Anne Mignotte

Jean-Michel Michel Muller

Olivier Peyran
email: olivier.peyran@lip.ens-lyon.fr

Synthesis for mixed arithmetic

Keywords: Arithmetic, redundant n umber systems, scheduling, integer linear programming, partitioning R esum e Arithm etique, syst eme redondant d ' ecriture des nombres, ordonnancement, programmation lin eaire en nombres entiers, partitionnement

This article presents a methodology to use a powerful arithmetic (redundant arithmetic) in some parts of designs in order to fasten them without a large increase in area, thanks to the use of both conventional and redundant n umber systems. This implies speci c constraints in the scheduling process. An integer linear programming (ILP) formulation is proposed which nds an optimal solution for reasonable examples. In order to solve the problem of possibly huge ILP computational time, a general solution, based on a constraint graph partitioning, is proposed.

Introduction

When considering an application as a ow of operations, numbers are generally encoded using conventional binary number systems (2's complement, unsigned binary, sign-magnitude). These representations are optimal in terms of compression, and o er the smallest possible register size. However, operators for usual operations such a s m ultiplication, division or square root almost systematically use redundant number representation as an internal encoding, as very fast, carryfree, additions can be performed, using these representation. These operators need a nal conversion in order to return a non redundant result. As this conversion is equivalent to a conventional addition, it can be bene cial to avoid this last operation, which w ould improve both delay and area. This leads to designs using redundant arithmetic explicitly.

However, we show in the following section that fully redundant arithmetics are, in general, not interesting, regarding area and consumption criteria. Our approach is to mix redundant and non redundant arithmetics (mixed arithmetic), in order to take bene t from the advantages of redundant arithmetic without its drawbacks. In Section 3, we present a methodology to automatically introduce mixed arithmetic in high level synthesis. In Section 4, a solution based on integer linear programming (ILP) is proposed. Finally, in Section 5, the more general question of overcoming the problem of drastic ILP computational time is addressed.

2 Mixed arithmetic 2.1 Redundant arithmetic Some number systems may a l l o w faster arithmetic operations than our conventional (binary or decimal) number systems. Assume that we w ant to compute the sum s = s n;1 s n;2 : : : s 0 of two numbers x = x n;1 x n;2 : : : x 0 and y = y n;1 y n;2 : : : y 0 represented in the conventional binary number system. By examining the well-known equation that describes the addition process:

(EqAdd) 8 > < > : c 0 = 0 s i = x i y i c i c i+1 = x i y i + x i c i + y i c i one can see that there is a dependency relation between c i , t h e incoming carry at position i, a n d c i+1 . This does not mean that the addition process is intrinsically sequential, and that the sum of two n umbers is necessarily computed in a time that grows linearly with the size of the operands. Many addition algorithms and architectures proposed in the literature are much faster than a straightforward, purely sequential, implementation of (EqAdd). Among such adders, one can cite the conditional-sum adder 18], implemented in the IBM RS/6000 31], which performs the addition of two n-bit numbers in time proportional to log n, and the carry-skip adder 25, 1 3 , 5], which performs the addition of two n-bit numbers in time proportional to p n. N e v ertheless, the dependency relation between the carries makes a fully parallel addition impossible in the conventional number systems. In 1961, Avizienis 1] suggested to use di erent n umber systems, called signed-digit number systems. Assume that we use radix r. In a signed-digit number system, the numbers are no longer represented using digits between 0 and r ; 1, but with digits between ;a and a, where a r ; 1. Avizienis showed that every numb e r i s r e p r e s e n table in such a system, provided that 2a r ; 1. Another important property is that, if 2a r, t h e n s o m e n umbers have several possible representations, the number system is redundant.

Avizienis also gave addition algorithms adapted to his number systems. The following algorithm performs the addition of two n umbers x = x n;1 x n;2 : : : x 0 and y = y n;1 y n;2 : : : y 0 represented in radix r with digits between ;a and a, where a r ; 1 and 2a r + 11 . Algorithm 1 (Avizienis) Input : x = x n;1 x n;2 : : : x 0 and y = y n;1 y n;2 : : : y 0 Output : s = s n s n;1 s n;2 : : : s 0 1. in parallel, for i = 0 : : : n ; 1, c ompute t i+1 (carry) and w i (intermediate sum) satisfying: 8 > > > < > > > :

t i+1 = 8 > < > :
1 if x i + y i a 0 if ;a + 1 x i + y i a ; 1 ;1 if x i + y i ; a w i = x i + y i ; b t i+1 2. in parallel, for i = 0 : : : n , c ompute s i = w i + t i , with w n = t 0 = 0 . By carefully examining that algorithm, one can see that the carry t i+1 does not depend on t i .

There is no carry propagation any longer. It can be shown that a fully parallel addition can only be performed, under reasonable hypotheses, thanks to a redundant n umber system 28]. Now let us focus on the particular case of radix 2. The conditions \2a r + 1" and \a r ; 1" cannot be simultaneously satis ed in radix 2. However, it is possible to perform totally parallel carry free additions in radix 2. In this radix, the two usual redundant n umber systems are the carry-save (CS) number system, and the signed-digit number system. In the carry-save n umber system, numbers are represented with digits 0, 1 and 2, and each d i g i t d is represented by t wo bits d (1) and d (2) whose sum equals d. In the signed-digit number system, with digits ;1, 0 and 1, we represent the digits with the borrow-save (BS) encoding: each digit d is represented by t wo bits d + and d ; such that d + ; d ; = d. Those two n umber systems allow v ery fast addition/subtraction. The carry-save adder (see for instance 17]) is a very well-known structure used for adding a number represented in the carry-save system and a number represented in the conventional binary system: Algorithm 2 (Carry Save) Input : x = x (1) n;1 x (2) n;1 x (1) n;2 x (2) n;2 : : : x (1) 0 x (2) 0 and y = y n;1 y n;2 : : : y 0 Output : s = s (1) n s (2) n s (1) n;1 s (2) n;1 s (1) n;2 s (2) n;2 : : : s (1) 0 s (2) 0

In parallel, for i = 0 : : : n ; 1, c ompute s (1) i and s (2) i , w i t h t 0 = 0 . 8 > < > :

s (1) n = s (2) 0 = 0 s (1) i = x (1) i x (2) i y i s (2) i+1 = x (1) i :x (2) i + x (1) i :y i + x (2) i :y i
This algorithm can be implemented by a r o w of full-adder cells (a full adder cell computes two bits t and u, from three bits x, y and z, such that 2t + u equals x + y + z). The addition of two C S operands (x = x (1) + x (2) and y = y (1) + y (2)) can obviously be performed by t wo r o ws of full adders cells, as s = x + y can be decomposed into z = x + y (1) followed by s = z + y (2) , which both are additions of a CS operand and a non redundant operand. Such an adder is represented in Fig. 1.

Redundant (resp. non redundant) number systems are denoted by R (resp. NR). An operator that performs the operation from two operands of type X and Y , and gives a result of type Z is denoted by X Y ! Z, and is called redundant if Z is a redundant representation. Similarly, a converter from redundant to non redundant i s d e n o t e d b y R ! NR . Actually, this operation is a conventional addition for CS, as a CS number is the addition of two N R n umbers (if x is a CS number, then x = x (1) + x (2) , where x (1) and x (2) a r e N R n umbers). For the same reason, a CS addition with two CS operands (NR+ NR! CS) does not need to be performed by an operator.

We call such an addition a virtual addition. The BS system has the same property with subtraction. Redundant n umber systems are rather commonly used into arithmetic operators such a s m ultipliers and dividers (those operators have their input and output data represented in a non-redundant number system, but perform some of their internal calculations in a redundant n umber system). For instance, most multipliers use (at least implicitly) the carry-save n umber system, the multiplier of the TI 8847 chip internally uses the radix-2 signed-digit number system 12], while the divider of the Pentium actually uses two di erent redundant n umber systems: the division iterations are performed in carry-save, and the quotient is rst generated in radix 4 with digits between ;2 a n d +2, and then converted in the usual radix-2 number system.

All these large operators perform a nal conversion in order to convert this internal representation int o a c o n ventional one. The drawback i s t h a t a c o n version from redundant to non redundant represents an important cost regarding area and speed. It can be bene cial to avoid this nal conversion, and thus, redundant n umbers are used explicitly, in the whole design, and not only inside complex operators.

The use of fully redundant arithmetic within a design shows major drawbacks in term of area and consumption, but it can be avoided by c o n verting the operands, which leads to designs using redundant and non redundant arithmetics (mixed arithmetic), as explained in the next section.

Using redundant arithmetic globally

Using, for instance, the CS number system in the whole design, would imply to replace the conventional adders by CS+ CS! CS adders. Several types of 32-bit adders (redundant and non redundant) have been implemented 2 . T able 1 shows the result in terms of area, delay and consumption. One can see that a carry look ahead adder has comparable delay (the redundant adder is \only" 30% better for 32-bit operands), whereas a carry skip adder is better in term of area and consumption, with a reasonable delay.

However, these results do not address the problem of registers. Indeed, in radix 2, redundant numbers are twice larger than non redundant ones, which leads to a drastic increase in consump-tion. Lang, Cortadella and Mussoll studied the problem of redundant addition 24]: their solution uses di erent adders for di erent codings of the CS system considering transition probabilities, to avoid \critical" digit transitions (for instance 2 ! 0 in CS, where the two bits are changed).

However, this solution requires the knowledge of these transition probabilities, and brings only a small improvement. Hence, as consumption has become a major constraint, using fully redundant arithmetic seems to be unrealistic. Nevertheless, if one of the operands is non redundant, redundant additions become very powerful. Fig. 2 shows some implementations of various redundant 32-bit adders compared to a carry look ahead one 2 . A CS+NR! CSadder is three times faster than the fastest non redundant one (CLA), and has the same area and consumption as the smallest and least consuming one (ripple carry). Thus, mixed operators are interesting both in terms of speed and area or consumption.

The problem of registers is also largely decreased, as only half of the operands would be redundant, which increases the register consumption by \only" 50% compared to conventional representation. Besides, using radix 8 operators would lead to a 17% register consumption increase, as redundant n umbers would only be 33% larger. Radix 8 redundant operators remain faster and smaller than non redundant radix 2 adders, and their low consumption would balance the 17% register consumption increase. We are currently working on the validation of this representation.

All these remarks show the interest of using mixed arithmetic (mixing redundant and non redundant operands): converters, instead of systematically outputting large operators (multipliers, dividers), only convert some of the operands. Thus, CS+ NR! CSadders are used instead of fully redundant ones. Moreover, if the conversion is not always necessary inside a ow of operations, it has to be done before outputting the results. Thus, a converter R ! NR(redundant t o n o n redundant) is always present in a design, and it can be useful to take a d v antage of this resource on the whole design, instead of using it only for the nal conversion.

There are already numerous applications using mixed arithmetic in a way that does not cost time (i.e by o verlapping conversion and computation). Kornerup studied conversions between di erent redundant and non redundant systems 21]. Koren et al. 35] proposed an original adder whose operands could be partially redundant in order to limitate the carry propagation, with a limited increase in area. Concerning multiplication, Matula and Lyu 27] i n vestigated the problem of converting redundant binary inputs into Booth encoding. They have proposed a general purpose multiplier using a precoder providing partial compression of a redundant binary value (and with no extra delay for the non redundant case) in a format that may be directly input to a standard radix 4 Booth recoder.

However, as the use of such operators requires a good redundant arithmetic expertise, these architectures are generally related to speci c applications. For example, Briggs and Matula 4] realized a processor e ecting a 17x69 bit multiply-and-add, implemented into the Cyrix 83D87 numeric coprocessor, in which the multiplier result is not converted before being transmitted to the adder.

The problem we address is more general. Our aim is to use mixed arithmetic globally, during the design automation ow, in order to take bene t from the speed of redundant arithmetic without the drawbacks of area and consumption. Therefore, our solution is not to design innovating operators, but to propose a global approach of the conversion insertion problem in order to limitate the redundant operands.

Using mixed arithmetic

We h a ve extracted the following observations from our studies and our redundant arithmetic expertise:

The problem can be dealt with at the algorithmic level: conversion insertion is equivalent t o choosing the variable (operand) encoding. Performing redundant operations with only one redundant operand remains reasonable (i.e NR ? ! R).

A c o n verter R ! NRis always present in a design. Our approach is to also use this converter inside the ow of operations to reduce the possibility o f h a ving redundant operands.

Thus, the problem we address becomes the following:

Mixed arithmetic problem: Having a ow of dependent arithmetic operations (algorithm), several mixed o p erators for the usual operations (addition, subtraction, multiplication), at least one converter, and considering the number of cycles, the cycle delay and the area: What type o f o p erator ts the best to an operation? What is the best choice for the use of the converters (which operands should be c onverted)?

We h a ve tried to solve this problem manually on di erent algorithms. Thus, we h a ve experimented the use of mixed arithmetic on several benchmarks. Table 2 shows that interesting improvement of the delay can be achieved, without a large increase in the number of cycles. We use a particularity of redundant arithmetic in order to make the problem more manageable: when there is no possibility o f k eeping one of the operand non redundant (o r i f t h e c o n version costs too much), we can perform a fully redundant addition (R + R ! R) using two NR+ R ! R adders (see Fig. 1). Conversely, if both operands are non redundant (NR+ NR! R), the addition is virtual. These two cases match the mixed arithmetic approach, and they only di er from the regular R + NR! R adder by the number of resources.

An interesting example is the 5 th order lter design. There are two critical paths of 14 cycles, but the xed number of resources (resource c onstraint: t wo adders, one multiplier) makes impossible to nd a schedule, with a conventional arithmetic, in less than 16 cycles. Figure 3 shows the scheduled graph of the 5 th order lter design using mixed arithmetic. Every operation gives a redundant result, thus, as operator outputs become inputs of other operators, every operation has, a priori, redundant operands. However, we k eep the same resource constraint regarding area and consumption, which means that the numb e r o f c o n ventional adders, in the scheduling using NR arithmetic, became the number of NR+ CS ! CS adders, in the scheduling using mixed arithmetic. This implies the conversion of half of the operands, which seems di cult considering that each cycle can use two adders (thus four operands) but only one converter. Intermediate results (t 2 , t 13 , ...) are not always converted, but the nal result (out) has to be non redundant. One can see that we managed to reach the 16 cycle limit. This example shows that even with one converter for two adders, and with very weak operation mobility, it is possible to nd a schedule using mixed arithmetic with the same number of cycles than the classical one. The main amelioration is that multiplication results are not converted anymore which is bene cial both in term of delay and area. Most adders are NR+ R ! R ones.

These benchmarks have c o n vinced us that the mixed arithmetic approach i s v ery realistic and interesting.

We h a ve tried to automate the mixed arithmetic problem previously de ned. The problem is no longer a problem of arithmetic operators, but it becomes a high level synthesis one. More precisely, it is an extended problem of scheduling and operator type selection. The next section addresses the solutions we h a ve d e v eloped. steps: data ow graph (DFG) and control ow graph (CFG) extraction, operator type selection, scheduling and resource allocation. These tasks are usually performed successively. However, the operator type selection with mixed arithmetic implies operand type selection. Such a selection leads to the insertion of converters that has to be taken into account during scheduling. Thus, the operator type selection has to be done while scheduling. This constraint makes the scheduling even more complicated, but the problem can be simpli ed, regarding some particularities of mixed arithmetic. We propose a modelisation of the design adapted to our problem.

0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 000000000 000000000 111111111 111111111 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
Our expertise in mixed arithmetic 29] h a ve lead to the following hypotheses: Constants and memory inputs should (obviously) be non redundant.

Multiplication with one redundant operand can be implemented at a reasonable cost 27, 3 4] . However, when having both operands redundant, the area increase is too important. Thus we impose at least one non redundant operand for every multiplication. Moreover, even if all the operands are non redundant, the same multiplier is used (the conversion from NR to R is instantaneous, as x = y + 0 i s a C S n umber, if y i s a N R n umber).

Among all the possible implementations of redundant addition, we will use one that considers a R + R ! R adder (i.e an adder with two redundant operands and a redundant result) as the concatenation of two R + NR! R adders (see Fig. 1). We h a ve proposed an original algorithm for 2's complement CS addition, in order to keep this property 3 4]. Hence, we propose the following resource modelisation: An adder is modelised as c instances of the R+NR! R operator, c 2 f 0 1 2g, followed by z e r o or one instance of a converter. A multiplication is modelised as one instance of the R NR! R choice has not to be done explicitly, but is handled by the number of resources (for instance, a NR+ NR! NRis considered as zero NR+ R ! R followed by one conversion). However, the di erent steps of the HLS are modi ed. Indeed, as every operation is followed by a virtual conversion, the extracted DFG is speci c to our problem. Figure 4 shows a classical DFG and a DFG with virtual conversions. The conversion being virtual, its output is not linked to any other operation. After scheduling, there are two alternatives for a virtual conversion: either it becomes e ective, and the following operations may use the output of the converter, or it disappears.

The scheduling is also speci c, because it includes the operator selection, and because an operation of the DFG could disappear during scheduling. This is the case for the virtual conversions, but also for the additions. Indeed, when we h a ve a n NR+ NR! R addition, zero instance of NR+ R ! R is needed, and an operation that succeeds this addition could be scheduled in the same cycle as the \virtual addition".

A nal step is needed to specify the connections between converters and operators. Figure 6 shows a possible result: the virtual conversions 5 and 6 have become e ective, conversions 7 and 8 have disappeared. Precedences are rebuilt to produce the scheduled DFG (SDFG), regarding the scheduling cycles of the conversion nodes.

The main di culty lies in the scheduling, due to the previous observations. We already proposed a solution to our problem, based on an extended list scheduling 30]. The principle of list scheduling is to consider each cycle successively. F or a given cycle j, all the candidate operations are scheduled regarding the resource constraints and a priority function. An operation is a candidate if all its predecessors have already been scheduled. The priority function could be, for instance, the mobility (As Late As possible date L i -A s S o o n A s P ossible date S i). The operations scheduled at cycle j are those of highest priority, regarding the number of resources. Similarly, w e h a ve extended this idea to edges, in order to nd which edges should be converted. We rst determine the convertible edges, then compute their urgency. The urgency function of edge e ij : o i ! o j is de ned as U(e ij) = N(i) Lj;T(i)

where N(i) is the number of operands which w ould be converted if a conversion was inserted after operation o i , and T(i) i s o i schedule. The most urgent edges are converted, regarding the number of converters. However, since this is a greedy approach, and since our problem needs a global view, the obtained results were not very convincing.

Therefore, we propose an ILP formulation which guarantees a completely global approach, and gives an optimal result. The formulation and the results are presented in the following sections. Scheduling, is a very common application of ILP: for examples, formulations to the general problem of performing scheduling and resource allocation simultaneously have been proposed 11, 2 3] a methodology to solve a s c heduling problem in a 3-dimensional design space, including the usual area and schedule length dimensions plus the clock length dimension, using module libraries, has been described using ILP 6]. Hwang et al 15] proposed di erent ILP formulations for di erent classical scheduling problems. Their formulations are based on two main constraints: resource constraints, which are de ned by the user, and precedence constraints which are given by a D F G. The variables and constants they used were the following:

? x i j = 1 if operation o i is scheduled into cycle j otherwise, x i j = 0 . ? T is the nal numb e r o f c y c l e s t h a t w e wish to minimize and N t is the number of resources of type t. ? s is an overestimation of T, obtained by a list scheduling heuristic. ? L i (resp. S i) is the latest (resp. earliest) possible time to schedule operation o i . The scheduling is a classical ALAP scheduling considering that we h a ve s cycles.

We k eep the same conventions and extend them to our speci c problem: if o i is a classical operation (addition, subtraction, multiplication...), it is also related to variable x i j , with j 2 S i L i]. Our model inserts a virtual conversion, o k , after each operation. Therefore we need a new variable, x k j , representing the conversion.

The operand types depend on the presence of preceding converters, the operator type depends on the presence of the following converter. The link between converters and operators is handled during resource constraints: therefore, we i n troduce new variables, c i j , c o u n ting the number of redundant operands of addition o i (i.e the number of resources used, see Table 3).

The formulation

Our formulation of a resource constraint s c heduling problem using mixed arithmetic is presented in Fig. 5.

In order to simplify the explanation of the constraints, one should keep in mind that P Li j=Si j:x i j is equal to the cycle where o i is nally scheduled. Therefore, D k j = Lk X j=Sk j:x k j ; Li X j=Si j:x i j is the number of cycles between the schedules of o k and o i . I f D k i = 0 , o k and o i are scheduled at the same cycle. To simplify the notation, we use o t i to express that operation o i is of type t. T h us, (o conv p , o conv q) ! o 6 =add i expresses that o p and o q are two converters preceding (\preceding" means that there is a data dependency) an operation o i , whose type is not addition. The formulation can be decomposed as follows:

Temporal constraints Equation 4 expresses that T is the last cycle of the scheduling (and is naturally the value that should be minimized). Equation 3 expresses that a regular operation is scheduled only once. Equation 2 expresses that a virtual conversion may n o t b e s c heduled at all.

x i j 2 N c i j 2 N Minimize T

(1)

Temporal constraints

If o i is a conversion Li X j=Si x i j 1 (2) Else Li X j=Si x i j = 1 (3) 8o i without successors Li X j=Si (j:x i j) T (4) Resource constraints 8j 2 1 s] X o add i c i j N add (5) 8j 2 1 s] X o autre i x i j N autre (6)
Calculation of the c i j

8j 2 S i L i] j;1 X k=Sp x p k + j;1 X k=Sq x q k 2x i j ; c i j 8 (o conv p , o conv q) ! o add i (7) 8j 2 S i L i] j;1 X k=Sp x p k + j;1 X k=Sq x q k x i j 8(o conv p , o conv q) ! o 6 =add i (8)
Data dependency constraints

Resource constraints

Equation 5 expresses the resource constraint for additions, as the number of resources used by a n addition o i , at cycle j, is equal to c i j .

Equation 6 expresses the resource constraint for operations that are not additions, including conversions, as the number of resources used by such a n o p e r a t i o n o i , at cycle j, is equal to x i j .

Calculation of the c i j o p and o q are the two virtual converters preceding o i . P j;1 k=Sp x p k is equal to 1 if o p is converted before cycle j. T h us, the left side of equations 7 and 8, K, is equal to the number of converters preceding o i , and scheduled before cycle j. In other words, K is the number of NR operands of o i , at cycle j. I f o i is an addition, scheduled at cycle j, then c i j = 2 ; K. I f o i is not an addition, there should be at least one NR operand, and thus, K 1. As x i j = 1 if operation o i is scheduled at cycle j, equations 7 and 8 express these two situations 3 .

Data dependency constraints

Equations 9, 10, 11 and 12 express the data dependencies between operations o i and o k (o i precedes o k). These equations are quite particular because virtual additions and virtual conversions may not be scheduled at all, changing operation precedence.

If o i is not an addition and o k is not a conversion, the data dependency equation (9) is the same as Hwang's one. It expresses that there should be, at least, one cycle between the o i and o k schedules.

If o k is a conversion, the previous equation is false when o k is not scheduled at all (i.e 8j x k j = 0) . Equation 10xes this problem: if o k is scheduled (i.e 9jnx k j = 1), equation 10 is equivalent t o equation 9. If o k is not scheduled at all, 10 is always true.

If o i is a virtual addition (8j c i j = 0), an operation (except conversions) succeeding o i could be scheduled at the same cycle as o i . In such a case, equation 11 is equivalent t o D k i 0, which i s the correct expression. If o i is not a virtual addition, equation 11 is equivalent to equation 9, as we have i n tegral variables.

Equation 12 is a \mixture" of equations 10 and 11, when o i is an addition and o k a conversion.

Feedback outputs

Our formulation easily handles outputs that are fed back (s u c h a s P and Q in Fig. 6), which means that if a feed-back output is converted, the related primary input will be considered as NR. For instance, the input of the subtracter o 1 can come from the converter (o 6) succeeding the multiplication. In such a case, o 6 could be scheduled at any cycle between 1 and 3.

Multi-cycle and pipelined operations

The formulation does not handle multi-cycle operations. However, the extension is not di cult, as there are no speci c arithmetic problems. Equations related to data dependencies and resource constraints have to be modi ed. For example, if K i is the number of cycle needed for operation o i , in the case of a multiplication followed by a c o n version, the equation becomes, 8o 6 =add i ! o conv k :

Lk X j=Sk j:x k j ; Li X j=Si j:x i j (L i + K i):

Lk X j=Sk x k j ; L i
In the case of a multiplication, if l i is the latency of the multiplication (l i = K i if the operation is not pipelined, l i = 1 if there is a pipeline for each l e v el of the multiplier), the resource constraint equation becomes:

8j 2 1 s] X o mult i j X k=j+1;li x i k N mult
Figure 6 shows a possible result of our linear program. The graph on the left has been scheduled using one subtracter, one multiplier and one converter: the addition has one constant (thus NR) input, and could use the output of converter [START_REF] Briggs | A 17x69 multiply and add unit with redundant binary feedback and single cycle latency[END_REF], which represents the converted output of subtracter (1). Thus, this addition has two NR inputs (i.e. it is virtual), which a l l o ws the subtracter (2) to be scheduled into the same cycle. Only two c o n versions were nally scheduled, whereas there are four operations.

Results

Our ILP formulation has been tested using LP SOLVE (see Table 4). The results are optimum, and the computation times remain small for small examples (the 5 th order lter examples will be discussed later). Moreover, even with small examples, the ILP approach i s v ery useful, particularly when it comes to consider feed-back outputs, which i s a v ery di cult problem to deal with using the heuristic approach (as it is a greedy algorithm).

The computation time needed to solve an ILP formulation increases with the number of equations and the number of variables. This is not an absolute measure, as large formulations can sometimes be solved very quickly, whereas smaller ones can take a h uge amount of CPU time. However, it gives quite a good estimation of this computation time. Concerning scheduling, these two v alues (number of equations and number of variables) depend on the number of operations, n, and on the initial bound of the number of cycles, s. In our case, both grow i n O(s n). The s value is a large overestimation, and considering the operation frames (di erence between L i and S i) i s more accurate. The largest examples could not be solved (see the ILP is transformed into a LP, w h i c h c a n b e s o l v ed in polynomial time. According to the integral values of the LP result, the initial ILP is decomposed into new ILP problems, which are treated in the same way. The computation is fasten by c hoosing which of these subproblems should be solved by relaxation into a linear program, according to bound obtained by previous results (Branch-and-Bound algorithm). If the rst relaxation gives only integral results, the ILP is solved. It shows that the number of variables and the number of equations is not an absolute measure of the complexity of ILP resolution. However, large number of equations and large numb e r o f v ariables lead to large linear program, and generally, to large number of LP resolutions, and thus, large computation times. The problem can even be worth, as linear programs are solved by n umerical algorithms that are very dependent to accuracy: large programs lead to bad accuracy that compromises the stability of the algorithm. Problems like the 5 th order EW Filter could not be solved because of this numerical instability. W e h a ve applied some simple classical heuristics in order to reduce the variable time frames (S i L i]), but it did not solve the problem neither (the reduced formulations are present e d i n T able 4). ILP is widely used in various other domains though, and not only in order to solve small problems. For example, 8] uses ILP for throughput and latency optimization when algorithm/architecture matching, retiming and pipelining are considered simultaneously. ILP is also used for DSP code generation and embedded systems. For instance, 26] gives a solution to the problem of code compaction with real-time constraints for processors o ering instruction-level parallelism 38] presents an ILP-based code placement method for embedded software to maximize hit ratios of instructions caches. ILP is also widespread for HW/SW partitioning 3, 1 9 , 3 2]. In the eld of system level synthesis, one can also cite 37, 2], which deal with the optimization of heterogeneous multiprocessor systems. Another example is 36], where a static task execution schedule is generated along with the structure of the multiprocessor system, and with a mapping of subtasks to processors.

Even if our ILP solver was not a \professional" one, the problem we had is usual when dealing with ILP formulations. Thus, instead of looking for a solution, speci c to our scheduling, to overcome this problem, we h a ve studied a general methodology, based on partitioning. Some partitioning techniques have been proposed in the literature. For instance, Hwang et al experimented an approach 14], called \zone scheduling". They partition the set of cycles into zones, and decides which operation will be scheduled into a zone and which one will be \delayed" into the next zone. Their model can be turned into an optimal ILP scheduling, a list scheduling, or one in between. However, their goal is more to nd better solutions, with comparable computation times, than those achieved by list scheduling rather than nding near optimal solutions when ILP does not succeeds, with possibly still large computation times. Depuydt et al. have a solution based on clustering techniques 7]. They do not take i n to account the resource constraints but variable time frames to reduce the register cost. Moreover, none of these methods takes into account the ILP size. In Section 5.1, we propose a general solution which partitions the problem into several small ILP formulations separately solved and taking all the constraints into account. Section 5.3 discusses the results and extensions of this method.

Partitioning

Partitioning methodology

The initial DFG is partitioned into k parts (we call this a k-partition). The k;partition of DFG = (V E) , with k as small as possible, de nes k data ow graphs DFG i = (V i E i), such that V = V 1 V 2 ::: V k and V i \V j = if i 6 = j. Each partition can be considered as a separate design, and is scheduled using a separate ILP formulation. We obtain several optimal local schedules which are concatenated in order to obtain the nal global schedule. The main di culty i s t o n d a partitioning algorithm, as there are two constraints to deal with: all the interdependencies between partitions and their size.

The problem of partition interdependencies can be stated as follows: if there is a constraint between two operations, there is an equation, in the initial ILP formulation, using variables related to these operations. If the two operations are in di erent partitions, the initial equation is splitted into two new equations (one for each formulation). The result obtained with these equations will be consistent with the authorized values de ned by the initial equation. However, it may p r e v ent t o nd an optimal global solution. We call this a constraint violation. Obviously, their number should be minimized. Therefore, we propose a general approach, based on the ILP formulation, which consists in partitioning the set of operations, each partition violating as few constraints as possible (either data dependency or resource ones, or ...) and being balanced in terms of ILP variables.

Considering a simple DFG w ould not be satisfactory, a s a D F G only re ects data dependency constraints (see for instance the 5 th orderfilter DFG in Fig. 7). Our partitioning is based on a reduced c onstraint graph extracted from the ILP formulation, whose vertices represent operations and edges represent constraints between operations. Performing minimum edge cut partitioning creates partitions with few constraint dependencies. As each partition leads to an optimal partial schedule, the nal schedule, obtained by the concatenation of the partial schedules, is likely to be a good approximation of the optimal one.

A k;partition

In order to determine the best value of k, one could iteratively try several decreasing values until it leads to an infeasible ILP formulation: starting with an n;partition, if all the partitioned formulations can be solved, try with a (n ; 1);partition, and so on. This solution is realistic, as the computation times are largely decreased using the partitioning method (see below, and particularly the comparison between benchmarks that had a solution with the whole formulation and their partitioned solution). Moreover, one usually knows an approximate numb e r o f v ariables (N max) that his solver can handle. Thus, an e cient solution is to determine directly, as a starting with the scheduling problem). The outputs of a partition become the inputs of the following partition, and they can be represented using a redundant n umber system. As our modelisation considers that the inputs are non redundant, we had to perform a small pre-treatment to the new formulations to emulate these redundant inputs. This implies that, when scheduling a partition, all the precedent partitions must have already been scheduled, in order to know which input is redundant. The inputs number representations can be taken into account during partitioning (to give more accurate informations on ILP size) by making a bi-partition after each local schedule rather than an initial k;partition.

The method presented here used this bi-partitioning. However, the method can be very easily extended to direct k-partitions.

Considering the data ow g r a p h DFG = (V E) such that the ILP formulation related to DFG could not be solved, the partitioning method is described below (reduced constraint graphs are de ned in the next section S(RCG i) is the size of the reduced constraint graph RCG i). We are dealing with partition i DFG 1 to DFG i;1 have b e e n s c heduled. Built the reduced constraint graph, RCG i : Partitioning with minimum cut is known to be a NP-complete problem 10], but there are some e cient heuristics 9, 2 0]. Our method has been implemented using the Fiduccia and Mattheyses heuristic, which i s a n i m p r o vement of Kernighan and Lin Min-Cut heuristic.

As edges represent constraints, the idea behind min-cut partitioning is to minimize the constraint violations. Thus, this algorithm is e cient i f RCG is a good representation of the di erent constraints. We w i l l n o w address the problem of the reduced constraint graph de nition.

Reduced constraint graph

We h a ve l o o k ed for a de nition of the reduced constraint graph, RCG, that would not depend on any particular problem. Nevertheless, there are a few observations that the graph should match. Our goal is to create partitions whose ILP formulations would take comparable computation times. Operations are related to equations and variable, which are our measure of ILP computation time. As every operation does not have the same in uence over the ILP computation time (some are related to more equation and/or variables than others), the vertices must have a w eight w(e j) re ecting their in uence over this computation time.

Edges must represent constraints, and any constraint m ust be represented. In fact, this solution should not even be related to a scheduling problem, but, more generally, to the problem of resolving large ILP formulations. We based our solution on a graph used by P an, Dong and Liu 33] to solve a problem of constraint reduction in symbolic layout compaction: from a set, S, of linear programming constraints of the form x i ; x j b (we w i l l s a y that x 2 cn if variable x appears in constraint cn), they create a directed graph, G = (V E), such t h a t e a c h v ariable x i which appears in S is related to a vertex v i 2 V , and such that each constraint cn : x i ;x j b cn 2 S is related to an edge e : v i 7 ! v j e 2 E, of weight b. F rom this graph, they solve a problem of subgraph reduction (i.e nding an equivalent graph with less edges).

We h a ve extended this representation to ILP: from a constraint P j a i j :x j b i , where x j represents a variable related to operation Op(x j), we construct a complete graph CG= (CV CE), where each ILP variable x j is related to a vertex v j 2 CV. It makes a constraint g r a p h of variables. From this graph, we perform a clustering phase which creates sets C i = fx p jOp(x p) = o i g (C i From a set, ILP, of ILP constraints, 8 i, i f 9cn 2 ILP j2 Njx j 2 cn, Op(x j) = o i , w e construct a vertex V i 2 RCV , w eighted by w(V i) = jC i j. If 9cn 2 ILP j 1 j 2 2 Njx j1 2 cn x j2 2 cn (o i1 = Op(x j1)) 6 = (o i2 = Op(x j2)), we construct an edge e i1 i2 2 RCE between V i1 and V i2 . This de nition ts the previous observations, as RCG is an operation graph, whose vertices are weighted by the number of ILP variables linked to an operation, which has a great in uence over the ILP computation time. Furthermore, the edges are constructed by each ILP constraint, explicitly and equally treated. This method could be used for other problems than scheduling ones. The only condition is that ILP formulations have to be generated by acyclic graphs, which is not a severe limitation. Fig. 8 shows the reduced constraint graph for the 5 th order lter design. One can see that data dependency constraints (i.e the DFG, Fig 7) are far from being the only constraints of the problem.

Results

We h a ve tried this solution with the 5th order elliptic wave lter, using a 3-partition, for our scheduling and operator type selection problem. The 5th order lter 3-partition of Fig 9 has been obtained. It de nes partitions P1, P2 and P3 and the resulting scheduling has the same number of cycles as the optimal scheduling using non redundant arithmetic (the scheduling using mixed arithmetic is most likely to be the optimal one, though we can not prove it). Compared to our partitions, the partitions P'1, P'2 and P'3 were obtained with a 3-partition based upon the DFG, instead of the reduced constraint graph. Obviously, the DFG based partitioning could not be exploited, as the partition is not \temporal" (that is to say the rst operations in the rst partition, ...). This is not the case of our method, which a l w ays gave exploitable solutions, even though it does not introduce any information speci c to a scheduling method.

Examples that did not need partitioning have also been tested, in order to get an idea of the degradation compared to the optimal. Only one example had more cycles than the optimal: the di erential equation design (3+3 instead of 5). However, in this case, the extra cycle was due to the junction between the two partitions: the last cycle of the rst partition did not use all its resources, whereas an operation scheduled on the rst cycle of the next partition could be scheduled one cycle before, and use one of these available resources. A simpli ed list scheduling managed to nd the optimal result: without changing the global scheduling, the algorithm checks if an operation could not be scheduled one cycle before. It can be considered as a \smart" concatenation. Another interesting solution is to apply replication formulations to the partitioning 16, 2 2]. The critical operations (i.e scheduled on the last cycle), are duplicated and introduced in the next partition. The concatenation is then made automatically.

All the others examples managed to nd the optimal schedule. Besides, on every benchmark, the CPU time is largely decreased (see Table 5). This is particularly impressing with large examples (10 and 28 times faster for the 3-way method and the 5 th orderfilter).

Conclusion

We h a ve i n troduced a methodology to use redundant n umber systems and operators in order to fasten designs without large increase in area, thanks to the use of other kinds of arithmetic (non redundant ones). An ILP formulation has been proposed that nd an optimal solution for examples of reasonable size. An solution, based on the partitioning of a constraint graph, has been proposed in order to overcome the problem of possible drastic ILP computation time.

Figure 2 :

 2 Figure 2: Results of di erent mixed adders on several technologies (Actel ACT3, Xilinx 4000, AMD Mach and ES2 ecpd07).

Figure 3 :

 3 Figure 3: Result of the 5 th order lter scheduling using mixed arithmetic.

Figure 4 :

 4 Figure 4: A classical DFG and our speci c DFG (black circles represent c o n versions)

Figure 5 :

 5 Figure 5: ILP formulation of the scheduling problem using mixed arithmetic

Figure 6 :

 6 Figure 6: Possible result of our linear program (right) for the scheduling of the DFG presented on the left.

Figure 7 :

 7 Figure 7: 5 th order lter data ow graph DFG

Figure 8 :

 8 Figure 8: 5 th order lter reduced constraint graph RCG RCG i = (RCV i R C E i W i), where RCV i = V n f V 1 V 2 ::: V i;1 g. Perform a bi-partition on RCG i with minimum edge cut, of partition sizes, S(RCGi) k;i and (k;i;1):S(RCGi)k;i

Figure 9 :

 9 Figure9: Result of the 5 th order lter scheduling after a 3-partition (partitions are P1, P2 and P3 with a constraint graph partition, and P'1, P'2 and P'3 with a DFG partition). contains all the variables related to operation o i), in order to get a graph of operations. This de nes a reduced c onstraint graph RCG = (RCV RCE W) a s f o l l o ws:From a set, ILP, of ILP constraints, 8 i, i f 9cn 2 ILP j2 Njx j 2 cn, Op(x j) = o i , w e construct a vertex V i 2 RCV , w eighted by w(V i) = jC i j.If 9cn 2 ILP j 1 j 2 2 Njx j1 2 cn x j2 2 cn (o i1 = Op(x j1)) 6 = (o i2 = Op(x j2)), we construct an edge e i1 i2 2 RCE between V i1 and V i2 . This de nition ts the previous observations, as RCG is an operation graph, whose vertices

Table 2 :

 2 Results of di erent benchmarks using di erent arithmetics (with n bit inputs). resource followed by zero or one instance of a converter. As the conversions may not be inserted in the nal design, they are called virtual conversions. This modelisation can represent a n y kind of operation, as shown by T able 3. In this table, all the operations are mono-cycle, even the CS+ CS! CSaddition (i.e CS+ NR! CSadditions are chained). Multi-cycle multiplications are addressed in Section 4.2. This modelisation makes the operator type selection easier, as the

	5th order lter Area Delay cycles Area Delay cycles Di erential equation Mixed n 2 + 2 n n ; 1 16 2n 2 + 1 n ; 1 5 NR n 2 + n 2n ; 1 16 2n 2 2n ; 1 4 R n 2 + 3 n n ; 1 16 4n 2 n ; 1 4
			Area					FFT Delay	cycles
	Mixed NR R		2n 2 + 5 n 2n 2 + 5 n 2n 2 + 5 n				n 2n n	3 3 4
			NR	◆	NR	CS	◆	NR	CS	◆	CS
		A	NR	NR		CS			NR	CS	CS
	NR	d d					CS + NR	CS	CS + NR	CS
	p e o a t r	t i i o n		00 00 11 11 NR			00 00 11 11 NR	CS + NR 00 00 00 11 11 11	CS
	i									NR
	o n s	M u l t	NR	* 00 00 00 11 11 11	NR	CS	* 00 00 00 11 11 11	NR	Not Allowed
				NR			NR
		A	NR	NR		CS			NR NR	CS	CS
	R	d d i					CS + NR	CS	CS + NR	CS
	p o	i t		CS			CS	CS + NR	CS
	e	o							
	a r	n							
	t i	M	NR			NR	CS			NR
	o s n	t l u		*				*	Not Allowed

Table 3 :

 3 Resource modelisation according to the the operand and result types.

Table 4)

 4 , thus, we h a ve l o o k ed for solutions to solve high complexity b e n c hmarks. The next section addresses this problem.

	benchmarks	Nb equ. Nb var. Nb op. Nb cycles	CPU
	2 w ay method Fast Fourier Transform Di erential equation 3 w ay method 3 w ay method classic 5 th order elliptic wave lter (EWF) 383 53 51 99 248 91 5 th order EWF, reduced form. 1 287 5 th order EWF, reduced form. 2 258 5 th order EWF classic 119	62 78 132 410 126 991 665 586 133	6 7 11 25 25 34 41 34 34	5 4 5 ? 10 ? ? ? 16	6.2 s 3.6 s 17.6 s no sol. 51.1 s no sol. no sol. no sol. 4 min 44.8 s

Table 4 :

 4 ILP results using LP SOLV E. 5 Overcoming the problem of drastic ILP computation time ILP solvers usually work by relaxation. A classical one is the relaxation into linear program (LP):

Table 5 :

 5 ILP results using LP SOLV E after ILP based partitioning.

	The input of the ILP formulation is a DFG. Thus, the graph vertices represent operations of the DFG.

This condition is stronger than the condition

2a r ; 1 that is required to represent e v ery number.

This work was supported by P R C GDR ANM, in the scope of a project with the MASI/Paris VI and CSI/INPG laboratories

Equation 7 does not give exactly the normal values to the ci j . H o wever, we h a ve s h o wn 34] that it does not prevent to nd the optimal solution, and reduce the complexity of the formulation.

Acknowledgment

We w ould like to gratefully thank Regis Leveugle and Xavier Wendling, from CSI/INPG and Habib Mehrez, Nicolas Vaucher, from MASI/Paris VI for their experimentations of mixed operators on various technologies, and Alain Darte for his constructive comments.