and consider the largest positionj (that is, of weight2j) such that these RN-codings, truncated to the
right at positionj differ. Definexa andxb the numbers represented by these digit chains. Obviously,
xa−xb ∈ {−βj , 0,+βj}. Now,xa = xb is impossible: since the digits of weightβj of the considered
digit chains differ,xa = xb would imply that the two chains, truncated at positionj + 1 would differ,
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which is impossible (j is the first position such that the digit chains differ). Hencexa 6= xb. Without
loss of generality, assumexb = xa + β−j . This impliesx = xa + β−j/2 = xb − β−j/2. Hence,
the remaining digit chains (i.e., the parts that were truncated) are digit chains that start from position
j − 1, and that represent±βj/2.

The only way of representingβj/2 with an RN-coding and starting from positionj − 1 is(
β

2

)
0000 · · · 0.

This is easily shown: if the digit at positionj − 1 of a number is less than or equal toβ
2 − 1, then

that number is less than (
β

2
− 1

)
βj−1 +

(
β

2

) j−2∑
i=0

βj < βj/2

(since the largest allowed digit isβ/2). Also, the digit at positionj − 1 of a RN code cannot be larger
than or equal toβ2 + 1. This ends the proof. �

If β is even, then a number whose finite representation (by an RN-coding) has its last nonzero
digit equal toβ/2 has an alternative representation ending with−β/2 (just assume the last two digits
ared(β/2): since the representation is an RN-coding,d < β/2, hence if we replace these two digits
by (d + 1)(−β/2) we still have an RN-coding). This has an interesting consequence: truncating off a
number which is a tie will round either way, depending on which of the two possible representations
the number happens to have. Hence, there is no bias in the rounding.

Example 2

• In radix 7, with digits{−3,−2,−1, 0, 1, 2, 3}, all representations are RN-codings, and no num-
ber has several finite representations;

• in radix 10 with digits{−5, . . . ,+5}, the number15 has two RN-codings, namely15 and25.

Theorem 3 (About uniqueness of infinite representations) We now considerinfinite codings, i.e.,
codings that do not ultimately terminate with an infinite sequence of zeros.

• if β is odd, then some numbers may have two infinite RN-codings. In that case, one is eventually
finishing with the infinite digit chain

β − 1
2

β − 1
2

β − 1
2

β − 1
2

β − 1
2

β − 1
2

· · ·

and the other one is eventually finishing with the infinite digit chain

−β + 1
2

−β + 1
2

−β + 1
2

−β + 1
2

−β + 1
2

−β + 1
2

· · · ;

• if β is even, then two different infinite RN-codings necessarily represent different numbers. As
a consequence, a number that is not an integer multiple of an integral (positive or negative)
power ofβ has a unique RN-coding.
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Proof: If β is odd, the existence immediately comes from

1.
−β + 1

2
−β + 1

2
−β + 1

2
−β + 1

2
· · · = 0.

β − 1
2

β − 1
2

β − 1
2

β − 1
2

· · · =
1
2

Now, if for any β (odd or even) two different RN-codings represent the same numberx, then con-
sider them truncated to the right at some positionj, such that the obtained digit chains differ. The
obtained digit chains represent numbersxa andxb whose difference is0 or ±βj (a larger difference
is impossible for obvious reasons).

First, consider the case whereβ is odd. The differencexb − xa cannot be0, otherwise these
truncated digit chains would be the same from Theorem2. So they differ by±βj . Hence, from the
definition of RN-codings, and assumingxa < xb, we havex = xa + βj/2 = xb − βj/2. Sinceβ is
odd, the only way of representingβj/2 is with the infinite digit chain (that starts from positionj − 1)

β − 1
2

β − 1
2

β − 1
2

β − 1
2

· · ·

the result immediately follows.
Now, consider the case whereβ is even. Let us first show thatxa = xb is impossible. From

Theorem2, this would imply that one of the corresponding digit chains would terminate with the
digit sequence−β

2 00 · · · 00, and the other one with the digit chain+β
2 00 · · · 00. But from Theorem1,

this would imply that the remaining (truncated) terms are positive in the first case, and positive in
the second case, which would mean (sincexa = xb implies that they are equal) that they would
both be zero, which is not compatible with the fact that the representations ofx are assumed in-
finite. Hencexa 6= xb. Assumexa < xb, which impliesxb = xa + βj . We necessarily have
x = xa + βj/2 = xb − βj/2. Althoughβj/2 has several possible representations in a “general”
signed-digit radix-β system, the only way of representing it with an RN-coding is to put a digitβ/2
at positionj − 1, no infinite representation is possible. �

Example 3

• In radix 7, with digits{−3,−2,−1, 0, 1, 2, 3}, the number3/2 has two infinite representations,
namely

1.3333333333 · · ·
and

1.3333333333 · · ·

• in radix 10 with digits{−5, . . . ,+5}, the RN-coding ofπ is unique.

3 Conversion algorithms

Here, we will be especially interested in conversions that can be done “in parallel”. To be able to
prove results, we must state more precisely what we understand by that. This is the purpose of the
following definition.

Definition 2 A function that returns an output digit chainδn+kδn+k−1 · · · δj from an input digit-
chaindndn−1dn−2 · · · dj (wherej can be−∞) is SW-computable (where “SW” stands for “sliding
window”) if there exists an integerk and a functionφ such that

δi = φ(di+kdi+k−1 · · · di · · · di−k).
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i.e., the output digits are deduced from a constant-sized “sliding window” of input digits.
If the output chain is SW-computable, then it can also be computed by a transducer, either most

significant digit first or (in the case of finite representations), least significant digit first. The converse
is not necessarily true (for instance, we will see that conversion from a radixβ RN-coding to the con-
ventional non redundant radixβ representation is not SW-computable, although it is straightforwardly
doable by a transducer, least significant digit first).

3.1 The particular case of radix2

3.1.1 Conventional binary to radix2 RN-coding

In the special case of radix-2, converting a number from the conventional non-redundant binary system
to an RN-coding is done very easily. Consider an input value:

x = dndn−1dn−2 · · · dj

with di = 0, 1 andj < n. Then the digit-sequence

δn+1δnδn−1 · · · δj

defined by

δk = dk−1 − dk (1)

(with by convention, for finite chains,dj−1 = 0) is an RN-coding ofx. This is actually the well-known
Booth recoding ofx [2].

Hence the conversion is SW-computable. This is illustrated by the following example.

input bitsdk 1 0 0 1 0 1 1 0 1

shifted one position left

input bitsdk 1 0 0 1 0 1 1 0 1

output digitsδk 1 1 0 1 1 1 0 1 1 1

Proof: First, the digit chainδn+1δnδn−1 · · · δj is a representation ofx. This is immediate by
noticing that the algorithm actually computes2x− x. Second, consider two nonzero digitsδk andδ`,
with k > `, separated by zeros (i.e.,δm = 0for` < m < k). Let us show thatδk andδ` have opposite
signs.

Assumeδk = 1 (the caseδk = −1 is very similar, hence we omit it). Fromδk = dk−1 − dk we
deduce thatdk−1 = 1 anddk = 0. If ` < k−1, then sinceδk−1 = 0, dk−2 = dk−1 = 1, and we prove
by induction thatdm = 1 for anym betweenk − 1 and`. This is also obviously true if̀ = k − 1.
Fromδ` = d`−1 − d` 6= 0, we deduce thatd`−1 = 0, henceδ` = −1.

3.1.2 Radix2 RN-coding to conventional binary

It is worth being noticed that the converse conversion is not SW-computable. This is easily understood
by looking at the following example. The RN-coding

10000000000
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represents the binary number
10000000000;

whereas the RN-coding
10000000001

represents the binary number
01111111111.

This easily generalizes to an arbitrarily long chain of input zeros. Hence, when we examine a chain
of zeros, the information that is required to convert it can be arbitrarily far away.

The conversion can be done using a sequential, right-to-left process. This is obvious since radix-2
RN-codings are particular cases of signed-digit codings, so the usual conversion method applies. And
yet, the fact that in the RN-codes the signs of the non-zero digits alternates allows a simpler algorithm,
described by the following right-to-left transducer.

1/0
0/0

1/1

−10

−1/1

3.2 The particular case or radix10

3.2.1 Conventional decimal to radix10 RN-coding

Again, consider an input value
x = dndn−1dn−2 · · · dj

with 0 ≤ di ≤ 9, and let us definedj−1 = 0 for finite chains (dj−1 is added to simplify the presentation
of the algorithm, otherwise we would have to treat the least significant digit as a special case). Notice
thatj can be−∞ in case of an infinite input digit chain. We build an RN-coding

δnδn−1 · · · δj

of x as follows. We scan in parallel all consecutive positionsdkdk−1 and deduceδk by

δk =


dk if dk < 5 and dk−1 < 5
dk + 1 if dk < 5 and dk−1 ≥ 5
dk − 10 if dk ≥ 5 and dk−1 < 5
dk − 9 if dk ≥ 5 and dk−1 ≥ 5

(2)

For instance, applied to the input digit chain2718281828459, this algorithm returns3322322232541.
Proof:
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1. the obtained digit chain is an RN-coding.It suffices to show that the digit sequenceδn+1δnδn−1 · · · δj

satisfies the characterization property of Theorem1. First the fact that∀k, |δk| ≤ 5 comes ob-
viously from the definition. Now, we must make sure that ifδk = 5, then the largest̀ < k such
thatδ` 6= 0 is negative, and ifδk = −5, then the largest̀ < k such thatδ` 6= 0 is positive.

• if δk = 5,then from (2), we deduce thatdk = 4 anddk−1 ≥ 5. But dk−1 ≥ 5 implies that
eitherδk−1 < 0, or dk−1 = 9 (which givesδk−1 = 0) anddk−2 ≥ 5. Again,dk−2 ≥ 5
implies that eitherδk−2 < 0 or δk−2 = 0 anddk−3 ≥ 5: we continue by induction and
deduce that the first nonzeroδ` (if any) generated by that process will be negative;

• δk = −5, then from (2), we deduce thatdk = 5 anddk−1 < 5. Thereforeδk−1 will be
equal todk−1 or dk−1 + 1, it will be positive unlessdk−1 = 0 anddk−2 < 5 (which gives
δk−1 = 0). In that caseδk−2 will be equal todk−2 or dk−2 + 1: we continue by induction
and deduce that the first nonzeroδ` (if any) generated by that process will be positive.

2. The obtained digit chain represents the same number as the original digit chain.

Define variablesck as

ck+1 =
{

1 if dk ≥ 5
0 if dk < 5

(3)

With cj = 0. It immediately follows from (2) and (3) that

δk = dk + ck − 10ck+1.

(by the way, this is another way of presenting the conversion algorithm, as a kind of “addition”
algorithm, where theck play the role of carries)

Therefore, sincecn+1 = cj = 0,

n+1∑
k=j

δk10k =
n+1∑
k=j

(dk + ck − 10ck+1) 10k =
n+1∑
k=j

dk10k = x

Hence the obtained digit chain represents the same number as the original one.

3.2.2 Radix10 RN-coding to conventional decimal

Again, as in radix2, conversion to conventional decimal is not SW-computable (the same example
with a long string of zeros applies). As in radix2, we can perform the conversion just by considering
that an RN number is a particular case of a signed-digit number and applying the usual algorithms.

3.3 Odd radices: general case

In odd radices, the RN-codings are the (non redundant) signed digit representations that use digits
−β+1

2 , −β+2
2 , . . . , β−1

2 . It is known that conversion to these systems cannot be done “in parallel”: they
are not SW-computable. We illustrate this with the following example. In radix3, the input chain

1111111

must be converted into
1111111
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(i.e., it is already an RN-coding), whereas the input chain

1111112

must be converted into
11111111.

This easily generalizes to an input chain of consecutive ones of arbitrary length: so if we are inside an
input chain of ones, the information needed to perform the conversion can be arbitrarily far away.

Conversion from an RN-coding to conventional representation is done as usual.

3.4 Even radices: general case

The radix-10 algorithm easily generalizes to other even radices. Consider an input value

x = dndn−1dn−2 · · · dj

with 0 ≤ di ≤ β − 1, and definedj−1 = 0.
Define variablesck as

ck+1 =
{

1 if dk ≥ β/2
0 if dk < β/2

(4)

With cj = 0. The digitsδk of an RN-coding can be obtained using

δk = dk + ck − βck+1.

It is worth being noticed that in radix2, ck+1 = dk, so that we find (1) again.

4 Some applications

4.1 Avoiding “double rounding”

Assume we use radix10 arithmetic, with the conventional digit set. Consider the number

γ = cos(223342) = 0.994500000966 · · ·

Assume thatγ is computed and stored in a8 decimal place format, with rounding to nearest. What is
stored is

γ1 = 0.99450000

Now, assume we wish to re-use this value in a4 decimal place format. We will convertγ1 to that
format, and we might get

γ2 = 0.9945,

which is not equal toγ rounded to the nearest4-digit number. This phenomenon is calleddouble
rounding. For instance, it can occur (rarely) when a calculation is performed in the internal double-
extended format of an Intel processor, and when the result is then converted to double precision. More
generally, assuming the radixβ is chosen, define

◦n(x)

asx rounded to the nearestn-digit radix-β number. Ifn1 > n2, then sometimes

◦n2(x) 6= ◦n2(◦n1(x)).

A way to prevent this problem is to store the values NR-coded. In that case, rounding to nearest is
equivalent to truncating, and we always have◦n2(x) = ◦n2(◦n1(x)).
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Conclusion and future work

We have given some basic properties of RN codings. We are now planning to investigate the possible
applications of these codings to computer arithmetic.
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