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Direct proofs of strong normalisation in calculi
of explicit substitutions

Daniel Dougherty
Pierre Lescanne

7th February 2000

Abstract

This paper is part of a general programme of treating explicit substitutions as the
primary A-calculi from the point of view of foundations as well as applications. Here
we investigate the property of strong normalization.

To date all the proofs of strong normalization of typed calculi of explicit substitutions
use a reduction to the strong normalization of classical A-calculus via the so-called
“preservation of strong normalization” property. This paper develops a new approach,
namely a direct proof that the strongly normalizing terms are precisely those typable
under the intersection-types discipline. We also define an effective perpetual strategy
for the general calculus, give an inductive definition of the strongly normalizing terms,
and furthermore show that normalization properties are essentially unaffected by the
inclusion of a rule for garbage collection. A key role is played by a certain general
combinatorial lemma relating the reduction properties of two interacting abstract
reductions, which we feel is of interest in its own right.

Keywords: Explicit substitutions, lambda-calculus, strong normalisation,
type systems, intersection types termination, perpetual strategy.
Résumé

Cet article fait partie d'un programme plus général visant & traiter les
substitutions explicites comme le sont en général les lambda-calculs aussi bien
dans la théorie fondamentale que dans les applications. Ici nous analysons, de
ce point de vue, la propriété de normalisation forte.

Jusqu’a présent, toutes les preuves de normalisation forte des calculs typés de
substitutions explicites s’appuyaient sur une réduction a la normalisation forte
du lambda-calcul & travers la propriété dite de “préservation de la normalisation
forte”. Cet article, quant a lui, développe une approche nouvelle, & savoir une
preuve directe que les termes fortement normalisables sont précisément les
termes qui sont typables par un systéme de types avec intersection. Mais dans
cet article, nous définissons aussi une stratégie perpétuelle effective pour un
calcul général de substitutions explicites, nous donnons une définition inductive
des termes fortement normalisables et enfin nous montrons que les propriétés
de normalisation ne sont pas essentiellement affectées par I’adjonction d’une
régle de glanage de cellules. Dans ces démonstrations, un lemme combinatoire
général relie deux réductions abstraites qui interagissent et joue un role clé dans
la preuve de normalisation forte ; nous pensons que ce lemme a un intérét par
lui-méme.

Mots-clés: Substitutions explicites, lambda calcul, normalisation forte,
terminaison, systémes de types, types avec intersection, stratégie perpétuelle.



1 Introduction

The A-calculus plays a key role in the foundations of logic and of programming
language design, and in the implementation of logics and languages as well.
The foundation of A-calculus itself is 3-conversion, which relates the primitive
notions of abstraction and application in terms of substitution. Classical
A-calculus treats substitution as an atomic operation, but in the presence
of variable-binding substitution it is a complex operation to define and to
implement. So a more careful analysis is required if one is to reason about
the correctness of compilers, theorem provers, or proof-checkers. Furthermore
the actual cost of performing substitution should be considered when reasoning
about complexity of implementations.

Abadi, Cardelli, Curien, and Lévy [1, 2] defined a calculus of explicit
substitutions to serve as a more faithful model of implementations of the A-
calculus. In this system substitutions are first-class citizens and there is an
algebraic/computational structure on the substitutions themselves, derived from
the fact that composition is a natural operation on substitutions.

Since then a variety of calculi have been defined. Melliés [16] made the
somewhat surprising discovery that the presence of substitution-composition
leads to the failure of strong normalization even for simply-typed calculi of
explicit substitutions. This suggests that it is useful to analyze the effect
of making substitution explicit independently of studying composition of
substitutions. Thus composition-free calculi of explicit substitutions have been
studied in [15, 7, 5] among others.

It is typically straightforward to prove directly that these calculi inherit the
property of confluence from the classical A-calculus. Normalization properties
are more subtle. The key result has been the so-called preservation of strong
normalization [5, 7]: a pure (substitution-free) term is strongly normalizing
under reduction in the explicit substitutions calculus if and only if it is strongly
normalizing under (-reduction. This implies, for example, that type systems
ensure termination for pure terms.

The original motivation for the Abadi-Cardelli-Curien-Lévy calculus was
purely pragmatic, but there is another point of view one may take on such
a calculus, namely that making substitution explicit represents a more refined
analysis of substitution than does classical A-calculus.

As historical context we note that in their book [12] Curry and Feys insist on
the importance of substitution in logic in general and especially in the framework
of A-calculus. They write [page 6] that the synthetic theory of combinators “gives
the ultimate analysis of substitutions in terms of a system of extreme simplicity.
The theory of lambda-conversion is intermediate in character between synthetic
theories and ordinary logic ... and it has the advantage of departing less radically
from our intuition.”

When one takes this point of view to heart, one can view explicit substitution
calculi as a an improvement on both the system of combinators and the classical
A-calculus, a system whose mechanics are first-order and as simple as those of
combinatory logic yet which retains the same intensional character as traditional
A-calculus.

In particular we may view explicit substitution calculi as primary and see
the classical A-calculus as a subsystem of these systems, defined by a particular



strategy of “eagerly” evaluating the substitution constructed by contracting a
(B-redex. In this way the study of explicit substitutions represents a deeper
examination of the relationship between abstraction and application.

This setting invites the programme of refining the results of the classical -
calculus by finding proofs of their explicit-substitutions analogues in the explicit
substitutions system itself. To the extent that explicit substitution represents a
refinement of the basic notions of A-calculus one can reasonably expect in this
way to gain insight into the deeper aspects of A-calculi in the general sense (even
of the original calculus).

As a case study, in this paper we look at strong normalization.

We work in the composition-free calculus Ax of explicit substitutions (which
uses names rather than de Bruin indices) and the calculus Axg4. obtained by
adding explicit garbage-collection to Ax.

Our main results are as follows:

e For the natural generalization of the intersection-types discipline we prove
that a term is strongly normalizing in Ax if and only if it is typable. The
top-level structure of the proof is a reducibility argument, but the fine
structure relies on some new results about reduction, as follows.

e We define an effective perpetual strategy for Ax-reduction. It has a
somewhat different character from the classical strategy as presented in

[3]-

e We give a characterization of the strongly normalizing terms by an
inductive definition. The proof of perpetuality relyies essentially on the
perpetual strategy result.

e As a corollary of the previous, we can see very easily that a term is SN
iff it is SN in the calculus extended by garbage-collection. The fact that
Axg. has preservation of strong normalization was first proved in [8]

e We prove a certain general combinatorial lemma relating the reduction
properties of two interacting abstract reductions. This plays a central role
in our paper, and we feel it is of interest in its own right.

A subtle point of difference between the direct proofs here and preservation
of strong normalization results is that the former guarantee termination for all
typable terms of Ax, not just the pure, substitution-free terms. Our results
support the claim that garbage-collection is a very natural addition to the
system, even from a purely theoretical point of view: the resulting calculus
has more convenient closure-properties than the pure calculus.

Finally, we remark that the characterization of SN terms allows us to
adapt Girard’s “Candidats de reductibilité” technique [14] to prove strong
normalization for the terms typable in a polymorphic-types system as well.
This will appear in a future paper.

A full version of the paper with all the proofs can be found on the web at
http://www.ens-1lyon.fr/“plescann/SN_1x.ps
or at http://wuw.wesleyan.edu/~ddougherty/SN_1x.ps.



Noetherian relations and rank.

A relation R is strongly normalizing, or noetherian, out of z, if there is no
infinite sequence (z,)nen With 2o = z and z, Rzp 1.

A relation R is strongly normalizing if it is strongly normalizing out of every
z in its domain.

If R is a relation (or a set of rules defining a relation) we write SA/g for the
set of objects that are strongly normalizing for R.

Noetherian relations play a key role in this paper. We recall here the concept
of rank of an element x, namely an ordinal associated with z that “counts” the
length of the longest chain out of .

The following definition and accompanying lemma are well-known.

Definition 1 Let R be a binary relation on a set S. Define a partial function
rankg from S to the ordinals by: rankg(z) = sup{l + rankgr(y) | zRy}.

Lemma 1 The function rankg is defined for element x if and only if R is
strongly normalizing out of x.

Proof: Suppose rankg(z) is defined. Let y be any element in S
such that zRy, clearly rankg(y) < rankg(z). By ordinal induction
y is strongly normalizing out of y, hence R is strongly normalizing
out of z.

Suppose R is strongly normalizing out of z. R is strongly
normalizing on X = {y € S | zR*y} and one can proceed by
noetherian induction on R over X. The function rankg is defined on
X and especially on X = {y € S | zRy} , hence rankg(z) is defined.
|

2 The calculus of explicit substitutions Ax,.

Definition 2 The set of terms with explicit substitutions Ax is the set of terms
M defined as follows:

M,N == z|X-M|MN|Mz=N)

The set of free variables of a term is defined just as for classical A-calculus,
with an additional clause ensuring that the free variables of M(xz = N) are the
same as the free variables of (Ax.M)N. In particular, = is bound in M{(z = N).

The superterm order 1 is defined as M 3 N and M # N, where 1 is defined
as follows:

e M I M,
o If M JM', then \e-M JIM', MN JM' and, NM 13 M'.

We assume Barendregt’s [3] convention, namely that a variable does not
occur free and bound in the same subterm. For instance, we assume that = does
not occur free in N in the term M(z = N). The rules we define further assume
this convention and the reader should keep this fact in mind when reading them.

It will be very convenient to have a notation to describe a term M on which
is applied a sequence of closures (z; = Si), ..., (zm = Sp,) then a sequence of
applications of terms Ti,..., T,. Such a term M(z; = S1)...{(zm = Sm)T1...Th
will be abbreviated by M (z= S)T.



Lemma 2 FEvery term is of precisely one of the following forms:

Lmb Az.B

VarHd 2Ty T, with n>0

BHd (Az.B)AT; ---T,, with n>0
I Clo z(r =AY z=S)T

K Clo ylz=A)(z= 8T with zZvy
AbsClo (Ay.B){(z=A)(z=8S)T
AppClo UV (z=A)(z=8T

Proof: Clearly those terms are well formed according to Defini-
tion 2. On the other hand, each term M has this form. If M is
an abstraction, this is covered by Lmb. If M is a variable, this is
covered by VarHd with n = 0. If M is a closure, then this is covered
by one of the last four cases (I Clo, K Clo, AbsClo, AppClo) as we
will see below. If M is an application, M is of the form N T where
N is either a variable (VarHd) or an abstraction (8Hd) or a closure.
If N is a closure, N is of the form P{z = A)(z = S)T where P is
either a variable (I Clo or K Clo) or an abstraction (AbsClo) or an

application (AppClo). O

The following concepts, namely Ax and Axg. are due to R. Bloo and
K. Rose [9, 19, 6]. We renamed the rule Varl and VarK, called respectively
xv and xvgc by Rose, to recall the distinction between the A; and Ag calculi.

Definition 3 Let us consider the following rules

(B) (AzB) A — B(z = A)
(App) (MN){z = A) — M(z = A)N(z = A)
(Abs) (AyM){(z = N) — AyM{z = N)
(Varl) (z = N) — N
(VarK) (zx =N) — Yy
(gc) Mz = A) — M ife g M
We define
x = {App, Abs, Varl, VarK}
Ax = xU{B}
xgc = {App, Abs, Varl, gc}
Axge = xg4.U{B}

The rule gc is called garbage-collection, as it removes “useless” substitutions.
For simplicity we write SN for SN »y, the set of terms strongly normalizing
under Ax. In fact, we will see below that SN az = SN )y,

3 A commutation lemma

In this section we prove a general commutation lemma which is key to our main
result. We present it in the framework of abstract reduction systems, as we feel
that this result may have applications in other termination problems.



Definition 4 ((Gentle Commutation)) Two relations — and = gently
commute if for every M, N and P such that M=N and M — P, there ezists
a Q such that P=*Q and N —1 Q.

The importance of gentle commutation is that when the target of the =-
reduction is SN for —-reduction, then the two relations commute.

Lemma 3 ((Gentle Commutation Lemma)) Suppose — and = gently
commute.

e For every M, N and P such that M=*N, M—*P, and N € SN _, there
erists a Q such that P=*Q and N—*Q. Furthermore the number of steps
i N—=*Q is no less than the number of steps in M—*P.

o If M=*N and N € SN_, then M € SN _,; in fact rank_,M < rank_ N.

Proof: To prove the first claim: we proceed by lexicographic
induction over (rank ,N,n) where n is the number of steps in the
reduction M=*N. If n = 0 then we may take Q to be P; if M = P
we may take @ to be V.

Otherwise suppose M=N;=*N and M —P;—*P. By gentle
commutation applied to M, Ny, and P; there is an R with Pi=*R
and N;—TR. By induction hypothesis applied to N;, N, and
R there is Q; such that R=*Q; and N—1Q;. Now note that
rank , @ <rank .,V so that the induction hypothesis applies to Py,
P, and @, and we obtain Q with P=*Q and Q;—"Q. This Q
witnesses the first assertion.

The second assertion follows from the first by an easy diagram
chase.

|

Here is another argument, due to Frédéric Lang, (personal communication)
which yields the second assertion of the previous lemma. It takes the form of a
diamond lemma involving the following relation:

== (=U+)"

Lemma 4 ((Gentle Commutation Diamond Lemma)) Assume — and =
gently commute. If M — N and M — P, there exists Q such that N — Q and
P~ Q.

Proof: Assume M — N and M — P. If M = N, we may take Q
to be P. Otherwise there are two cases depending on the nature of
M — N.

Suppose M=M' — N. By gentle commutation, there exists
R such that P=*R and M' =1 R. Let us write M' —T R, as
M' — M" —* R. Applying the induction hypothesis to the triple
(M',M" N), we obtain a @ such that M" — @ and N — Q.
Q is the answer to the M — N and M — P diagram, since
P=*R+* M" +— Q means P+ Q .



Suppose M < M' — N. Applying the induction hypothesis
to the triple (M',M,N), we obtain a @ such that M — @ and
N — Q. Q is the answer to the M — N and M — P diagram, since
P+ M+— Q means P— Q .

([

Corollary 1 If — and = gently commute, if M — N and if N € SN_, then
M e SN _..

Proof: By Lemma 4, — and > strongly commute and clearly if
N eSN_, then M e SN_,. O

Since =* Cr» the second assertion in Lemma 3 is a consequence of
Corollary 1.

4 An effective perpetual strategy for A\x-reduction

Following Barendregt [3], we say that a term M is infinite with respect to a
reduction-relation R if there is an infinite R-reduction out of M. A strategy for
R-reduction is perpetual if whenever M is R-infinite and M reduces to M’ via
the strategy, then M’ is R-infinite.

In this section we construct an effective perpetual strategy for Axg.-
reduction. We first define a relation ~» below which is a perpetual non-
deterministic strategy for Axg.-reduction and then show that a certain effective
restriction of it is perpetual for Ax-reduction. We will be also able to conclude
that if a term M is Axgc-infinite then it is also Ax-infinite.

Definition 5 The relation ~ is defined inductively as follows.

PLmb Az.B ~ Az.B' if B~ B'
P VarHd el Ty ~  aly--T! T, if Ty~ T
PBHd (Az.B)AT; --- T, ~ Bz = A)Ty - T,.

PI Clo z(zx=A)(z=8T ~ A(z=8)T

PK Clo yz=A)(z=8T ~ yle=A"N(z2=8T if A~ A
PK Clo yz=A)(z=8T ~ Az=8)T if A is a normal form
PAbsClo  (A\y.B){(z=A)(z=S)T ~ Ay.B{z =A){(z=S)T

PAppClo  (UV)(z=A)(z=8)T ~ Uz =A)V(e=A)(z=8T

Pgc Mz =AY z=8T ~ M(z=8)T if t¢M and Ac SN

It is easy to see that if M ~» M' then M - M' and that if M is ~>-

g

irreducible then M is Ax-irreducible. The relation ~~ fails to be a deterministic
strategy due to the Pgc rule and the fact that in the rule for terms 77 --- T,
there is potentially a choice as to which T; to reduce. The relation ~» is not
effective, since application of the Pgc rule requires testing whether a certain
sub-term is strongly normalizing.

But we will see below (Corollary 4) that there is a natural subrelation of ~-
which is an effective deterministic perpetual strategy.

Now, with the exception of rule Pgc and PAppClo it is easy to see that each
of the reductions comprising ~ preserves non-SA . We address the two latter
rules in turn.



4.1 The rule Pgc
We first show that the rule Pgc preserves the existence of infinite reductions.

Definition 6 A n-multi-context is a term with n holes itn which we can insert
n terms. If n is understood, we say a multi-context.

If CJ..., ..., ...] is a multi-context and Mj... M, are terms, then the insertions of
those terms in C[...,...,...] is C[My, ..., M,].

Lemma 5 For all multi-context CJ...], for terms A;... A, and terms Mj...
M,, if ¢ ¢ C[My,...M,] and if for 1 < i < n, A; € SNg and
C[[Ml, ,Mn]] c SNgc then C[[M1<£L‘ = A1>, ,Mn<w = An>]] S SNg,_-.

Proof: The proof is by induction on triples (D, M, N') where D is a
term, M and N are multisets of terms. (D, M,N) > (D', M', N'")
if and only if D —— D' or D = D' and M 03 M’ or

Axge
D =D M=M and, N N'. O3 is the multiset
Xge Xge
extension [13]. of the superterm order J and —— —— is

AXge AXge
the multiset extension of the reduction relation. In what follows, D
will be C[My, ..., M,] and —— Wwill be well-founded; M will be

{My, ... M,}; N will be {Ay,...,4,} and o Wwill be
well-founded.

Assume that for 1 < i < n, 4; € SNy, C[Mi,...,M,] € SN
and, by induction over > that the statement of the lemma is true.
Let us prove that C[M;(z = A1),..., M,{(z = A,)] reduces only to
terms that are in SNj.

1. C[[M1<w = A1>, ...,Mn<l]3 = An>]] )\*> CIIIM,;I (w = Ai1>7 ---7Mip
A;,)] (where the i; € [1..n]), then
CHM]_,...,Mn]] T C’HMZ'I,...,MZ' ]],

(o =

and by induction C'[M;, (z = 4;,), ..., M,

tp

<33 = Aip>]] S S/\/gc.
2. M; —— M], works also by induction.

Axge

3. A = A’, works also by induction.
4. Mz = MilM,i2 and M1<:L' = A,) a— M}(l‘ = A,>M3<:L‘ = A,)

Axge
{My,...,M;,...,M,} 33 {My,..., M} M?, ..., M,},

hence C[M;(z = A1),... M}{z = A;))MZ(z = A;),...,M,(z =
A,)] € SNgc by induction.
5. M; = AyM/ and M;(z = A;) - Ay(M](z = A;)).
Xge

{My,....M;,....,M,} 23 {My,...,M], ..., M,},

hence C[Mi(z = A1), ..., \y(M}(z = A;)),..., M,(z = A,)] €
SNgc by induction.



6. M;(zx = A;) —— M,;, which is always applicable since

Axge
T §Z ]LI;.
{Adi,“.,ﬂ4%,n.,ﬂdh} | {A4i,.“, ,“.,A4ﬁ},
hence C[Mi(z = Ai),..0,y,... Mp(z = Ap)] € SNg by
induction.
O

Corollary 2 If P is Axgc-infinite and P ~» P' via rule Pgc then P’ is Axg.-
infinite.

Proof: P ~» P’ via rule Pgc means P = M{z = A){(z = S)T
and P’ = M(z = S)T with ¢ ¢ M and A € SNg. If we
call C[ ] the 1-multicontext [ J(z = S)T, then P’ = C[M] and
P'=C[M(z = A)]. By Lemma 5, if P’ € SNy then P € SNy.. O

4.2 The rule PAppClo

Next we argue that application of PAppClo preserves the property of being
non-SNg , that is, if a term (UV)(z = A)(z = S)T is Axg.-infinite, then
(U{z = A)V(z = A))(z = S)T is Axy.-infinite as well. It is just here that we
make essential use of the Gentle Commutation lemma. It would suffice to show
that ordinary Axg.-reduction and the App rule gently commute, but this is false:
we must pass to slightly richer sets of rules with better closure properties.

The reader may wonder why w contains those three rules and why gentle
commutation fits well with it. Actually this was not a straightforward result
and we are rather proud that this can be explained with so few words and
concepts. For us, this is really the heart of the paper and its main contribution.

Definition 7 The Composition rule is:
M(z=P)(y=Q) - M{y=Q)(z=Ply=Q))
Let us use w to refer to the set of rules {App, Abs, Comp}.

Lemma 6 —— and —— gently commute.
A w

Xgc

Proof: Given a term M such that M —— P and M — N.

Xge
If the rules used to reduce M do not overlap, there is no problem.
Actually one can only consider the case where M is an instance of
a lefthand side of a rule in Axg4. or in w and the other rule overlaps
with this lefthand side.
B in Axg. overlaps with App in w.
(AzB)A)(y =C) —— B{z=A)(y=0C)

Axge

and



Since

and

(AzB)(y =C) Aly=C) —— (AzB({y=C))A{ly=C) —— B(y=C)(z

Abs B

and —— gently commute over (AzB)A(y = C).

AXge
Now we see that App, Abs, Varl and, gc overlap with Comp. Let
us check the overlap (MN)(z = A)(y = B) of App over Comp. The
other rules can be treated routinely according to the same scheme
and are left to the reader.
(MN){z = A)(y = B) —— (M(z = A)N(z = A))(y = B)

Axge
and
(MN)(a = A)(y = B) —— (MN)(y = B)(z = Aly = B)).
We close the diagram of gentle commutation, by

(M(z = A)N(z = A)){(y = B)

o (M{z = A){y = B)) N(z = 4)(y = B)

Zoms. Comm (M{y = B){z = A{y = B))) N{y = B)(z =
Aly = B))
and by

(MN)(y = B)(z = A{y = B))

ot et (Mly=B)(z = Aly=B))) Ny = B)(z =

Aly=B)). O

Corollary 3 If M is Axgc-infinite and M ~~ M' via rule PAppClo then M' is
Axge-infinite.

Proof:

Let M = (UV)(z = A)(z = S)T be Axgc-infinite, then M’ is
(Uz=A)V(z=A))(z=9T.

If U or V or A or one of the S;’s or one of the T}’s is Axgc-infinite,
so is M'.

Otherwise there are U', V', A’, §' and T' such that U —» U’,

Axge

V —» VA —» A, S — §and T —» T with

Axge Axge Axge Xge
o either (U'(x = A")V'(x = A"))(z=85)T Axgy.-infinite,
seorU'=Xy-U'and P=U"(y=V')(x =A")(z2=8)T Ixge-
infinite. But P o P =U"z=A)Yy=V{e=A"))(z=
S)T'. Lemma 6 and the gentle commutation lemma tell us
that P’ is also Axgc-infinite. Then ((Ay-U")(z = A")V'(z =
ANV (z=8)T is Axg4.-infinite.

In each case M' is Axg -infinite. [J



A remark on the Substitution Lemma

The Substitution Lemma of the classical A-calculus [3] states a fundamental
property of (implicit) substitutions, namely that, when z is not free in L:

Mz := N]ly:=L] = M|y := L][z := Ny := L]

Observe that the two terms are syntactically identical above. When generalized
to an explicit substitutions calculus the analogous statement is weakened:

M(z=N)(y=L) = M{y=L)(z=N(y=1L))

It is not hard to see that the two terms above can have quite different reduction-
behavior; in particular one may readily construct an example (for instance
M = 2z, N = yy and L = Au - uu) in which the left-hand side is SN/ under
Ax, while the right-hand side is infinite. But as a consequence of Lemma 6 one
can see that if the right-hand side is SA then so is the left-hand side: just
observe that the left-hand side reduces to the right-hand side by the Comp rule,
which is an instance of ——— .

4.3 Perpetual strategies
Theorem 1 The relation ~ is = -perpetual. That is, if M is AXg.-infinite

and M ~» M' then M' is Axg4c-infinite.

Proof: An examination of cases on the definition of ~». The hard
cases, namely Pgc and PAppClo, were treated in Corollaries 2 and
3.0

Recall that ~~ is non-deterministic. We stress that Theorem 1 says that any
~»-reduction out of a non-SNg. term will yield a non-SNg. term. So we are
saying more than, “if M is — -infinite then M is ~~-infinite.”

Xge
Definition 8 The relation ~~. is the restriction of ~~ obtained by
e omitting rule Pgc, and

e in rule PVarHd, reducing the T; with smallest indexr among those
permitting a ~¢-reduction

Clearly ~~. is an effective strategy for Ax-reduction (hence the subscript e).
We will see that it is perpetual.

Lemma 7 If T admits a ~>-reduction, then T admits an ~»-reduction.

Proof: By induction on terms. If 7' admits a PVarHd reduction,
clearly it admits such a reduction on the leftmost of the T;. It
remains to prove that a term T'= M (z = A)(z = S) T with M not a
variable admits a ~~-reduction. But inspection of the possible forms
of M (see Lemma 2) shows that M itself will admit a ~»-reduction;
by induction we may ensure that this is in fact a = -reduction,

and so this represents a ~+.-reduction out of T itself. [

10



Corollary 4
1. The relation ~+. is a perpetual strategy for Axge.
2. The relation ~>. is a perpetual strategy for Ax.
8. A term is Ax-infinite iff it is Axgc-infinite. Equivalently, SN ax = SN s, .
Proof:
1. Follows from the theorem and Lemma 7.

2. Follows from the fact that Ax is a subsystem of Axg..

3. The non-trivial direction follows from the first part and the fact
that ~». is a sub-relation of Ax.

O

5 An inductive characterization of the strongly
normalizing terms.

In this section we give an inductive characterization of the class SN of terms
which are strongly normalizing with respect to Ax.

Definition 9 The class of terms S is inductively defined by the following rules.

Stmb 2B
SVarHd H
§1Clo — i<f4>:<f>:Tg> _
SK Clo x‘?ijzz—jg: S)AT 2y
e
SappClo U= AV(z=A)(z= 5T

Lemma 8 SN C S.

11



Proof: When M € SN the relation (— U 1) is well-founded out
of M. Since § is syntax-directed, there is a unique rule of inference
from the definition of & which could show M € S. So it suffices to
observe that the term(s) M’ comprising the hypotheses of the rule
appropriate to M satisfy M(— U J)M'. O

Lemma 9 S C SN.

Proof: It suffices to see that SN is closed under the rules of
inference defining . This is elementary in every case except SK Clo
and SAppClo : for these we use perpertuality of ~. [

6 A type system for the strongly normalizing
terms

For the classical A-calculus the set of strongly normalizing terms can be
characterized as precisely those terms assigned a type under a certain
intersection types discipline. In this section we define the natural generalization
of this system to the calculus Ax and prove that a term is Ax-strongly normalizing
if and only if it is typable.

The outline of the proof is the same as the classical one in the sense that it
is based on a notion of reducibility (Definition 12). But the inductive definition
of the set of strongly normalizing terms plays a key role (as it does, often
implicitly, in proofs for the classical calculus) so it is here that we reap the
rewards of the fine-grained analysis of the previous sections. The proof of the
converse result that strongly normalizing terms are typable is also conveniently
structured around the definition of S. In a sense the proof is easier than the
classical case, essentially because we do not have to analyze (3-reduction.

The system of intersection types is due to Coppo and Dezani [10] and Sallé
[20]. The fact that the strongly normalizing terms are precisely the typable
terms seems to have been first proved in [18]. Our notation is consistent with
that of [4], to which we refer the reader for background.

Definition 10 (The system of type assignment \") Given an infinite set
of type-variables, the set of types is formed by closing the type-variables under
the operations c—T1 and o N T.

A statement is an expression of the form M : T; where M, the subject of
the statement, is a term and T is a type. A basis is a set of declarations with
distinct variables as subjects. A judgement is a triple I', M, T where T is a
basis, M is a term, and T is a type; the notion of a judgement’s being derivable,
denoted I' = M : T is given by the rules of inference in Table 1

We say that a term M 1is typable if there exists a T' and a T such that
r+- M:r.

Definition 11 Let I'y and T's be type-environments. The type-environment
T'y My contains z: o if either:

e (z:0) isinTy and z € Dom(T's), or

e (z:0) isinTy and z ¢ Dom(T'y), or

12



(z:0) €T z:o'FM: 7 'N:o

start ——— cut
I'kz:0o 'FM(z=N): 1
Tz:oF-M: T '-M:o—r '-N:o
—I —E
'FAXeM:o0—71 ' (MN): 7
T'EM: oy '-M: oo 'EM:o1Nos
N-I N-E ie{1,2}
I'EM:o1Nos I'EM: o

Table 1: Typing rules for A"

e 0 =01 Noy with (z: 01) €1 and (z: 02) € Ts.
Lemma 10 IfT'F M: 7 then for allTV, TNT' F M: 7.
Proof: An easy induction over typing derivations. [

The next proposition collects various standard properties of type derivations
and typable terms.

Lemma 11
1. fT-FM:7andT CT' thenT"F- M: .

2.If T - M: 7 and T' agrees with T' on the free variables of M then
I'EM:T.

3. T+ M{xz=2S): 7 if and only if there is a o such that z: o,T - M: T and
'FS:o

Proof: Parts 1 and 2 are routine inductions.

For part 3, If the last inference is an instance of the cut rule we
are done. Suppose the last inference is an instance of N-I. Then T is
71N 72 and for 1 <7 <2 we have I' - M(xz = S): 7. By induction
there are o; such that z: o5, ' - M: 7 and T' - S: 0;. But then
z: (61 No2),I' - M: 7 by Lemma 10, and ' - S: (o1 N o2) by —
I, completing the proof in this case. When the last inference is an
instance of N-E the argument is similar. [

6.1 Typable terms are strongly normalizing
Definition 12 For each type T we define a set of terms R, as follows:
e R; is SN when t is a type variable
e Renr 8 Rr, "Ry
® Rop is {M | if Aisin Ry, then MA is in Rg }
Lemma 12

1. R, CSN
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2. If M is not an abstraction, then each of the following is a sufficient
condition for M € R,:

e M is a normal form
e there exists M' with M ~ M', M' € R,.

Proof: By induction on types. At type-variables ¢ the first claim
holds by definition, and the second is just the statement that ~
is perpetual. At intersection-types each claim is an immediate
consequence of the induction hypothesis.

When 7 is a@ — [3: To establish the first claim, suppose
M € R,.p, and note that as a consequence of the second claim
at type «, each variable is in R,. So Mz € Rg. Since this is SN by
induction at type 8, M is clearly SN.

For the second claim let M be given, not an abstraction, and let
Abein R,: we seek M A € Rg, and we show this by induction over
~s-reduction out of A; this is well-founded since R, C SN.

Since M A is not an abstraction it suffices to check the ~»-reducts
of MA. But is easy to see that any such term is either of the form
M'A with M ~ M' or MA' with A ~» A’. The former terms are in
Rgp since we assumed M' € R, 3 and the latter are in Rg by the
sub-induction hypothesis. [

In light of (the first part of) the previous lemma the fact that typable terms
are strongly normalizing will follow if we can show that if M is typable with
type 7 then M € R,. We note the folllowing lemma, whose use below motivate
our work on gently-commuting reductions in Section 3.

Lemma 13 If M — M' via Comp and M' € R, then M € R...

Proof: By induction on types. At type-variables ¢ we must show

that if M is infinite and M’ is obtained from M by Comp-reduction

then M’ is infinite. This follows from the Gentle Commutation

Lemma 3 since Ax-reduction gently commutes with the reduction
—— (Lemma 6).

w

At intersection-types each claim is established as an immediate
consequence of the induction hypothesis. When 7 is a — 3: let
M' € R, be such that M — M’ via rule Comp. Let A be in R,; we
seek MA € Rg. But M'A € Rg and MA — M'A via rule Comp,

so by induction M A € Rg as desired. [
Theorem 2 Let T' be the basis (z1: 1), (z2: @2),... ,(2Zn: o). Suppose
o' - M: 7, and
o A; € Ry, forl <i<mn, withz;y; ¢ FV(A;) for1<i<n and j > 0.
Then M{z1 = A1)..(zp, = An) € R,.

Proof:
We induct on the derivation of I' + M: 7. We consider the
possible cases as to the last rule of inference in the derivation.

14



The start rule. Here, for some i, M = z; and 7 = «;. To
show that z;(z; = Ai)..(z, = A,) € R, we essentially iterate
Lemma 12. Formally, we induct over the pair (k,n) where k is the
sum of the lengths of the longest reductions out of the A;. There
are two cases. If ¢ = 1 then by Lemma 12 it suffices to check that
Ai{zy = Ag) -+ - (zn, = A,) is in R,. But since none of the indicated
z; is free in A; and each A; is SN, this term ~~-reduces (in n — 1
steps) to A;. Since this is in R,, by hypothesis, we are done. If
i # 1 then a ~»-reduction yields the term z;(z2 = A2) -+ (z, = 4,),
which submits to the sub-induction hypothesis.

The rules N-I and N-E. These are each very easy applications of
the induction hypothesis.
The —~E rule. We have

' U:a—pg 'FV:ia
r-uov:g

To show that (UV)(z1 = Ai)..(z, = A,) € Rg, it suffices
(by iterating Lemma 12) to argue that (U(zy = Aj)...{(z, =
An>)(V<2131 - A1>(wn - An>) S Rf}

But by induction (U(z1 = A1)...(x, = 4y)) € Rasp and
(V(z1 = A1)...(xzn, = Apn)) € Rq so the result follows by definition
of 'R,,X_,ﬁ.

The —I rule. We have

z:a,I' F B: 38
' - \e.B: a—p

We may assume that the variable z is not free in any of the
A;. To show that Az.B(z; = Ay)..(zn = A,) € Rass we may
iterate Lemma 12 and argue that Az.B(z; = Aj)...(z, = A,) €
Rop. So choose A € R,, we seek (Az.B(z; = Ap)..(z, =
A,))A € Rg. Again by Lemma 12, it suffices to see that
B(zy = Ay)...(xzn, = Ap)(x = A) € Rg. But (since z is not free
in any A;) this is an application of the induction hypothesis applied
to the derivation of z: o, ' + B: .

The cut rule. Here we have

z:o-M: T 'FN:o
'FM(z=N):1

We wish to show that M (z = N)(z; = Ay)...(x, = A,) € R,; we
may assume without loss of generality that x is not free in any of
the Az

15



By iterating Lemma 13 we see that it suffices to show the
following term to be in R,:

Mz, = Ay)...{z, = Ap){z = N{zy = A)...(zn, = Ap))

By the induction hypothesis applied to the derivation I' + N: o,
the term N(z; = A;)...(z,, = A,,) is in R,. Then since z is not free
in any of the A;, we may use the induction hypothesis applied to the
derivation z: o,I' - M : 7 to finish the argument. [

Corollary 5 If there exists I' such that T = M: 1 then M is strongly
normalizing.

Proof: An easy consequence of the previous theorem and the fact
that R, C SN. O

6.2 Strongly normalizing terms are typable

Theorem 3 Suppose that M is Ax-strongly normalizing. Then there exists T
and o such thatT'+- M : o

Proof: We prove that if M is in S then there exist I' and 7 such
that I'  M: 7. This amounts to showing that the typable terms
are closed under the rules defining S. We consider each rule from
Definition 9 in turn: in each case we assume that the hypotheses of
the rule are typable and show that the conclusion is typable.

SLmb. Here M is Az.B. We are given I' and 7 with I' - B: 7.
There are two sub-cases. If there is a o such that I' = z: o,I" then
I+ Az.B: (60— 7). Otherwise, let s be a type-variable not occurring
inT. Thenz: s,T F B: 7 by Lemma11l.1,andsoT' F Az.B: (s —T).

SVarHd. Here M is vA;---A,. For each i, 1 <1i < n we are given
I'; and 7; with T'; - A;: ;. Let t be a fresh type-variable and let ¢ be
the type (11 —++-— 7, —t). Nowset I'tobe 'y M---MT, M{(v: ¢)}.
Then by Lemma 10 T' F A;: 7; for each ¢, and T' - v: ¢, so in fact
I'FovA;---A,: ¢t

SGHd. Here M is ()\a:.B)AT\. It clearly suffices to show that for
any T,
' - Bla=A): 71 implies I - (Az.B)A: .

By Lemma 11.3 we have a such that z: ,T’'F B: 7and ' - A: «
But then —I yields I' - Az.B: a — 7 and the result follows by an
application of —E.

Sl Clo. Here M is z(z = A)(z = S)T. Again it suffices to show
that for any T,

TF A:r implies Tk az{z=A):71

This is easy to see by inspecting the form of the cut typing rule.
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SK Clo. Here M is y(z = A)(z = S)T,z # y. Because the
inference rule witnessing M € S has two hypotheses, this case is a
little more subtle than previous cases. By the induction hypothesis
we have I'y, T3, 7 and « such that I'y F z(z = S)T: 7 and
I's F A:a Now y is not free in M and so we may assume
without loss of generality that y is not a subject of I'y or of I's.
Let T be I'; MT'2. Then by Lemma 10 (y: a),T': 2(z= S)T + 7
andT" - A: a. So by thecut ruleT" - M: 7.

SAbsClo. Here M is (Ay.B){z = A)(z = S)T. It suffices to show
that for any T,

' My.B{z=A): 1 implies ' - \y.B){z=A): 1

We may assume that y is not free in A. Arguing now by induction
over the given typing-derivation, if the last rule was an instance
of N-I or N-E the argument is an immediate application of the
induction hypothesis. Otherwise 7 is of the form 7, — 75 and
(y: 1), I + B{z = A): 7. By Lemma 11. 3. there is a v
such that (z: v),(y: m),I' v B:m and (y: ), I’ = A:v. So
(z: ), + B{y= A): 72, and since y is not free in A, T F A:~.
Then the cut rule yields T' - (Ay.B){(z = A): 7.

SAppClo. Here M is (UV){z = A)(z = S)T. It suffices to show
that for any T,

' (Uz=A)V{e=A4)):7 implies F'F (UV){e=A): T
Again arguing by induction over the given typing-derivation, the
non-trivial case is when the typing rule applied was —-eliminiation.
We have

F''FU@=A):0—>T1 and T F V(z = A): 0.
By Lemma 11. 3. there are a; and a2 with

(z: 1), T F U: 00—, I - A: oy,
and
(z: ), F V:o, ' - A: as.

Let T" be T', (z: @y Maz). Then

I' - U:o—=nT' F V:g,andl' - A: a; Mao,
SO

I+ (UV):7andT + (UV){z = A): 7.
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7 Conclusion

In this paper, we have provided tools for a direct proof of strong normalization
of typed terms in a calculus of explicit substitutions. These tools include
an effective perpetual strategy and an inductive characterization of strongly
normalizing terms. The kernel of the paper is a lemma (Lemma 6) which leads
to a refinement of the classical Substitution Lemma.

Directions for further research. We plan to extend these results to
characterize, as for the classical calculus, the (weakly) normalizing terms and
the solvable terms respectively as the terms typable in suitable refinements of
the intersection-types discipline.

A line of inquiry that we view as being particularly important is the definition
of an appropriate notion of standard reduction. The classical theorem that if
M reduces to N then M reduces to N via a standard reduction is key to the
proof of correctness of “weak reduction” as an implementation of functional
programming languages [17], see also [11]. It seems rather difficult to find a
successful definition of standard reduction in explcit substitution calculi.

Finally, it is reasonable to hope that the combinatorial techniques and results
derived here can lead to a better understanding of normalization properties in
the presence of substitution-composition.

Acknowledgements

The authors are grateful to Nachum Dershowitz, Frédéric Lang, and Kristoffer
Rose for many helpful discussions.

References

[1] Martin Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy.
Explicit substitutions. In Paul Hudak, editor, POPL ’90—Seventeenth
Annual ACM Symposium on Principles of Programming Languages, pages
31-46, San Francisco, California, January 1990. ACM.

[2] Martin Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy.
Explicit substitutions. Journal of Functional Programming, 1(4):375-416,
1991.

[3] H. P. Barendregt. The Lambda-Calculus, its syntaxz and semantics. Studies
in Logic and the Foundation of Mathematics. Elsevier Science Publishers
B. V. (North-Holland), Amsterdam, 1984. Second edition.

[4] H. P. Barendregt. Lambda calculi with types. In Samson Abramsky, Dov M.
Gabby, and T. S. E. Maibaum, editors, Handbook of Logic in Computer
Science, volume 2, chapter 2, pages 117-309. Oxford University Press, 1992.

[6] Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. Av, a calculus
of explicit substitutions which preserves strong normalisation. Journal of
Functional Programming, 6(5):699-722, September 1996.

18



[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

R. Bloo. Preservation of Termination for Explicit Substitution. PhD thesis,
Eindhoven University of Technology, Netherlands, 1997.

Roel Bloo and J. Herman Geuvers. Explicit substitution: on the edge
of strong normalisation. Computing Science Reports 96-10, Eindhoven
University of Technology, P.O.box 513, 5600 MB Eindhoven, The
Netherlands, April 1996. To appear in Theoretical Computer Science.

Roel Bloo and Kristoffer Hpgsbro Rose. Preservation of strong normalisa-
tion in named lambda calculi with explicit substitution and garbage col-
lection. In CSN ’95—Computing Science in the Netherlands, pages 6272,
Koninklijke Jaarbeurs, Utrecht, November 1995.

Roel Bloo and Kristoffer Hggsbro Rose. Preservation of strong normalisa-
tion in named lambda calculi with explicit substitution and garbage col-
lection. In CSN ’95 — Computer Science in the Netherlands, pages 62-72,
November 1995.

M. Coppo and M. Dezani-Ciancaglini. A new type assignment for lambda-
terms. Archive f. math. Logic u. Grundlagenforschung, 19:139-156, 1978.

Pierre-Louis Curien, Thérése Hardin, and Jean-Jacques Lévy. Confluence
properties of weak and strong calculi of explicit substitutions. Journal of
the ACM, 43(2):362-397, March 1996.

H. B Curry and R. Feys. Combinatory Logic I. North-Holland, Amsterdam,
1958.

N. Dershowitz and Z. Manna. Proving termination with multiset orderings.
Communications of the ACM, 22(8):465-476, 1979.

J.-Y. Girard. Interpretation fonctionelle et elimination des coupures de
I’arithmetique d’ordre superieur. These D’Etat, Universite Paris VII, 1972.

Pierre Lescanne. From Ao to Av: a journey through calculi of explicit
substitutions. In Hans-J. Boehm, editor, POPL ’9/—21st Annual
ACM Symposium on Principles of Programming Languages, pages 60—69,
Portland, Oregon, January 1994. ACM.

Paul-André Melliés. Typed A-calculi with explicit substitution may not
terminate. In M. Dezani, editor, TLCA ’95—Int. Conf. on Typed Lambda
Calculus and Applications, volume 902 of Lecture Notes in Computer
Science, pages 328-334, Edinburgh, Scotland, April 1995. Springer-Verlag.

G.D. Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5:223-255, 1977.

G Pottinger. A type assignment for the strongly normalizable A-terms.
In To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, pages 561-578. Academic Press, 1980.

Kristoffer Hggsbro Rose. Operational Reduction Models for Functional
Programming Languages. PhD thesis, DIKU, Universitetsparken 1, DK-
2100 Kgbenhavn @, February 1996. DIKU report 96/1.

19



[20] P. Sallé. Une extension de la théorie des types en A-calcul. In G. Ausiello
and C. Bohm, editors, Fifth Colloquium on Automata, Languages and
Programming, volume 62 of Lecture Notes in Computer Science, pages 398—
410. Springer-Verlag, July 1978.

20



