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Abstract

This article presents a methodology to use a powerful arithmetic �redundant arithmetic�
in some parts of designs in order to fasten them without a large increase in area� thanks
to the use of both conventional and redundant number systems� This implies speci�c
constraints in the scheduling process� An integer linear programming �ILP� formulation
is proposed which �nds an optimal solution for reasonable examples� In order to solve
the problem of possibly huge ILP computational time� a general solution� based on a
constraint graph partitioning� is proposed�

Keywords� Arithmetic� redundant number systems� scheduling� integer linear programming� par�
titioning

R�esum�e

Cette article pr�esente une m�ethode permettant l�utilisation d�une arithm�etique tr�es per�
formante �l�arithm�etique redondante� sur certaines parties d�un circuit� a�n d�augmenter
sa vitesse� sans trop augmenter sa surface� gr	ace au m�elange d�arithm�etiques non re�
dondantes conventionnelles et d�arithm�etiques redondantes� Cela induit des contraintes
sp�eci�ques dans le processus d�ordonnancement� Une formulation en programme lin�eaire
en nombres entiers est propos�ee� a�n de trouver le r�esultat optimal pour des exemples
de taille raisonnable� Une solution� bas�ee sur le partitionnement d�un graphe de con�
traintes� permet de r�esoudre le probl�eme des temps de calculs trop importants�

Mots�cl�es� Arithm�etique� syst�eme redondant d��ecriture des nombres� ordonnancement� program�
mation lin�eaire en nombres entiers� partitionnement
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� Introduction

When considering an application as a �ow of operations� numbers are generally encoded using
conventional binary number systems �
�s complement� unsigned binary� sign�magnitude�� These
representations are optimal in terms of compression� and o�er the smallest possible register size�
However� operators for usual operations such as multiplication� division or square root almost
systematically use redundant number representation as an internal encoding� as very fast� carry�
free� additions can be performed� using these representation� These operators need a �nal conversion
in order to return a non redundant result� As this conversion is equivalent to a conventional addition�
it can be bene�cial to avoid this last operation� which would improve both delay and area� This
leads to designs using redundant arithmetic explicitly�
However� we show in the following section that fully redundant arithmetics are� in general� not

interesting� regarding area and consumption criteria� Our approach is to mix redundant and non
redundant arithmetics �mixed arithmetic�� in order to take bene�t from the advantages of redun�
dant arithmetic without its drawbacks� In Section � we present a methodology to automatically
introduce mixed arithmetic in high level synthesis� In Section �� a solution based on integer linear
programming �ILP� is proposed� Finally� in Section �� the more general question of overcoming the
problem of drastic ILP computational time is addressed�

� Mixed arithmetic

��� Redundant arithmetic

Some number systems may allow faster arithmetic operations than our conventional �binary or
decimal� number systems� Assume that we want to compute the sum s � sn��sn�� � � � s� of two
numbers x � xn��xn�� � � � x� and y � yn��yn�� � � � y� represented in the conventional binary number
system� By examining the well�known equation that describes the addition process�

�EqAdd�

���
��

c� � �
si � xi � yi � ci
ci�� � xiyi � xici � yici

one can see that there is a dependency relation between ci� the incoming carry at position i� and
ci��� This does not mean that the addition process is intrinsically sequential� and that the sum of
two numbers is necessarily computed in a time that grows linearly with the size of the operands�
Many addition algorithms and architectures proposed in the literature are much faster than a
straightforward� purely sequential� implementation of �EqAdd�� Among such adders� one can cite
the conditional�sum adder ����� implemented in the IBM RS����� ���� which performs the addition
of two n�bit numbers in time proportional to logn� and the carry�skip adder �
�� �� ��� which per�
forms the addition of two n�bit numbers in time proportional to

p
n� Nevertheless� the dependency

relation between the carries makes a fully parallel addition impossible in the conventional number
systems�
In ����� Avizienis ��� suggested to use di�erent number systems� called signed�digit number sys�
tems� Assume that we use radix r� In a signed�digit number system� the numbers are no longer
represented using digits between � and r � �� but with digits between �a and a� where a � r � ��
Avizienis showed that every number is representable in such a system� provided that 
a � r � ��
Another important property is that� if 
a � r� then some numbers have several possible represen�
tations� the number system is redundant�






Avizienis also gave addition algorithms adapted to his number systems� The following algorithm
performs the addition of two numbers x � xn��xn�� � � �x� and y � yn��yn�� � � �y� represented in
radix r with digits between �a and a� where a � r � � and 
a � r � ���

Algorithm � �Avizienis�
Input � x � xn��xn�� � � � x� and y � yn��yn�� � � �y�
Output � s � snsn��sn�� � � � s�

�� in parallel� for i � � � � �n� �� compute ti�� �carry� and wi �intermediate sum� satisfying������
����

ti�� �

���
��

� if xi � yi � a

� if �a � � � xi � yi � a� �
�� if xi � yi � �a

wi � xi � yi � b� ti��

�� in parallel� for i � � � � �n� compute si � wi � ti� with wn � t� � ��

By carefully examining that algorithm� one can see that the carry ti�� does not depend on ti�
There is no carry propagation any longer� It can be shown that a fully parallel addition can only
be performed� under reasonable hypotheses� thanks to a redundant number system �
���
Now let us focus on the particular case of radix 
� The conditions �
a � r��� and �a � r� ��

cannot be simultaneously satis�ed in radix 
� However� it is possible to perform totally parallel
carry free additions in radix 
� In this radix� the two usual redundant number systems are the
carry�save �CS� number system� and the signed�digit number system� In the carry�save number
system� numbers are represented with digits �� � and 
� and each digit d is represented by two bits
d��� and d��� whose sum equals d� In the signed�digit number system� with digits ��� � and �� we
represent the digits with the borrow�save �BS� encoding� each digit d is represented by two bits d�

and d� such that d� � d� � d� Those two number systems allow very fast addition�subtraction�
The carry�save adder �see for instance ����� is a very well�known structure used for adding a number
represented in the carry�save system and a number represented in the conventional binary system�

Algorithm � �Carry Save�

Input � x � x
���
n��x

���
n��x

���
n��x

���
n�� � � � x

���
� x

���
� and

y � yn��yn�� � � �y�
Output � s � s���n s���n s

���
n��s

���
n��s

���
n��s

���
n�� � � � s

���
� s

���
�

In parallel� for i � � � � �n � �� compute s���i and s���i � with t� � �����
��

s���n � s
���
� � �

s
���
i � x

���
i � x

���
i � yi

s
���
i�� � x

���
i �x

���
i � x

���
i �yi � x

���
i �yi

This algorithm can be implemented by a row of full�adder cells �a full adder cell computes two bits
t and u� from three bits x� y and z� such that 
t � u equals x � y � z�� The addition of two CS
operands �x � x����x��� and y � y���� y���� can obviously be performed by two rows of full adders
cells� as s � x � y can be decomposed into z � x � y��� followed by s � z � y���� which both are
additions of a CS operand and a non redundant operand� Such an adder is represented in Fig� ��

�This condition is stronger than the condition �a � r � � that is required to represent every number�





Redundant �resp� non redundant� number systems are denoted by R �resp� NR�� An operator
that performs the operation � from two operands of type X and Y � and gives a result of type Z
is denoted by X � Y � Z� and is called redundant if Z is a redundant representation� Similarly�
a converter from redundant to non redundant is denoted by R� NR� Actually� this operation is
a conventional addition for CS� as a CS number is the addition of two NR numbers �if x is a CS
number� then x � x��� � x���� where x��� and x��� are NR numbers�� For the same reason� a CS
addition with two CS operands �NR�NR� CS� does not need to be performed by an operator�
We call such an addition a virtual addition� The BS system has the same property with subtraction�

��������������

X Y Z
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Figure �� A CS�CS � CS adder made up with two CS �NR� CS adders�

Redundant number systems are rather commonly used into arithmetic operators such as multi�
pliers and dividers �those operators have their input and output data represented in a non�redundant
number system� but perform some of their internal calculations in a redundant number system��
For instance� most multipliers use �at least implicitly� the carry�save number system� the multiplier
of the TI ���� chip internally uses the radix�
 signed�digit number system ��
�� while the divider
of the Pentium actually uses two di�erent redundant number systems� the division iterations are
performed in carry�save� and the quotient is �rst generated in radix � with digits between �
 and
�
� and then converted in the usual radix�
 number system�
All these large operators perform a �nal conversion in order to convert this internal representa�

tion into a conventional one� The drawback is that a conversion from redundant to non redundant
represents an important cost regarding area and speed� It can be bene�cial to avoid this �nal
conversion� and thus� redundant numbers are used explicitly� in the whole design� and not only
inside complex operators�
The use of fully redundant arithmetic within a design shows major drawbacks in term of area

and consumption� but it can be avoided by converting the operands� which leads to designs using
redundant and non redundant arithmetics �mixed arithmetic�� as explained in the next section�

��� Using redundant arithmetic globally

Using� for instance� the CS number system in the whole design� would imply to replace the con�
ventional adders by CS � CS � CS adders� Several types of 
�bit adders �redundant and non
redundant� have been implemented�� Table � shows the result in terms of area� delay and con�
sumption� One can see that a carry look ahead adder has comparable delay �the redundant adder
is �only� �� better for 
�bit operands�� whereas a carry skip adder is better in term of area and
consumption� with a reasonable delay�
However� these results do not address the problem of registers� Indeed� in radix 
� redundant

numbers are twice larger than non redundant ones� which leads to a drastic increase in consump�

�This work was supported by PRC GDR ANM� in the scope of a project with the MASI�Paris VI and CSI�INPG
laboratories

�



tion� Lang� Cortadella and Mussoll studied the problem of redundant addition �
��� their solution
uses di�erent adders for di�erent codings of the CS system considering transition probabilities�
to avoid �critical� digit transitions �for instance 
 � � in CS� where the two bits are changed��
However� this solution requires the knowledge of these transition probabilities� and brings only a
small improvement� Hence� as consumption has become a major constraint� using fully redundant
arithmetic seems to be unrealistic�

���bit adder Delay Area �w� Consumption

Ripple Carry �� ns ������ 	�� �w��Mhz
Carry Skip �� ns �
���� ��� �w��Mhz
Carry Look Ahead 
 ns �	
��� ���� �w��Mhz
CS �CS � CS ��� ns ����	� ���
 �w��Mhz

Table �� Performance of several types of adder� Technology is CMOS ����m

Another major drawback of fully redundant arithmetic concerns the multiplication� one of
the multiplication operand has to be NR� otherwise area and consumption are dramatically in�
creased ����
Nevertheless� if one of the operands is non redundant� redundant additions become very pow�

erful� Fig� 
 shows some implementations of various redundant 
�bit adders compared to a carry
look ahead one�� A CS�NR� CS adder is three times faster than the fastest non redundant one
�CLA�� and has the same area and consumption as the smallest and least consuming one �ripple
carry�� Thus� mixed operators are interesting both in terms of speed and area or consumption�
The problem of registers is also largely decreased� as only half of the operands would be re�

dundant� which increases the register consumption by �only� ��� compared to conventional rep�
resentation� Besides� using radix � operators would lead to a ��� register consumption increase�
as redundant numbers would only be � larger� Radix � redundant operators remain faster and
smaller than non redundant radix 
 adders� and their low consumption would balance the ���
register consumption increase� We are currently working on the validation of this representation�
All these remarks show the interest of using mixed arithmetic �mixing redundant and non

redundant operands�� converters� instead of systematically outputting large operators �multipliers�
dividers�� only convert some of the operands� Thus� CS � NR � CS adders are used instead of
fully redundant ones� Moreover� if the conversion is not always necessary inside a �ow of operations�
it has to be done before outputting the results� Thus� a converter R � NR �redundant to non
redundant� is always present in a design� and it can be useful to take advantage of this resource on
the whole design� instead of using it only for the �nal conversion�
There are already numerous applications using mixed arithmetic in a way that does not cost

time �i�e by overlapping conversion and computation�� Kornerup studied conversions between
di�erent redundant and non redundant systems �
��� Koren et al� ��� proposed an original adder
whose operands could be partially redundant in order to limitate the carry propagation� with a
limited increase in area� Concerning multiplication� Matula and Lyu �
�� investigated the problem
of converting redundant binary inputs into Booth encoding� They have proposed a general purpose
multiplier using a precoder providing partial compression of a redundant binary value �and with
no extra delay for the non redundant case� in a format that may be directly input to a standard
radix � Booth recoder�
However� as the use of such operators requires a good redundant arithmetic expertise� these

architectures are generally related to speci�c applications� For example� Briggs and Matula ���

�



realized a processor e�ecting a ��x�� bit multiply�and�add� implemented into the Cyrix �D��
numeric coprocessor� in which the multiplier result is not converted before being transmitted to the
adder�
The problem we address is more general� Our aim is to use mixed arithmetic globally� during the

design automation �ow� in order to take bene�t from the speed of redundant arithmetic without the
drawbacks of area and consumption� Therefore� our solution is not to design innovating operators�
but to propose a global approach of the conversion insertion problem in order to limitate the
redundant operands�
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� Results of di�erent mixed adders on several technologies �Actel ACT� Xilinx ����� AMD
Mach and ES
 ecpd����

��� Using mixed arithmetic

We have extracted the following observations from our studies and our redundant arithmetic ex�
pertise�

� The problem can be dealt with at the algorithmic level� conversion insertion is equivalent to
choosing the variable �operand� encoding�

� Performing redundant operations with only one redundant operand remains reasonable �i�e
NR��� R��

�



� A converter R� NR is always present in a design� Our approach is to also use this converter
inside the �ow of operations to reduce the possibility of having redundant operands�

Thus� the problem we address becomes the following�

Mixed arithmetic problem� Having a �ow of dependent arithmetic operations �algorithm��
several mixed operators for the usual operations �addition� subtraction� multiplication�� at least one
converter� and considering the number of cycles� the cycle delay and the area�
What type of operator 	ts the best to an operation

What is the best choice for the use of the converters �which operands should be converted�


We have tried to solve this problem manually on di�erent algorithms� Thus� we have ex�
perimented the use of mixed arithmetic on several benchmarks� Table 
 shows that interesting
improvement of the delay can be achieved� without a large increase in the number of cycles� We
use a particularity of redundant arithmetic in order to make the problem more manageable� when
there is no possibility of keeping one of the operand non redundant �or if the conversion costs too
much�� we can perform a fully redundant addition �R � R � R� using two NR � R � R adders
�see Fig� ��� Conversely� if both operands are non redundant �NR�NR� R�� the addition is vir�
tual� These two cases match the mixed arithmetic approach� and they only di�er from the regular
R�NR� R adder by the number of resources�
An interesting example is the �th order 	lter design� There are two critical paths of �� cycles� but

the �xed number of resources �resource constraint� two adders� one multiplier� makes impossible to
�nd a schedule� with a conventional arithmetic� in less than �� cycles� Figure  shows the scheduled
graph of the �th order 	lter design using mixed arithmetic� Every operation gives a redundant result�
thus� as operator outputs become inputs of other operators� every operation has� a priori� redundant
operands� However� we keep the same resource constraint regarding area and consumption� which
means that the number of conventional adders� in the scheduling using NR arithmetic� became the
number of NR � CS � CS adders� in the scheduling using mixed arithmetic� This implies the
conversion of half of the operands� which seems di cult considering that each cycle can use two
adders �thus four operands� but only one converter� Intermediate results �t�� t��� ���� are not always
converted� but the �nal result �out� has to be non redundant� One can see that we managed to
reach the �� cycle limit� This example shows that even with one converter for two adders� and
with very weak operation mobility� it is possible to �nd a schedule using mixed arithmetic with the
same number of cycles than the classical one� The main amelioration is that multiplication results
are not converted anymore which is bene�cial both in term of delay and area� Most adders are
NR� R� R ones�
These benchmarks have convinced us that the mixed arithmetic approach is very realistic and

interesting�
We have tried to automate the mixed arithmetic problem previously de�ned� The problem is no

longer a problem of arithmetic operators� but it becomes a high level synthesis one� More precisely�
it is an extended problem of scheduling and operator type selection� The next section addresses
the solutions we have developed�

� High level synthesis and mixed arithmetic

High level synthesis �HLS� translates an algorithm �formulated using languages like VHDL or
Verilog� into a register transfer level �RTL� description� It can be decomposed into four main

�
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Figure � Result of the �th order 	lter scheduling using mixed arithmetic�

steps� data �ow graph �DFG� and control �ow graph �CFG� extraction� operator type selection�
scheduling and resource allocation� These tasks are usually performed successively�
However� the operator type selection with mixed arithmetic implies operand type selection� Such

a selection leads to the insertion of converters that has to be taken into account during scheduling�
Thus� the operator type selection has to be done while scheduling� This constraint makes the
scheduling even more complicated� but the problem can be simpli�ed� regarding some particularities
of mixed arithmetic� We propose a modelisation of the design adapted to our problem�
Our expertise in mixed arithmetic �
�� have lead to the following hypotheses�

� Constants and memory inputs should �obviously� be non redundant�
� Multiplication with one redundant operand can be implemented at a reasonable cost �
�� ���
However� when having both operands redundant� the area increase is too important� Thus
we impose at least one non redundant operand for every multiplication� Moreover� even if all
the operands are non redundant� the same multiplier is used �the conversion from NR to R
is instantaneous� as x � y � � is a CS number� if y is a NR number��

� Among all the possible implementations of redundant addition� we will use one that considers
a R � R � R adder �i�e an adder with two redundant operands and a redundant result� as
the concatenation of two R � NR � R adders �see Fig� ��� We have proposed an original
algorithm for 
�s complement CS addition� in order to keep this property ����

Hence� we propose the following resource modelisation�
An adder is modelised as c instances of the R�NR� R operator� c � f�� �� 
g� followed by zero

or one instance of a converter� A multiplication is modelised as one instance of the R 	NR � R
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�th order �lter Di�erential equation
Area Delay cycles Area Delay cycles

Mixed n
� � �n n� � �	 �n� � � n� � �

NR n
� � n �n � � �	 �n� �n� � 


R n
� � �n n� � �	 
n� n� � 


FFT
Area Delay cycles

Mixed �n� � �n n �
NR �n� � �n �n �
R �n� � �n n 


Table 
� Results of di�erent benchmarks using di�erent arithmetics �with n bit inputs��

resource followed by zero or one instance of a converter� As the conversions may not be inserted
in the �nal design� they are called virtual conversions� This modelisation can represent any kind
of operation� as shown by Table � In this table� all the operations are mono�cycle� even the
CS � CS � CS addition �i�e CS �NR� CS additions are chained�� Multi�cycle multiplications
are addressed in Section ��
� This modelisation makes the operator type selection easier� as the
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Table � Resource modelisation according to the the operand and result types�

choice has not to be done explicitly� but is handled by the number of resources �for instance� a
NR � NR � NR is considered as zero NR � R � R followed by one conversion�� However�
the di�erent steps of the HLS are modi�ed� Indeed� as every operation is followed by a virtual
conversion� the extracted DFG is speci�c to our problem� Figure � shows a classical DFG and a
DFG with virtual conversions� The conversion being virtual� its output is not linked to any other
operation� After scheduling� there are two alternatives for a virtual conversion� either it becomes
e�ective� and the following operations may use the output of the converter� or it disappears�
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The scheduling is also speci�c� because it includes the operator selection� and because an opera�
tion of the DFG could disappear during scheduling� This is the case for the virtual conversions�
but also for the additions� Indeed� when we have an NR � NR � R addition� zero instance of
NR � R � R is needed� and an operation that succeeds this addition could be scheduled in the
same cycle as the �virtual addition��
A �nal step is needed to specify the connections between converters and operators� Figure �

shows a possible result� the virtual conversions � and � have become e�ective� conversions � and �
have disappeared� Precedences are rebuilt to produce the scheduled DFG �SDFG�� regarding the
scheduling cycles of the conversion nodes�
The main di culty lies in the scheduling� due to the previous observations� We already proposed

a solution to our problem� based on an extended list scheduling ���� The principle of list scheduling
is to consider each cycle successively� For a given cycle j� all the candidate operations are scheduled
regarding the resource constraints and a priority function� An operation is a candidate if all its
predecessors have already been scheduled� The priority function could be� for instance� the mobility
�As Late As possible date Li � As Soon As Possible date Si�� The operations scheduled at cycle j are
those of highest priority� regarding the number of resources� Similarly� we have extended this idea
to edges� in order to �nd which edges should be converted� We �rst determine the convertible edges�
then compute their urgency� The urgency function of edge eij � oi � oj is de�ned as U�eij� �

N�i�
Lj�T �i�

where N�i� is the number of operands which would be converted if a conversion was inserted after
operation oi� and T �i� is oi schedule� The most urgent edges are converted� regarding the number
of converters� However� since this is a greedy approach� and since our problem needs a global view�
the obtained results were not very convincing�
Therefore� we propose an ILP formulation which guarantees a completely global approach� and

gives an optimal result� The formulation and the results are presented in the following sections�
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Figure �� A classical DFG and our speci�c DFG �black circles represent conversions�

� ILP formulation

��� De�nitions

Scheduling� is a very common application of ILP� for examples� formulations to the general problem
of performing scheduling and resource allocation simultaneously have been proposed ���� 
�! a
methodology to solve a scheduling problem in a �dimensional design space� including the usual
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area and schedule length dimensions plus the clock length dimension� using module libraries� has
been described using ILP ���� Hwang et al ���� proposed di�erent ILP formulations for di�erent
classical scheduling problems� Their formulations are based on two main constraints� resource
constraints� which are de�ned by the user� and precedence constraints which are given by a DFG�
The variables and constants they used were the following�

� xi�j � � if operation oi is scheduled into cycle j! otherwise� xi�j � ��

� T is the �nal number of cycles that we wish to minimize and Nt is the number of resources
of type t�

� s is an overestimation of T � obtained by a list scheduling heuristic�

� Li �resp� Si� is the latest �resp� earliest� possible time to schedule operation oi� The schedul�
ing is a classical ALAP scheduling considering that we have s cycles�

We keep the same conventions and extend them to our speci�c problem� if oi is a classical
operation �addition� subtraction� multiplication����� it is also related to variable xi�j� with j � �Si� Li��
Our model inserts a virtual conversion� ok� after each operation� Therefore we need a new variable�
xk�j� representing the conversion�
The operand types depend on the presence of preceding converters� the operator type depends

on the presence of the following converter� The link between converters and operators is handled
during resource constraints� therefore� we introduce new variables� ci�j� counting the number of
redundant operands of addition oi �i�e the number of resources used� see Table ��

��� The formulation

Our formulation of a resource constraint scheduling problem using mixed arithmetic is presented
in Fig� ��
In order to simplify the explanation of the constraints� one should keep in mind that

PLi
j�Si j�xi�j

is equal to the cycle where oi is �nally scheduled� Therefore�

Dk�j �
LkX

j�Sk

j�xk�j �
LiX

j�Si

j�xi�j

is the number of cycles between the schedules of ok and oi� If Dk�i � �� ok and oi are scheduled at
the same cycle� To simplify the notation� we use oti to express that operation oi is of type t� Thus�
�oconvp � oconvq � � o��addi expresses that op and oq are two converters preceding ��preceding� means
that there is a data dependency� an operation oi� whose type is not addition� The formulation can
be decomposed as follows�

Temporal constraints

Equation � expresses that T is the last cycle of the scheduling �and is naturally the value that
should be minimized��
Equation  expresses that a regular operation is scheduled only once�
Equation 
 expresses that a virtual conversion may not be scheduled at all�
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xi�j � N� ci�j � N

Minimize T ���

Temporal constraints

If oi is a conversion
LiX

j�Si

xi�j � � �
�

Else
LiX

j�Si

xi�j � � ��


oi without successors
LiX

j�Si

�j�xi�j� � T ���

Resource constraints


j � ��� s�
X
oadd
i

ci�j � Nadd ���


j � ��� s�
X
oautre
i

xi�j � Nautre ���

Calculation of the ci�j


j � �Si� Li�
j��X
k�Sp

xp�k �
j��X
k�Sq

xq�k � 
xi�j � ci�j 
 �oconvp � oconvq � � oaddi ���


j � �Si� Li�
j��X
k�Sp

xp�k �
j��X
k�Sq

xq�k � xi�j 
�oconvp � oconvq � � o��addi ���

Data dependency constraints
LkX

j�Sk

j�xk�j �
LiX

j�Si

j�xi�j � � 
 o��addi � o��convk ���

LkX
j�Sk

j�xk�j �
LiX

j�Si

j�xi�j � �Li � ���
LkX

j�Sk

xk�j � Li 
o��addi � oconvk ����


�
LkX

j�Sk

j�xk�j �
LiX

j�Si

j�xi�j� �
LiX

j�Si

ci�j 
 oaddi � o
��conv
k ����


�
LkX

j�Sk

j�xk�j �
LiX

j�Si

j�xi�j� �
LiX

j�Si

ci�j � ��
�


�Li � ���
LkX

j�Sk

xk�j � �� 
 oaddi � oconvk

Figure �� ILP formulation of the scheduling problem using mixed arithmetic
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Resource constraints

Equation � expresses the resource constraint for additions� as the number of resources used by an
addition oi� at cycle j� is equal to ci�j�
Equation � expresses the resource constraint for operations that are not additions� including con�
versions� as the number of resources used by such an operation oi� at cycle j� is equal to xi�j�

Calculation of the ci�j

op and oq are the two virtual converters preceding oi�
Pj��

k�Sp xp�k is equal to � if op is converted
before cycle j� Thus� the left side of equations � and �� K� is equal to the number of converters
preceding oi� and scheduled before cycle j� In other words� K is the number of NR operands of oi�
at cycle j� If oi is an addition� scheduled at cycle j� then ci�j � 
 � K� If oi is not an addition�
there should be at least one NR operand� and thus� K � �� As xi�j � � if operation oi is scheduled
at cycle j� equations � and � express these two situations��

Data dependency constraints

Equations �� ��� �� and �
 express the data dependencies between operations oi and ok �oi precedes
ok�� These equations are quite particular because virtual additions and virtual conversions may
not be scheduled at all� changing operation precedence�
If oi is not an addition and ok is not a conversion� the data dependency equation ��� is the same as
Hwang�s one� It expresses that there should be� at least� one cycle between the oi and ok schedules�
If ok is a conversion� the previous equation is false when ok is not scheduled at all �i�e 
j� xk�j � ���
Equation �� �xes this problem� if ok is scheduled �i�e �jnxk�j � ��� equation �� is equivalent to
equation �� If ok is not scheduled at all� �� is always true�
If oi is a virtual addition �
j� ci�j � ��� an operation �except conversions� succeeding oi could be
scheduled at the same cycle as oi� In such a case� equation �� is equivalent to Dk�i � �� which is
the correct expression� If oi is not a virtual addition� equation �� is equivalent to equation �� as we
have integral variables�
Equation �
 is a �mixture� of equations �� and ��� when oi is an addition and ok a conversion�

Feedback outputs

Our formulation easily handles outputs that are fed back �such as P and Q in Fig� ��� which
means that if a feed�back output is converted� the related primary input will be considered as
NR� For instance� the input of the subtracter o� can come from the converter �o�� succeeding the
multiplication� In such a case� o� could be scheduled at any cycle between � and �

Multi�cycle and pipelined operations

The formulation does not handle multi�cycle operations� However� the extension is not di cult�
as there are no speci�c arithmetic problems� Equations related to data dependencies and resource
constraints have to be modi�ed� For example� if Ki is the number of cycle needed for operation oi�

�Equation � does not give exactly the normal values to the ci�j � However� we have shown �
� that it does not
prevent to �nd the optimal solution� and reduce the complexity of the formulation�
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in the case of a multiplication followed by a conversion� the equation becomes� 
o��addi � oconvk �

LkX
j�Sk

j�xk�j �
LiX

j�Si

j�xi�j � �Li �Ki��
LkX

j�Sk

xk�j � Li

In the case of a multiplication� if li is the latency of the multiplication �li � Ki if the operation
is not pipelined� li � � if there is a pipeline for each level of the multiplier�� the resource constraint
equation becomes�


j � ��� s�
X
omult
i

jX
k�j���li

xi�k � Nmult

Figure � shows a possible result of our linear program� The graph on the left has been scheduled
using one subtracter� one multiplier and one converter� the addition has one constant �thus NR�
input� and could use the output of converter ���� which represents the converted output of subtracter
���� Thus� this addition has two NR inputs �i�e� it is virtual�� which allows the subtracter �
� to
be scheduled into the same cycle� Only two conversions were �nally scheduled� whereas there are
four operations�

P Q

CS-NR->CS

CS-NR->CS

���
���
���
���

����

cte

cte

P Q

P Q

x3,3=0

x3,2=1

x3,1=0

x2,3=1, c2,3=2

x4,1=c4,1=0

x1,1=1, c1,1=1

x4,3=c4,3=0

P Q

+

cte cte

2

34 *

-

- 1

6

5

8

7

5

6

x4,2=1, c4,2=0 *

Cycle 1

Cycle 2

Cycle 3

Figure �� Possible result of our linear program �right� for the scheduling of the DFG presented on
the left�

��� Results

Our ILP formulation has been tested using LP SOLVE �see Table ��� The results are optimum�
and the computation times remain small for small examples �the �th order �lter examples will be
discussed later�� Moreover� even with small examples� the ILP approach is very useful� particularly
when it comes to consider feed�back outputs� which is a very di cult problem to deal with using
the heuristic approach �as it is a greedy algorithm��
The computation time needed to solve an ILP formulation increases with the number of equa�

tions and the number of variables� This is not an absolute measure� as large formulations can
sometimes be solved very quickly� whereas smaller ones can take a huge amount of CPU time�
However� it gives quite a good estimation of this computation time� Concerning scheduling� these
two values �number of equations and number of variables� depend on the number of operations� n�
and on the initial bound of the number of cycles� s� In our case� both grow in O�s	n�� The s value
is a large overestimation� and considering the operation frames �di�erence between Li and Si� is
more accurate� The largest examples could not be solved �see Table ��� thus� we have looked for
solutions to solve high complexity benchmarks� The next section addresses this problem�
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benchmarks Nb equ� Nb var� Nb op� Nb cycles CPU


 way method � �
 � � ��
 s
Fast Fourier Transform �� �� � � �� s
Di�erential equation �� �
 �� � ���� s
 way method 
�� ��� 
� � no sol�

 way method classic �� �
� 
� �� ���� s
�th order elliptic wave �lter �EWF� � ��� � � no sol�
�th order EWF� reduced form� � 
�� ��� �� � no sol�
�th order EWF� reduced form� 
 
�� ��� � � no sol�

�th order EWF classic ��� � � �� � min ���� s

Table �� ILP results using LP SOLVE�

� Overcoming the problem of drastic ILP computation time

ILP solvers usually work by relaxation� A classical one is the relaxation into linear program �LP��
the ILP is transformed into a LP� which can be solved in polynomial time� According to the integral
values of the LP result� the initial ILP is decomposed into new ILP problems� which are treated in
the same way� The computation is fasten by choosing which of these subproblems should be solved
by relaxation into a linear program� according to bound obtained by previous results �Branch�and�
Bound algorithm�� If the �rst relaxation gives only integral results� the ILP is solved� It shows that
the number of variables and the number of equations is not an absolute measure of the complexity
of ILP resolution� However� large number of equations and large number of variables lead to large
linear program� and generally� to large number of LP resolutions� and thus� large computation
times� The problem can even be worth� as linear programs are solved by numerical algorithms
that are very dependent to accuracy� large programs lead to bad accuracy that compromises the
stability of the algorithm� Problems like the �th order EW Filter could not be solved because of
this numerical instability� We have applied some simple classical heuristics in order to reduce the
variable time frames ��Si� Li��� but it did not solve the problem neither �the reduced formulations
are presented in Table ���
ILP is widely used in various other domains though� and not only in order to solve small prob�

lems� For example� ��� uses ILP for throughput and latency optimization when algorithm�architecture
matching� retiming and pipelining are considered simultaneously� ILP is also used for DSP code
generation and embedded systems� For instance� �
�� gives a solution to the problem of code com�
paction with real�time constraints for processors o�ering instruction�level parallelism! ��� presents
an ILP�based code placement method for embedded software to maximize hit ratios of instructions
caches� ILP is also widespread for HW�SW partitioning �� ��� 
�� In the �eld of system level syn�
thesis� one can also cite ��� 
�� which deal with the optimization of heterogeneous multiprocessor
systems� Another example is ���� where a static task execution schedule is generated along with
the structure of the multiprocessor system� and with a mapping of subtasks to processors�
Even if our ILP solver was not a �professional� one� the problem we had is usual when deal�

ing with ILP formulations� Thus� instead of looking for a solution� speci�c to our scheduling� to
overcome this problem� we have studied a general methodology� based on partitioning� Some par�
titioning techniques have been proposed in the literature� For instance� Hwang et al experimented
an approach ����� called �zone scheduling�� They partition the set of cycles into zones� and decides
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which operation will be scheduled into a zone and which one will be �delayed� into the next zone�
Their model can be turned into an optimal ILP scheduling� a list scheduling� or one in between�
However� their goal is more to �nd better solutions� with comparable computation times� than
those achieved by list scheduling rather than �nding near optimal solutions when ILP does not
succeeds� with possibly still large computation times� Depuydt et al� have a solution based on
clustering techniques ���� They do not take into account the resource constraints but variable time
frames to reduce the register cost� Moreover� none of these methods takes into account the ILP size�
In Section ���� we propose a general solution which partitions the problem into several small ILP
formulations separately solved and taking all the constraints into account� Section �� discusses
the results and extensions of this method�

��� Partitioning

	�� Partitioning methodology

The initial DFG is partitioned into k parts �we call this a k�partition�� The k�partition of DFG �
�V�E� � with k as small as possible� de�nes k data �ow graphs DFGi � �Vi� Ei�� such that V �
V��V�� ����Vk and ViVj � � if i �� j� Each partition can be considered as a separate design� and
is scheduled using a separate ILP formulation� We obtain several optimal local schedules which
are concatenated in order to obtain the �nal global schedule� The main di culty is to �nd a
partitioning algorithm� as there are two constraints to deal with� all the interdependencies between
partitions and their size�
The problem of partition interdependencies can be stated as follows� if there is a constraint

between two operations� there is an equation� in the initial ILP formulation� using variables related
to these operations� If the two operations are in di�erent partitions� the initial equation is splitted
into two new equations �one for each formulation�� The result obtained with these equations will be
consistent with the authorized values de�ned by the initial equation� However� it may prevent to
�nd an optimal global solution� We call this a constraint violation� Obviously� their number should
be minimized� Therefore� we propose a general approach� based on the ILP formulation� which
consists in partitioning the set of operations� each partition violating as few constraints as possible
�either data dependency or resource ones� or ���� and being balanced in terms of ILP variables�
Considering a simple DFG would not be satisfactory� as a DFG only re�ects data dependency

constraints �see for instance the �thorderfilter DFG in Fig� ��� Our partitioning is based on a
reduced constraint graph extracted from the ILP formulation� whose vertices represent operations
and edges represent constraints between operations� Performing minimum edge cut partitioning
creates partitions with few constraint dependencies� As each partition leads to an optimal partial
schedule� the �nal schedule� obtained by the concatenation of the partial schedules� is likely to be
a good approximation of the optimal one�

A k�partition
In order to determine the best value of k� one could iteratively try several decreasing values until
it leads to an infeasible ILP formulation� starting with an n�partition� if all the partitioned
formulations can be solved� try with a �n � ���partition� and so on� This solution is realistic�
as the computation times are largely decreased using the partitioning method �see below� and
particularly the comparison between benchmarks that had a solution with the whole formulation
and their partitioned solution�� Moreover� one usually knows an approximate number of variables
�Nmax� that his solver can handle� Thus� an e cient solution is to determine directly� as a starting
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Figure �� �th order 	lter data �ow graph DFG

value� a number of partition which has a good chance to be the optimal �for example it would be�P
i
Li�Si��

Nmax

�
with the scheduling problem��

The outputs of a partition become the inputs of the following partition� and they can be
represented using a redundant number system� As our modelisation considers that the inputs are
non redundant� we had to perform a small pre�treatment to the new formulations to emulate these
redundant inputs� This implies that� when scheduling a partition� all the precedent partitions
must have already been scheduled� in order to know which input is redundant� The inputs number
representations can be taken into account during partitioning �to give more accurate informations
on ILP size� by making a bi�partition after each local schedule rather than an initial k�partition�
The method presented here used this bi�partitioning� However� the method can be very easily
extended to direct k�partitions�
Considering the data �ow graph DFG � �V�E� such that the ILP formulation related to DFG

could not be solved� the partitioning method is described below �reduced constraint graphs are
de�ned in the next section! S�RCGi� is the size of the reduced constraint graph RCGi��

We are dealing with partition i
DFG� to DFGi�� have been scheduled�
Built the reduced constraint graph� RCGi�
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Figure �� �th order 	lter reduced constraint graph RCG

RCGi � �RCVi� RCEi�Wi�� where
RCVi � V n fV� � V� � ��� � Vi��g�
Perform a bi�partition on RCGi with minimum

edge cut� of partition sizes�
S�RCGi�

k�i
and �k�i����S�RCGi�

k�i
�

Partitioning with minimum cut is known to be a NP�complete problem ����� but there are some
e cient heuristics ��� 
��� Our method has been implemented using the Fiduccia and Mattheyses
heuristic� which is an improvement of Kernighan and Lin Min�Cut heuristic�
As edges represent constraints� the idea behind min�cut partitioning is to minimize the con�

straint violations� Thus� this algorithm is e cient if RCG is a good representation of the di�erent
constraints� We will now address the problem of the reduced constraint graph de�nition�

��� Reduced constraint graph

We have looked for a de�nition of the reduced constraint graph� RCG� that would not depend on
any particular problem� Nevertheless� there are a few observations that the graph should match�

� The input of the ILP formulation is a DFG� Thus� the graph vertices represent operations of
the DFG�

��
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Fast Fourier Transform partition 
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Fast Fourier Transform optimal �� �� � � �� s
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Di�erential equation partition 
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 �� � ���� s

�way method partition � �
� ��� �� � � hr � min
�way method partition 
 ��
 ��� �� � �
 min �� s

�way meth� Classic partition � �� �� �� � ���s
�way meth� Classic partition �   � � ���s

 way meth� Classic optimal �� �
� 
� �� ���� s

�thO Elliptic wave �lter partition � �
� 
�� �� � � hr �� min
�thO Elliptic wave �lter partition 
 �� ��� �� � 
 hrs �� min
�thO Elliptic wave �lter partition  �
� ��� �� � 
hrs 
� min

�thO EWF Classic partition � �� �� �� �� ���s
�thO EWF Classic partition 
 �� �� �� � 
�� s

�thO EWF classic optimal ��� � � �� � min ���� s

Table �� ILP results using LP SOLVE after ILP based partitioning�

� Our goal is to create partitions whose ILP formulations would take comparable computation
times� Operations are related to equations and variable� which are our measure of ILP com�
putation time� As every operation does not have the same in�uence over the ILP computation
time �some are related to more equation and�or variables than others�� the vertices must have
a weight w�ej� re�ecting their in�uence over this computation time�

� Edges must represent constraints� and any constraint must be represented� In fact� this
solution should not even be related to a scheduling problem� but� more generally� to the
problem of resolving large ILP formulations�

We based our solution on a graph used by Pan� Dong and Liu �� to solve a problem of constraint
reduction in symbolic layout compaction� from a set� S� of linear programming constraints of the
form xi � xj � b �we will say that x � cn if variable x appears in constraint cn�� they create a
directed graph� G � �V�E�� such that each variable xi which appears in S is related to a vertex
vi � V � and such that each constraint cn � xi�xj � b� cn � S is related to an edge e � vi �� vj� e � E�
of weight b� From this graph� they solve a problem of subgraph reduction �i�e �nding an equivalent
graph with less edges��
We have extended this representation to ILP� from a constraint

P
j ai�j�xj � bi� where xj

represents a variable related to operation Op�xj�� we construct a complete graph CG � �CV�CE��
where each ILP variable xj is related to a vertex vj � CV � It makes a constraint graph of variables�
From this graph� we perform a clustering phase which creates sets Ci � fxpjOp�xp� � oig �Ci

��
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Figure �� Result of the �th order 	lter scheduling after a �partition �partitions are P�� P
 and P
with a constraint graph partition� and P��� P�
 and P� with a DFG partition��

contains all the variables related to operation oi�� in order to get a graph of operations� This
de�nes a reduced constraint graph RCG � �RCV�RCE�W � as follows�
From a set� ILP � of ILP constraints�

� 
i� if �cn � ILP� j � N jxj � cn� Op�xj� � oi� we construct a vertex Vi � RCV � weighted by
w�Vi� � jCij�

� If �cn � ILP� j�� j� � N jxj� � cn� xj� � cn� �oi� � Op�xj��� �� �oi� � Op�xj���� we construct
an edge ei��i� � RCE between Vi� and Vi� �

This de�nition �ts the previous observations� as RCG is an operation graph� whose vertices
are weighted by the number of ILP variables linked to an operation� which has a great in�uence
over the ILP computation time� Furthermore� the edges are constructed by each ILP constraint�
explicitly and equally treated� This method could be used for other problems than scheduling ones�
The only condition is that ILP formulations have to be generated by acyclic graphs� which is not a
severe limitation� Fig� � shows the reduced constraint graph for the �th order 	lter design� One can
see that data dependency constraints �i�e the DFG� Fig �� are far from being the only constraints
of the problem�


�



��� Results

We have tried this solution with the �th order elliptic wave 	lter� using a �partition� for our
scheduling and operator type selection problem� The �th order 	lter �partition of Fig � has
been obtained� It de�nes partitions P�� P
 and P and the resulting scheduling has the same
number of cycles as the optimal scheduling using non redundant arithmetic �the scheduling using
mixed arithmetic is most likely to be the optimal one� though we can not prove it�� Compared to
our partitions� the partitions P��� P�
 and P� were obtained with a �partition based upon the
DFG� instead of the reduced constraint graph� Obviously� the DFG based partitioning could not be
exploited� as the partition is not �temporal� �that is to say the �rst operations in the �rst partition�
����� This is not the case of our method� which always gave exploitable solutions� even though it
does not introduce any information speci�c to a scheduling method�
Examples that did not need partitioning have also been tested� in order to get an idea of the

degradation compared to the optimal� Only one example had more cycles than the optimal� the
di�erential equation design �� instead of ��� However� in this case� the extra cycle was due to the
junction between the two partitions� the last cycle of the �rst partition did not use all its resources�
whereas an operation scheduled on the �rst cycle of the next partition could be scheduled one cycle
before� and use one of these available resources� A simpli�ed list scheduling managed to �nd the
optimal result� without changing the global scheduling� the algorithm checks if an operation could
not be scheduled one cycle before� It can be considered as a �smart� concatenation� Another
interesting solution is to apply replication formulations to the partitioning ���� 

�� The critical
operations �i�e scheduled on the last cycle�� are duplicated and introduced in the next partition�
The concatenation is then made automatically�
All the others examples managed to �nd the optimal schedule� Besides� on every benchmark�

the CPU time is largely decreased �see Table ��� This is particularly impressing with large examples
��� and 
� times faster for the �way method and the �thorderfilter��

� Conclusion

We have introduced a methodology to use redundant number systems and operators in order to
fasten designs without large increase in area� thanks to the use of other kinds of arithmetic �non
redundant ones�� An ILP formulation has been proposed that �nd an optimal solution for examples
of reasonable size� An solution� based on the partitioning of a constraint graph� has been proposed
in order to overcome the problem of possible drastic ILP computation time�
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