Peter Kornerup 
  
Jean-Michel Muller 
  
RN-coding of numbers: definition and some properties

Keywords: Computer arithmetic, number systems Résumé Arithmétique des ordinateurs, Systèmes de numération

We define RN-codings as radix-β signed representations of numbers for which rounding to the nearest is always identical to truncation. After giving characterizations of such representations, we investigate some of their properties, and we suggest algorithms for conversion to and from these codings.

introduction

We are interested in representations or integer or real numbers that are particular cases of signed-digit representations. It is well-known that in radix β ≥ 2, every integer (real number) can be represented by a finite (infinite) digit chain, with digits in the digit set {-a, -a + 1, . . . , +a -1, +a}, provided that 2a + 1 ≥ β. If 2a + 1 ≥ β + 1 then some numbers can be represented in more than one way and the number system is said to be redundant. Redundancy makes it possible to perform fast, fully parallel, additions [START_REF] Avizienis | Signed-digit number representations for fast parallel arithmetic[END_REF], or to perform the four arithmetic operations on-line, i.e., digit-serially, most significant digit first [START_REF] Trivedi | On-line algorithms for division and multiplication[END_REF][START_REF] Ercegovac | On-line arithmetic: An overview[END_REF].

And yet, signed-digit representations, either redundant or not, naturally appear in many other problems than parallel additions. In 1840, Cauchy suggested the use of digits -5 to +5 in radix 10 to simplify multiplications [START_REF] Cauchy | Sur les moyens d'éviter les erreurs dans les calculs numériques[END_REF]. The "balanced ternary" system (radix 3 with digits -1, 0 and 1) has some interesting properties. Is is worth being noticed that computers using that system were actually built 1 , at Moscow University, during the 60's. Knuth [START_REF] Knuth | The Art of Computer Programming[END_REF] mentions that in that number system, the operation of rounding to the nearest is identical to truncation. When trying to design fast multipliers, it is sometimes interesting to recode one of the input binary operands so that its representations contains as many zeros as possible. This implies that we use, in radix 2, digits equal to -1, 0 or +1. A first attempt was suggested by Booth [START_REF] Booth | A signed binary multiplication technique[END_REF]. His solution does not always increase the number of zero digits in the representation (what is actually used in modern multipliers, and frequently improperly named "Booth recoding" -"modified Booth recoding" is preferable -is a somewhat different method). See [START_REF] Phillips | Minimal weight digit set conversions[END_REF] for a recent presentation of this topic. Signed-digit representations also naturally appear as the output of fast digit-recurrence algorithms for division and square root [START_REF] Ercegovac | Division and Square Root: Digit-Recurrence Algorithms and Implementations[END_REF].

In this paper, we wish to investigate the positional, radix β, number systems that share with the balanced ternary system the property that truncating is equivalent to rounding to the nearest. Interestingly enough, the representations generated by Booth's recoding algorithm satisfy that property. We will call such representations RN-codings, where "RN" stands for "Round to Nearest".

Most conventional representations are not RN-codings. When we truncate the conventional radix-10 representation of a given number x at some position j (i.e., of weight 10 j ), the obtained number is not necessarily the multiple of 10 j that is closest to x.

Definition 1 (RN-codings)

Let β be an integer greater than or equal to 2. The digit sequence 2 

D = d n d n-1 d n-2 d n-3 . . . d 0 .d -1 d -2 . . . (with -β + 1 ≤ d i ≤ β -1) is an RN-coding, in radix β of x if 1. x = n i=-∞ d i β i (that is D is a radix-β representation of x); 2. for any j ≤ n, j-1 i=-∞ d i β i ≤ 1 2 β j ,
that is, if we truncate the digit sequence to the right at any position, the obtained sequence is always the number of the form

d n d n-1 d n-2 d n-3 . . . d j that is closest to x.
Hence, truncating the RN-coding of a number at any position is equivalent to rounding it to the nearest. For example, in radix 10, the RN-coding of π starts with

• • •

where (as usually) 4 means -4.

Some properties

In the following, we will consider radix-β symmetric number systems (i.e.with a digit set of the form {-a, . . . + a}), that are not over-redundant (i.e., such that a ≤ β -1).

Theorem 1 (Characterizations of RN-codings) 

• if β is odd, then D = d n d n-1 d n-2 d n-3 . . . d 0 .d -1 d -2 . . . is an RN-coding if and only if ∀i, -β + 1 2 ≤ d i ≤ β -1 2 ; • if β = 2 then D = d n d n-1 d n-2 d n-3 . . . d 0 .d -1 d -2 . . . (with d i = -1, 0,
d j = 0 satisfies d i × d j < 0.
The proof is straightforward.

Example 1 For instance, in radix 3 with digits in {-1, 0, 1}, or in radix 5 with digits in {-2, -1, 0, 1, 2}, all representations are RN-codings. In these number systems, truncating is equivalent to rounding to the nearest. In radix 10 with digits {-5, • • • , +5}, 45013 is an RN-coding, whereas 45013 is not an RN-coding.

Another consequence of Theorem 1 is that, in radix 2, storing an n-digit RN-coding requires n + 1 bits only: it suffices to store the sign of the first nonzero digit. The signs of all following nonzero digits -since these signs alternate -are immediately deduced from it, so that we can represent these digits by ones only.

Theorem 2 (About uniqueness of finite representations)

• if β is odd, then a finite RN-coding of x is unique (comes from Theorem 1: in that case, the number system is nonredundant);

• if β is even, then some numbers may have two finite representations. In that case, one has its rightmost nonzero digit equal to -β 2 , the other one has its rightmost nonzero digit equal to + β 2 .

Proof: If β is odd, the result is an immediate consequence of the fact that the number system is non redundant. If β is even, then consider two different RN-codings that represent the same number x, and consider the largest position j (that is, of weight 2 j ) such that these RN-codings, truncated to the right at position j differ. Define x a and x b the numbers represented by these digit chains. Obviously, x a -x b ∈ {-β j , 0, +β j }. Now, x a = x b is impossible: since the digits of weight β j of the considered digit chains differ, x a = x b would imply that the two chains, truncated at position j + 1 would differ, which is impossible (j is the first position such that the digit chains differ). Hence x a = x b . Without loss of generality, assume x b = x a + β -j . This implies x = x a + β -j /2 = x b -β -j /2. Hence, the remaining digit chains (i.e., the parts that were truncated) are digit chains that start from position j -1, and that represent ±β j /2.

The only way of representing β j /2 with an RN-coding and starting from position j -1 is

β 2 0000 • • • 0.
This is easily shown: if the digit at position j -1 of a number is less than or equal to β 2 -1, then that number is less than

β 2 -1 β j-1 + β 2 j-2 i=0 β j < β j /2
(since the largest allowed digit is β/2). Also, the digit at position j -1 of a RN code cannot be larger than or equal to β 2 + 1. This ends the proof.

If β is even, then a number whose finite representation (by an RN-coding) has its last nonzero digit equal to β/2 has an alternative representation ending with -β/2 (just assume the last two digits are d(β/2): since the representation is an RN-coding, d < β/2, hence if we replace these two digits by (d + 1)(-β/2) we still have an RN-coding). This has an interesting consequence: truncating off a number which is a tie will round either way, depending on which of the two possible representations the number happens to have. Hence, there is no bias in the rounding.

Example 2

• In radix 7, with digits {-3, -2, -1, 0, 1, 2, 3}, all representations are RN-codings, and no number has several finite representations;

• in radix 10 with digits {-5, . . . , +5}, the number 15 has two RN-codings, namely 15 and 25.

Theorem 3 (About uniqueness of infinite representations)

We now consider infinite codings, i.e., codings that do not ultimately terminate with an infinite sequence of zeros.

• if β is odd, then some numbers may have two infinite RN-codings. In that case, one is eventually finishing with the infinite digit chain

β -1 2 β -1 2 β -1 2 β -1 2 β -1 2 β -1 2 • • •
and the other one is eventually finishing with the infinite digit chain

-β + 1 2 -β + 1 2 -β + 1 2 -β + 1 2 -β + 1 2 -β + 1 2 • • • ;
• if β is even, then two different infinite RN-codings necessarily represent different numbers. As a consequence, a number that is not an integer multiple of an integral (positive or negative) power of β has a unique RN-coding.

Proof: If β is odd, the existence immediately comes from 1.

-β + 1 2

-β + 1 2 -β + 1 2 -β + 1 2 • • • = 0. β -1 2 β -1 2 β -1 2 β -1 2 • • • = 1 2
Now, if for any β (odd or even) two different RN-codings represent the same number x, then consider them truncated to the right at some position j, such that the obtained digit chains differ. The obtained digit chains represent numbers x a and x b whose difference is 0 or ±β j (a larger difference is impossible for obvious reasons).

First, consider the case where β is odd. The difference x b -x a cannot be 0, otherwise these truncated digit chains would be the same from Theorem 2. So they differ by ±β j . Hence, from the definition of RN-codings, and assuming x a < x b , we have x = x a + β j /2 = x b -β j /2. Since β is odd, the only way of representing β j /2 is with the infinite digit chain (that starts from position j -1)

β -1 2 β -1 2 β -1 2 β -1 2 • • •
the result immediately follows. Now, consider the case where β is even. Let us first show that x a = x b is impossible. From Theorem 2, this would imply that one of the corresponding digit chains would terminate with the digit sequence -β 2 00 • • • 00, and the other one with the digit chain + β 2 00 • • • 00. But from Theorem 1, this would imply that the remaining (truncated) terms are positive in the first case, and positive in the second case, which would mean (since x a = x b implies that they are equal) that they would both be zero, which is not compatible with the fact that the representations of x are assumed infinite. Hence x a = x b . Assume x a < x b , which implies x b = x a + β j . We necessarily have x = x a + β j /2 = x b -β j /2. Although β j /2 has several possible representations in a "general" signed-digit radix-β system, the only way of representing it with an RN-coding is to put a digit β/2 at position j -1, no infinite representation is possible.

Example 3

• In radix 7, with digits {-3, -2, -1, 0, 1, 2, 3}, the number 3/2 has two infinite representations, namely 1.3333333333

• • • and 1.3333333333 • • •
• in radix 10 with digits {-5, . . . , +5}, the RN-coding of π is unique.

Conversion algorithms

Here, we will be especially interested in conversions that can be done "in parallel". To be able to prove results, we must state more precisely what we understand by that. This is the purpose of the following definition.

Definition 2 A function that returns an output digit chain

δ n+k δ n+k-1 • • • δ j from an input digit- chain d n d n-1 d n-2 • • • d j (
where j can be -∞) is SW-computable (where "SW" stands for "sliding window") if there exists an integer k and a function φ such that

δ i = φ(d i+k d i+k-1 • • • d i • • • d i-k ).
i.e., the output digits are deduced from a constant-sized "sliding window" of input digits.

If the output chain is SW-computable, then it can also be computed by a transducer, either most significant digit first or (in the case of finite representations), least significant digit first. The converse is not necessarily true (for instance, we will see that conversion from a radix β RN-coding to the conventional non redundant radix β representation is not SW-computable, although it is straightforwardly doable by a transducer, least significant digit first).

3.1

The particular case of radix 2

Conventional binary to radix 2 RN-coding

In the special case of radix-2, converting a number from the conventional non-redundant binary system to an RN-coding is done very easily. Consider an input value:

x = d n d n-1 d n-2 • • • d j
with d i = 0, 1 and j < n. Then the digit-sequence

δ n+1 δ n δ n-1 • • • δ j defined by δ k = d k-1 -d k (1) 
(with by convention, for finite chains, d j-1 = 0) is an RN-coding of x. This is actually the well-known Booth recoding of x [START_REF] Booth | A signed binary multiplication technique[END_REF]. Hence the conversion is SW-computable. This is illustrated by the following example.

input bits d k 1 0 0 1 0 1 1 0 1 shifted one position left input bits d k 1 0 0 1 0 1 1 0 1

output digits δ k 1 1 0 1 1 1 0 1 1 1 Proof: First, the digit chain δ n+1 δ n δ n-1 • • • δ j is a representation of x.
This is immediate by noticing that the algorithm actually computes 2x -x. Second, consider two nonzero digits δ k and δ , with k > , separated by zeros (i.e., δ m = 0f or < m < k). Let us show that δ k and δ have opposite signs.

Assume δ k = 1 (the case δ k = -1 is very similar, hence we omit it). From

δ k = d k-1 -d k we deduce that d k-1 = 1 and d k = 0. If < k -1, then since δ k-1 = 0, d k-2 = d k-1 = 1,
and we prove by induction that d m = 1 for any m between k -1 and . This is also obviously true

if = k -1. From δ = d -1 -d = 0, we deduce that d -1 = 0, hence δ = -1.

Radix 2 RN-coding to conventional binary

It is worth being noticed that the converse conversion is not SW-computable. This is easily understood by looking at the following example. The RN-coding represents the binary number 10000000000;

whereas the RN-coding 10000000001

represents the binary number 01111111111.

This easily generalizes to an arbitrarily long chain of input zeros. Hence, when we examine a chain of zeros, the information that is required to convert it can be arbitrarily far away. The conversion can be done using a sequential, right-to-left process. This is obvious since radix-2 RN-codings are particular cases of signed-digit codings, so the usual conversion method applies. And yet, the fact that in the RN-codes the signs of the non-zero digits alternates allows a simpler algorithm, described by the following right-to-left transducer.

1/0 0/0 1/1 -1 0 -1/1

The particular case or radix 10

Conventional decimal to radix 10 RN-coding

Again, consider an input value

x = d n d n-1 d n-2 • • • d j with 0 ≤ d i ≤ 9
, and let us define d j-1 = 0 for finite chains (d j-1 is added to simplify the presentation of the algorithm, otherwise we would have to treat the least significant digit as a special case). Notice that j can be -∞ in case of an infinite input digit chain. We build an RN-coding

δ n δ n-1 • • • δ j
of x as follows. We scan in parallel all consecutive positions d k d k-1 and deduce δ k by

δ k =        d k if d k < 5 and d k-1 < 5 d k + 1 if d k < 5 and d k-1 ≥ 5 d k -10 if d k ≥ 5 and d k-1 < 5 d k -9 if d k ≥ 5 and d k-1 ≥ 5 (2)
For instance, applied to the input digit chain 2718281828459, this algorithm returns 3322322232541. Proof:

1. the obtained digit chain is an RN-coding. It suffices to show that the digit sequence δ n+1 δ n δ n-1 • • • δ j satisfies the characterization property of Theorem 1. First the fact that ∀k, |δ k | ≤ 5 comes obviously from the definition. Now, we must make sure that if δ k = 5, then the largest < k such that δ = 0 is negative, and if δ k = -5, then the largest < k such that δ = 0 is positive.

• if δ k = 5,then from (2), we deduce that d k = 4 and d k-1 ≥ 5. But d k-1 ≥ 5 implies that either δ k-1 < 0, or d k-1 = 9 (which gives δ k-1 = 0) and d k-2 ≥ 5. Again, d k-2 ≥ 5 implies that either δ k-2 < 0 or δ k-2 = 0 and d k-3 ≥ 5: we continue by induction and deduce that the first nonzero δ (if any) generated by that process will be negative;

• δ k = -5, then from (2), we deduce that d k = 5 and d k-1 < 5. Therefore δ k-1 will be equal to d k-1 or d k-1 + 1, it will be positive unless d k-1 = 0 and d k-2 < 5 (which gives δ k-1 = 0). In that case δ k-2 will be equal to d k-2 or d k-2 + 1: we continue by induction and deduce that the first nonzero δ (if any) generated by that process will be positive.

2. The obtained digit chain represents the same number as the original digit chain.

Define variables c k as

c k+1 = 1 if d k ≥ 5 0 if d k < 5 (3) 
With c j = 0. It immediately follows from ( 2) and (3) that

δ k = d k + c k -10c k+1 .
(by the way, this is another way of presenting the conversion algorithm, as a kind of "addition" algorithm, where the c k play the role of carries)

Therefore, since c n+1 = c j = 0,

n+1 k=j δ k 10 k = n+1 k=j (d k + c k -10c k+1 ) 10 k = n+1 k=j d k 10 k = x
Hence the obtained digit chain represents the same number as the original one.

Radix 10 RN-coding to conventional decimal

Again, as in radix 2, conversion to conventional decimal is not SW-computable (the same example with a long string of zeros applies). As in radix 2, we can perform the conversion just by considering that an RN number is a particular case of a signed-digit number and applying the usual algorithms.

Odd radices: general case

In odd radices, the RN-codings are the (non redundant) signed digit representations that use digits -β+1

2 , -β+2 2 , . . . , β-1 2 . It is known that conversion to these systems cannot be done "in parallel": they are not SW-computable. We illustrate this with the following example. In radix 3, the input chain 1111111 must be converted into 1111111 (i.e., it is already an RN-coding), whereas the input chain 1111112 must be converted into 11111111.

This easily generalizes to an input chain of consecutive ones of arbitrary length: so if we are inside an input chain of ones, the information needed to perform the conversion can be arbitrarily far away.

Conversion from an RN-coding to conventional representation is done as usual.

Even radices: general case

The radix-10 algorithm easily generalizes to other even radices. Consider an input value 

c k+1 = 1 if d k ≥ β/2 0 if d k < β/2 (4) 
With c j = 0. The digits δ k of an RN-coding can be obtained using

δ k = d k + c k -βc k+1 .
It is worth being noticed that in radix 2, c k+1 = d k , so that we find (1) again. Assume that γ is computed and stored in a 8 decimal place format, with rounding to nearest. What is stored is γ 1 = 0.99450000

Now, assume we wish to re-use this value in a 4 decimal place format. We will convert γ 1 to that format, and we might get γ 2 = 0.9945, which is not equal to γ rounded to the nearest 4-digit number. This phenomenon is called double rounding. For instance, it can occur (rarely) when a calculation is performed in the internal doubleextended format of an Intel processor, and when the result is then converted to double precision. More generally, assuming the radix β is chosen, define

• n (x)
as x rounded to the nearest n-digit radix-β number. If n 1 > n 2 , then sometimes

• n 2 (x) = • n 2 (• n 1 (x)).
A way to prevent this problem is to store the values NR-coded. In that case, rounding to nearest is equivalent to truncating, and we always have

• n 2 (x) = • n 2 (• n 1 (x)).

x

  = d n d n-1 d n-2 • • • d j with 0 ≤ d i ≤ β -1, and define d j-1 = 0.Define variables c k as

  Assume we use radix 10 arithmetic, with the conventional digit set. Consider the number γ = cos(223342) = 0.994500000966 • • •

  [START_REF] Avizienis | Signed-digit number representations for fast parallel arithmetic[END_REF]) is an RN-coding if and only if the non-zero digits have alternate signs (i.e., d i = 0 implies that the largest j < i such that d j = 0 satisfies d i = -d j ;• if β is even and larger than2 then D = d n d n-1 d n-2 d n-3 . . . d 0 .d -1 d -2 . . .

	is an RN-coding if
	and only if
	1. all digits have absolute value less than or equal to β/2;
	2. if |d i | = β/2, then the first non-zero digit that follows on the right has an opposite sign,
	that is, the largest j < i such that

See http://www.icfcst.kiev.ua/MUSEUM/PHOTOS/setun-1.html

It will stop at index 0 if x is an integer.

Conclusion and future work

We have given some basic properties of RN codings. We are now planning to investigate the possible applications of these codings to computer arithmetic.