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Abstract
We define RN-codings as radixsigned representations of numbers for which
rounding to the nearest is always identical to truncation. After giving charac-
terizations of such representations, we investigate some of their properties, and
we suggest algorithms for conversion to and from these codings.

Keywords: Computer arithmetic, number systems

Résumé
Nous appelons RN-code une représentation de Bafan nombre pour la-
quelle arrondir au plus prés, a une position guelconque, est toujours équivalent
a tronquer la représentation. Aprés avoir donné des caractérisations de ces re-
présentations, nous analysons quelques unes de leurs propriétés, et nous pré-
sentons des algorithmes permettant de convertir vers et depuis ces RN-codes.

Mots-clés: Arithmétique des ordinateurs, Systémes de numération
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1 introduction

We are interested in representations or integer or real numbers that are particular cases of signed-digit
representations. It is well-known that in radix> 2, every integer (real number) can be represented

by a finite (infinite) digit chain, with digits in the digit s¢t-a, —a + 1,...,4+a — 1, 4a}, provided

that2a +1 > 6. If 2a + 1 > 8 + 1 then some numbers can be represented in more than one way
and the number system is said to be redundant. Redundancy makes it possible to perform fast, fully
parallel, additions 1], or to perform the four arithmetic operations on-line, i.e., digit-serially, most
significant digit first B, 4].

And yet, signed-digit representations, either redundant or not, naturally appear in many other
problems than parallel additions. 1840, Cauchy suggested the use of digits to +5 in radix 10 to
simplify multiplications B]. The “balanced ternary” system (radixvith digits —1, 0 and1) has some
interesting properties. Is is worth being noticed that computers using that system were actud]ly built
at Moscow University, during thé0's. Knuth [6] mentions that in that number system, the operation
of rounding to the nearest is identical to truncation. When trying to design fast multipliers, it is
sometimes interesting to recode one of the input binary operands so that its representations contains
as many zeros as possible. This implies that we use, in Bdikgits equal to—1, 0 or +1. A
first attempt was suggested by Boo#j. [His solution does not always increase the number of zero
digits in the representation (what is actually used in modern multipliers, and frequently improperly
named “Booth recoding” — “modified Booth recoding” is preferable — is a somewhat different method).
See [7] for a recent presentation of this topic. Signed-digit representations also naturally appear as the
output of fast digit-recurrence algorithms for division and square fgot [

In this paper, we wish to investigate the positional, ragixnumber systems that share with the
balanced ternary system the property that truncating is equivalent to rounding to the nearest. Interest-
ingly enough, the representations generated by Booth's recoding algorithm satisfy that property. We
will call such representatiorRN-codingswhere “RN” stands for “Round to Nearest”.

Most conventional representations are not RN-codings. When we truncate the conventional radix-
10 representation of a given numbert some positiorj (i.e., of weight107), the obtained number is
not necessarily the multiple af)/ that is closest ta.

Definition 1 (RN-codings) Let 3 be an integer greater than or equal 2o The digit sequenéeD =
Andp_1dp_odn_3...do.d_1d_o... (With—F+1 < d; < 8 — 1) is an RN-coding, in radi¥ of x if

1. z=>" _ d;3 (thatisD is a radix{3 representation of:);

2. foranyj <mn,

i1 1 1.
>, dif| <o
1=—00
that is, if we truncate the digit sequence to the right at any position, the obtained sequence is
always the number of the fordy,d,,—1d,—2d,—3 . . . d; that is closest tar.

Hence, truncating the RN-coding of a number at any position is equivalent to rounding it to the nearest.
For example, in radix 0, the RN-coding ofr starts with

3.142413354410213 - - -
where (as usually) means—4.

1see http:/iwww.icfcst.kiev.ua/MUSEUM/PHOTOS/setun-1.htm|
21t will stop at index0 if  is an integer.
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2 Some properties

In the following, we will consider radibx@ symmetric number systems (i.e.with a digit set of the form
{—a,... + a}), that are not over-redundant (i.e., such that g — 1).

Theorem 1 (Characterizations of RN-codings)
e if isodd, therD = d,,d,,_1d,,_2d,_3...dy.d_1d_o ... is an RN-coding if and only if

_ﬂ+1§di§E'

v.
Z? 2 2 )

o if 3 =2thenD =d,d, 1d,_2d,_3...dop.d_1d_o... (Withd; = —1,0,1) is an RN-coding if
and only if the non-zero digits have alternate signs (ile.# 0 implies that the largesf < ¢
such thatd; # 0 satisfies!; = —d;;

e if is even and larger tha thenD = d,,d,,_1d,,_2d,,—3...do.d_1d_o ... isan RN-coding if
and only if

1. all digits have absolute value less than or equabi®;

2. if |d;| = /2, then the first non-zero digit that follows on the right has an opposite sign,
that is, the larges§ < 7 such thatd; # 0 satisfies]; x d; < 0.

The proof is straightforward. O

Example 1 Forinstance, in radixXd with digitsin{—1, 0, 1}, orin radix5 with digits in{—2, —1,0, 1, 2},

all representations are RN-codings. In these number systems, truncating is equivalent to rounding to
the nearest. In radix0 with digits{—5, - - -, +5}, 45013 is an RN-coding, wherea&013 is not an
RN-coding.

Another consequence of Theordris that, in radix2, storing am-digit RN-coding requires + 1
bits only: it suffices to store the sign of the first nonzero digit. The signs of all following nonzero digits
— since these signs alternate — are immediately deduced from it, so that we can represent these digits
by ones only.

Theorem 2 (About uniqueness of finite representations)

e if 3 is odd, then a finite RN-coding afis unique (comes from Theoreln in that case, the
number system is honredundant);

o if 3is even, then some numbers may have two finite representations. In that case, one has its
rightmost nonzero digit equal teg, the other one has its rightmost nonzero digit equaL@.

Proof: If 8 is odd, the result is an immediate consequence of the fact that the number system is
non redundant. If is even, then consider two different RN-codings that represent the same number
and consider the largest positigrfthat is, of weight’) such that these RN-codings, truncated to the
right at position; differ. Definezx, andz;, the numbers represented by these digit chains. Obviously,
rq—xp € {—3,0,+37}. Now, z, = x; is impossible: since the digits of weight of the considered
digit chains differ,z, = x; would imply that the two chains, truncated at positjos 1 would differ,
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which is impossible { is the first position such that the digit chains differ). Hemge# x;,. Without
loss of generality, assume, = z, + 377. This impliesz = z, + 377/2 = z, — 377/2. Hence,
the remaining digit chains (i.e., the parts that were truncated) are digit chains that start from position
j — 1, and that represent 3/ /2.
The only way of representing’ /2 with an RN-coding and starting from positign- 1 is

g
(2> 0000 - - - 0.

This is easily shown: if the digit at positigh— 1 of a number is less than or equalgo— 1, then

that number is less than
3 , A = .
(2 - 1) o+ <2> ;:0 F< )2

(since the largest allowed digit i%/2). Also, the digit at position — 1 of a RN code cannot be larger
than or equal td + 1. This ends the proof. O

If 5 is even, then a number whose finite representation (by an RN-coding) has its last nonzero
digit equal to3/2 has an alternative representation ending witBy2 (just assume the last two digits
ared(/3/2): since the representation is an RN-codidgs 3/2, hence if we replace these two digits
by (d + 1)(—3/2) we still have an RN-coding). This has an interesting consequence: truncating off a
number which is a tie will round either way, depending on which of the two possible representations
the number happens to have. Hence, there is no bias in the rounding.

Example 2

e Inradix 7, with digits{—3, —2, -1, 0, 1, 2, 3}, all representations are RN-codings, and no num-
ber has several finite representations;

e inradix 10 with digits{—5, ..., 45}, the numbei 5 has two RN-codings, namel$ and 25.

Theorem 3 (About uniqueness of infinite representations) We now consideinfinite codings, i.e.,
codings that do not ultimately terminate with an infinite sequence of zeros.

e if Bis odd, then some numbers may have two infinite RN-codings. In that case, one is eventually
finishing with the infinite digit chain

B-18-1-18-18-13-1
2 2 2 2 2 2

and the other one is eventually finishing with the infinite digit chain

—B+1-f+1-f+1-F+1-F+1-F+1
2 2 2 2 2 2 U

e if 3 is even, then two different infinite RN-codings necessarily represent different numbers. As
a consequence, a number that is not an integer multiple of an integral (positive or negative)
power of( has a unique RN-coding.
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Proof: If 3 is odd, the existence immediately comes from

BA1-BH1-fH1-p+1 _ f-1f-1F-15-1 1

2 2 2 2 R

Now, if for any 5 (odd or even) two different RN-codings represent the same numbien con-
sider them truncated to the right at some positipsuch that the obtained digit chains differ. The
obtained digit chains represent numbegsandx;, whose difference i or +37 (a larger difference
is impossible for obvious reasons).

First, consider the case whefeis odd. The difference;, — x, cannot be), otherwise these
truncated digit chains would be the same from TheoBerBo they differ by+37. Hence, from the
definition of RN-codings, and assuming < z;, we haver = z, + 3/ /2 = z;, — 37 /2. Sinceg is
odd, the only way of representingj /2 is with the infinite digit chain (that starts from positign- 1)

B—-18-18-18~-1
2 2 2 92

1.

the result immediately follows.

Now, consider the case whefkis even. Let us first show that, = x; is impossible. From
Theorem2, this would imply that one of the corresponding digit chains would terminate with the
digit sequencegoo --+00, and the other one with the digit chairgoo -+-00. But from Theorend,
this would imply that the remaining (truncated) terms are positive in the first case, and positive in
the second case, which would mean (singe= z; implies that they are equal) that they would
both be zero, which is not compatible with the fact that the representationsacé assumed in-
finite. Hencex, # . Assumez, < x,, which impliesz, = z, + 37. We necessarily have
r = x,+ (/2 = 2, — 47/2. Although 37 /2 has several possible representations in a “general”
signed-digit radixg system, the only way of representing it with an RN-coding is to put a digit

at positionj — 1, no infinite representation is possible. O
Example 3
e Inradix 7, with digits{—3, —2,—1,0, 1, 2, 3}, the numbeB /2 has two infinite representations,
namely
1.3333333333 - - -
and

1.3333333333 - - -
e inradix 10 with digits{—5, ..., +5}, the RN-coding of is unique.

3 Conversion algorithms

Here, we will be especially interested in conversions that can be done “in parallel”. To be able to
prove results, we must state more precisely what we understand by that. This is the purpose of the
following definition.

Definition 2 A function that returns an output digit chaif),; 0,4x—1 ---¢; from an input digit-
chaind,d,,—1d,—» - - - d; (Wherej can be—oo) is SW-computable (where “SW” stands for “sliding
window”) if there exists an integef and a functionp such that

0i = P(dipkdigk—1---di - di_g).
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i.e., the output digits are deduced from a constant-sized “sliding window” of input digits.

If the output chain is SW-computable, then it can also be computed by a transducer, either most
significant digit first or (in the case of finite representations), least significant digit first. The converse
is not necessarily true (for instance, we will see that conversion from a fadIX-coding to the con-
ventional non redundant radixrepresentation is not SW-computable, although it is straightforwardly
doable by a transducer, least significant digit first).

3.1 The particular case of radix2
3.1.1 Conventional binary to radix2 RN-coding

In the special case of radiX-converting a number from the conventional non-redundant binary system
to an RN-coding is done very easily. Consider an input value:

&= dndp 1dy_o---d;
with d; = 0,1 andj < n. Then the digit-sequence
On410n0n—1 - 0;
defined by

Ok = dp—1 — di, (1)

(with by convention, for finite chaing,;_; = 0) isan RN-coding of. This is actually the well-known
Booth recoding of: [2].
Hence the conversion is SW-computable. This is illustrated by the following example.

input bitsdy, 110{0[1]0f1|1]|0]|1
shifted one position left

input bitsdy, 1/0|{0j1]0f1|1|0]1
output digitsdy, 1|1 (1|01 1

Proof: First, the digit chainy,+16,0,—1---J; is a representation of. This is immediate by
noticing that the algorithm actually computzs — x. Second, consider two nonzero digiisanddy,
with k > ¢, separated by zeros (i.6,, = 0for{ < m < k). Let us show thad;, andé, have opposite
signs.

Assumed;, = 1 (the case), = —1 is very similar, hence we omit it). Frod, = dp_1 — di we
deducethatly_; = 1andd; = 0. If £ < k—1,thensincé,_1 =0, d;_o = dx_1 = 1, and we prove
by induction thatd,, = 1 for anym betweenk — 1 and/. This is also obviously true if = k& — 1.
Fromé, = dy_1 — dy # 0, we deduce thal,_, = 0, hencej, = —1.

3.1.2 Radix2 RN-coding to conventional binary

It is worth being noticed that the converse conversion is not SW-computable. This is easily understood
by looking at the following example. The RN-coding

10000000000
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represents the binary number

10000000000;
whereas the RN-coding

10000000001
represents the binary number

01111111111,

This easily generalizes to an arbitrarily long chain of input zeros. Hence, when we examine a chain
of zeros, the information that is required to convert it can be arbitrarily far away.

The conversion can be done using a sequential, right-to-left process. This is obvious sin@e radix-
RN-codings are particular cases of signed-digit codings, so the usual conversion method applies. And
yet, the fact that in the RN-codes the signs of the non-zero digits alternates allows a simpler algorithm,
described by the following right-to-left transducer.

-1/1

()
0/0
3.2 The particular case or radix 10

3.2.1 Conventional decimal to radix10 RN-coding

Again, consider an input value
T =dpdp_1dy_2--- dj

with 0 < d; <9, and letus defind;_; = 0 for finite chains {;_, is added to simplify the presentation
of the algorithm, otherwise we would have to treat the least significant digit as a special case). Notice
thatj can be—oo in case of an infinite input digit chain. We build an RN-coding

10

of x as follows. We scan in parallel all consecutive positidpg,_, and deducé, by

dp. if dp<5 and dp_1 <5
5. = dp +1 if dp<5 and dy_1>5 @)
T dp—10 if dp>5 and dpq <5

dp, — 9 if dp>5 and dy_1>5

Proof:
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1. the obtained digit chain is an RN-coding.It suffices to show that the digit sequernigg 16,0, —1 - - - 0;
satisfies the characterization property of Theofierkirst the fact thavk, |6x| < 5 comes ob-
viously from the definition. Now, we must make sure thaf.it= 5, then the largest < k such
thatd, # 0 is negative, and if;, = —5, then the largest < k such thawv, # 0 is positive.

e if 0 = 5,then from @), we deduce thai, = 4 andd,_; > 5. Butd,_, > 5 implies that
eitherd,_1 < 0, ordi_; = 9 (which givesd,_; = 0) andd,_o > 5. Again,di_> > 5
implies that eitheb,_o < 0 or§,_o = 0 andd,_3 > 5: we continue by induction and
deduce that the first nonzefig (if any) generated by that process will be negative;

e ;. = —b, then from @), we deduce thad, = 5 andd;_; < 5. Therefored,_; will be
equal tody_q ordi_1 + 1, it will be positive unlessl,_; = 0 anddi_s < 5 (which gives
0r—1 = 0). In that case@;_- will be equal tody_, or d;_s + 1: we continue by induction
and deduce that the first nonzexq(if any) generated by that process will be positive.

2. The obtained digit chain represents the same number as the original digit chain.

1 if d.>5
ck+1={ i 3)

Define variables;, as

0 if dp.<5
With ¢; = 0. Itimmediately follows from 2) and @) that
O = dj, + ¢, — 10¢k 1.

(by the way, this is another way of presenting the conversion algorithm, as a kind of “addition”
algorithm, where the;, play the role of carries)

Therefore, since,, 11 = c; =0,

n+l1 n+1 ntl
D 6108 =) " (di + cp — 10¢k41) 107 =D " di 105 = 2
k=j k=j k=j

Hence the obtained digit chain represents the same number as the original one.

3.2.2 Radix10 RN-coding to conventional decimal

Again, as in radiX2, conversion to conventional decimal is not SW-computable (the same example
with a long string of zeros applies). As in radixwe can perform the conversion just by considering
that an RN number is a particular case of a signed-digit number and applying the usual algorithms.

3.3 Odd radices: general case

In odd radices, the RN-codings are the (non redundant) signed digit representations that use digits
=AHL =BE2 1 B2L Itis known that conversion to these systems cannot be done “in parallel”: they
are not SW-computable. We illustrate this with the following example. In ragdilke input chain

1111111

must be converted into
1111111
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(i.e., itis already an RN-coding), whereas the input chain
1111112

must be converted into
11111111,

This easily generalizes to an input chain of consecutive ones of arbitrary length: so if we are inside an
input chain of ones, the information needed to perform the conversion can be arbitrarily far away.
Conversion from an RN-coding to conventional representation is done as usual.

3.4 Evenradices: general case

The radix40 algorithm easily generalizes to other even radices. Consider an input value
xr = dndnfldnfg tee dj
with 0 < d; < 8 — 1, and definel;_; = 0.

Define variableg;. as
1 if dy>p6/2
G+l = { 0 if dy< B2 @
With ¢; = 0. The digitsd;, of an RN-coding can be obtained using
Ok = di, + ¢ — By
It is worth being noticed that in radi, c;,1 = dy, So that we find 1) again.

4 Some applications

4.1 Avoiding “double rounding”

Assume we use radix) arithmetic, with the conventional digit set. Consider the number
~v = c0s(223342) = 0.994500000966 - - -

Assume thaty is computed and stored ingadecimal place format, with rounding to nearest. What is
stored is
~v1 = 0.99450000

Now, assume we wish to re-use this value in decimal place format. We will convett; to that
format, and we might get
v2 = 0.9945,

which is not equal toy rounded to the nearegtdigit number. This phenomenon is calldduble
rounding. For instance, it can occur (rarely) when a calculation is performed in the internal double-
extended format of an Intel processor, and when the result is then converted to double precision. More
generally, assuming the radikis chosen, define

on ()

asz rounded to the nearestdigit radix-3 number. Ifn; > no, then sometimes

Ony (T) # Ony (On, (7).

A way to prevent this problem is to store the values NR-coded. In that case, rounding to nearest is
equivalent to truncating, and we always haye(z) = oy, (o, (z)).
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Conclusion and future work

We have given some basic properties of RN codings. We are now planning to investigate the possible
applications of these codings to computer arithmetic.
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