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Abstract

In this paper� we survey loop parallelization algorithms� analyzing the depen�
dence representations they use� the loop transformations they generate� the code
generation schemes they require� and their ability to incorporate various optimiz�
ing criteria such as maximal parallelism detection� permutable loops detection�
minimization of synchronizations� easiness of code generation� etc� We complete
the discussion by presenting new results related to code generation and loop
fusion for a particular class of multi�dimensional schedules� called shifted lin�
ear schedules� We demonstrate that algorithms based on such schedules� while
generally considered as too complex� can indeed lead to simple codes�

Keywords� automatic parallelization� nested loops� parallelization algorithms� loop fusion�
synchronizations� code generation�

R�sum�

Dans ce rapport� nous pr�sentons divers algorithmes de parall�lisation� en prenant
en compte la repr�sentation des d�pendances qu�ils utilisent� les transformations
de boucle qu�ils g�n�rent� les techniques de g�n�ration de code dont ils ont be�
soin� et en	n� leur capacit� 
 incorporer divers crit�res d�optimisation tels que
la d�tection du parall�lisme maximal� la d�tection de boucles permutables� la
minimisation des synchronisations� la simplicit� de la g�n�ration de code� etc���
Nous compl�tons notre discussion par la pr�sentation de nouveaux r�sultats li�s

 la g�n�ration de code et 
 la fusion de boucles pour une classe particuli�re
d�ordonnancements multi�dimensionnels appel�s ordonnancements lin�aires d��
cal�s� Nous montrons que des algorithmes qui se fondent sur de tels ordonnance�
ments� souvent consid�r�s comme trop complexes� peuvent n�anmoins g�n�rer
des codes simples�

Mots�cl�s� Parall�lisation automatique� boucles imbriqu�es� algorithmes de parall�lisa�
tion� fusion de boucles� synchronisations� g�n�ration de code�



Loop parallelization algorithms�

from parallelism extraction to code generation

Pierre Boulet Alain Darte Georges�Andr� Silber

Fr�d�ric Vivien

E�mail� FirstName�LastName�lip�ens�lyon�fr

August ��� ����

Abstract

In this paper� we survey loop parallelization algorithms� analyzing the dependence

representations they use� the loop transformations they generate� the code generation

schemes they require� and their ability to incorporate various optimizing criteria such

as maximal parallelism detection� permutable loops detection� minimization of synchro�

nizations� easiness of code generation� etc� We complete the discussion by presenting

new results related to code generation and loop fusion for a particular class of multi�

dimensional schedules� called shifted linear schedules� We demonstrate that algorithms

based on such schedules� while generally considered as too complex� can indeed lead to

simple codes�

Keywords� automatic parallelization� nested loops� parallelization algorithms� loop

fusion� synchronizations� code generation�

� Introduction

Loop transformations have been shown useful for extracting parallelism from regular nested
loops for a large class of machines� from vector machines and VLIW machines to multi�
processor architectures� Several surveys have already presented in details the tremendous list
of possible loop transformations �see for example the survey by Bacon� Graham and Sharp ���
or Wolfe�s book ����� and their particular use� Two additional surveys have presented
the link between loop parallelization algorithms and dependence analysis� in ���� Yang�
Ancourt and Irigoin characterize� for each loop transformation used to reveal parallelism�
the minimal dependence abstraction needed to check its validity� in ���� a complementary
study is proposed that answers the dual question� for a given dependence abstraction� what
is the simplest algorithm that detects maximal parallelism�

Loop parallelization algorithms consist in 	nding a �good� loop transformation that re�
veals parallelism� But it is only a step in the compilation process� further optimizations
must be taken into account �depending on the machine for which the code is to be com�
piled� such as the choice of the granularity of the parallel program� the data distribution�
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the optimization of communications� etc� Thus� to generate e�cient parallel codes� a loop
parallelization algorithm must be able� either to consider optimization criteria that are more
accurate than the simple detection of parallel loops� or to generate an intermediate abstract
parallel code that is simple enough so that further optimizations can still be performed�

In this paper� we survey loop parallelization algorithms with this compilation process
in mind� In Section �� we explain why detecting parallel loops is not su�cient to generate
parallel codes� taking the example of the compilation of High Performance Fortran� In
Section �� we present di�erent loop parallelization algorithms proposed in the literature�
recalling the dependence representations they use� the loop transformations they generate�
and their capabilities to incorporate various optimizing criteria such as maximal parallelism
detection� permutable loops detection� minimization of synchronizations� easiness of code
generation� etc� In Section �� we present the code generation techniques involved by these
loop transformations�

The rest of the paper is devoted to a more accurate description of two particular opti�
mization problems� how to generate codes that are as simple as possible �Section �� and
how to handle loop fusion �for example to minimize synchronizations� in loop parallelization
algorithms �Section ��� These last two sections present new results� Finally� we give some
conclusions in Section ��

� Compilation of parallel loops

��� Abstract parallel code

A loop is parallel if there are no dependences between di�erent iterations of the loop or� in
other words� if there are no dependences carried by the loop� Consequently� all iterations of
the loop can be executed concurrently on di�erent processors� Many languages and compilers
o�er means for the programmer to express that a loop is parallel and to map data among
processors� The INDEPENDENT directive of HPF ��� asserts to the compiler that the
iterations in the do loop that follows the directive may be executed concurrently without
changing the semantics of the program� The programmer �or a parallelizing algorithm�
asserts that no iteration can interfere with any other iteration�

do i � �� �
Sa � A�i� � B�i�
Sb � C�i� � D�i�

enddo

Sa(1)

Sb(1)

Sa(2)

Sb(2)

Sa(3)

Sb(3)

Start

Stop

Figure �� A sequential do loop and its precedence graph�

The precedence graph of Figure � represents the execution order of the statements in a
sequential loop� The edges of the graph imply an order for the execution of the statements� If
there is an edge from Sa�k� to Sb�l�� it means that Sa�k� must be executed before Sb�l��� This

�Sa�k� means execution of the statement Sa for the loop index value k�
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order is imposed by the semantic of do loops� The precedence graph of Figure � for the same
code but with the INDEPENDENT directive is simpler� all the edges between two di�erent
iterations have been removed� It means that the computer may execute the iterations in
parallel� if the arrays are well mapped�

�HPF� INDEPENDENT
do i � �� �

Sa � A�i� � B�i�
Sb � C�i� � D�i�

enddo

Sa(1)

Sb(1)

Sa(2)

Sb(2)

Sa(3)

Sb(3)

Start

Stop

Figure �� A simple independent do loop and its precedence graph�

Actually� in the example of Figure �� there are no data dependences between Sa and Sb

since the operations do not use the same memory locations� Thus� an iteration i of the loop
may be executed either as� Sa�i� before Sb�i�� Sb�i� before Sa�i�� or as Sa�i� in parallel with
Sb�i�� More precisely� we have the precedence graph of Figure �� with this type of code� the
compiler has a high degree of liberty to produce the executable parallel code�

�HPF� INDEPENDENT
do i � �� �

Sa � A�i� � B�i�
Sb � C�i� � D�i�

enddo

Start

Stop

Sb(1) Sb(2) Sb(3)Sa(1) Sa(2) Sa(3)

Figure �� A simple independent do loop and its precedence graph �actual graph��

However� suppose now that we replace statement Sb by S�

b � C�i � �� � A�i�� S�

b�i�
uses data computed by Sa�i� �the array reference A�i��� This time� we must enforce the
precedence graph of the INDEPENDENT loop �Figure ��� i�e� we must execute Sa�i� before
S�

b�i�� There is a loop independent dependence� a dependence that lies inside the loop body�
independent of the iteration� The compiler has a smaller degree of liberty to produce the
code� Furthermore� the mapping of the arrays is important� the owner computes rule implies
that the processor that owns the left hand side of the computation computes it� If A�i� and
C�i� �� are not on the same processor� some communications and synchronizations may be
generated in the loop itself�

This brief discussion shows that even with an INDEPENDENT directive� the actual gener�
ation of the parallel code has a variable degree of di�culty� The question is� given a parallel
loop� how to produce the most e�cient executable parallel code� And even more� how to
produce any parallel code� We are going to deal with these questions in the next section�

��� Executable parallel code

Consider again the example of Figure �� An HPF compiler may produce two types of code�
following the owner computes rule� The 	rst type is the simplest expression of the owner
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computes rule on the entire iteration space� For each element of computation� the code tests
if this element of computation is owned by the executor� This gives a parallel code like the
one in Figure ��a�� To make this code more e�cient� communications can be moved outside
of the loop if array accesses are known at compile�time� Nevertheless� it remains ine�cient
since each processor spans the entire iteration space�

do i � �� N
if is�local�B�i�� send�B�i��
if is�local�A�i�� A�i� � receive�B�i��

if is�local�D�i�� send�D�i��
if is�local�C�i�� C�i� � receive�D�i��

enddo

�Communication � get slice of B�
�Communication � get slice of D�
do i � my�A�slice�start� my�A�slice�stop

A�i� � B�i�
enddo
do i � my�C�slice�start� my�C�slice�stop

C�i� � D�i�
enddo

�a� �b�

Figure �� Two types of parallel executable codes for the code of Figure ��

If the code to compile is simple enough and if the compiler is smart enough� a second
approach is possible in which each processor computes only the slice of the array it owns� as
in the code of Figure ��b�� Note that the distribution of the code in two loops is not needed
if both slices are the same� for example if both arrays are mapped the same way�

Now� consider the case where there is a loop independent dependence as in the example
modi	ed with statement S�

b� An HPF compiler could generate a code like in Figure ��a��
Here� the communication for A cannot be just moved outside of the loop as before� since we
must communicate something that is computed inside the loop� A possibility is to distribute
the loop to obtain the general scheme� a parallel loop� a global synchronization� a parallel
loop� Another possibility is to choose a good mapping such that A�i� and C�i � �� are
owned by the same processor� so that the loop independent dependence takes place inside a
processor� In this case� we can even generate a code such as in Figure ��b��

do i � �� N
if is�local�B�i�� send�B�i��
if is�local�A�i��
A�i� � receive�B�i��
send�A�i��

endif
if �is�local�C�i� ��� C�i� �� � receive�A�i��

enddo

�Communication � get slice of B�
do i � my�A�slice�start� my�A�slice�stop

A�i� � B�i�
C�i� �� � A�i�

enddo

�a� �b�

Figure �� Two types of parallel executable codes for the code with S�

b�

If A and C are not mapped to the same processor� these is a last possibility� Indeed�
some compilers o�er the ON HOME directive�� modifying the owner computes rule� In the

�This directive is an approved extension of HPF ��� and some compilers have already implemented it�
like ADAPTOR ���� an HPF compiler by Thomas Brandes�
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previous example� we can force the compiler to produce a code that computes C�i � �� at
the same place as A�i�� by generating temporary arrays or by duplicating some computations
with the help of some overlap areas �as ADAPTOR does�� This kind of code can be much
more di�cult to produce� because the compiler needs to have a precise knowledge of array
accesses in order to produce the communications�

As we have just mentioned� compiling parallel loops with loop independent dependences is
quite di�cult� One could argue that� in this case� a compiler should always compile a parallel
loop with multiple statements as a succession of parallel loops with a single statement�
interleaved with some communications�synchronizations� In other words� why not always
implement loop distribution rather than loop fusion� Why trying to produce codes with
�large� loop bodies�

The advantages of loop fusion are well�known� First� synchronization is a costly operation�
Therefore� minimizing the number of synchronizations is important� Second� even if loop
fusion increases the size of the loop� which can have a negative impact on cache and register
performance� it can improve data reuse by moving references closer together in time� making
themmore likely to still reside in cache or registers ��� ���� This is of major importance with
the development of cache memory hierarchies� Reuse provided by fusion can even be made
explicit by using scalar replacement to place array references in a register� Furthermore�
fusion decreases loop overhead� increasing the granularity of parallelism� and allowing easier
scalar optimizations� such as subexpression elimination�

The examples above illustrate that even if an abstract code is parallel� it can be di�cult
for a compiler to produce an e�cient executable code� This fundamental aspect of automatic
parallelization has to be taken into account� generating parallel loops is not su�cient for
generating e�cient parallel executable programs� When designing parallel loop detection
algorithms� we must consider various criteria� of course the maximization of the degree of
parallelism� but also the feasibility of the code generation� the minimization of synchroniza�
tions� the �exibility of the algorithm� the possibility of loop fusion� etc� Indeed� the detection
of parallelism is a 	rst step in the compilation scheme� it should not produce codes that are
so complex that no further optimizations are possible�

� Loop parallelization algorithms

The structure of nested loops allows the programmer to describe parameterized sets of com�
putations as an enumeration� but in a particular order� called the sequential order� Many
loop transformations have been proposed to change the enumeration order so as to increase
the e�ciency of the code� see for example the survey by Bacon� Graham and Sharp ��� How�
ever� most of these transformations are still applied in an ad�hoc fashion� through heuristics�
and only a few of them are generated fully automatically by loop parallelization algorithms�

In this section� we give a quick summary of the loop transformations that are captured
by these loop parallelization algorithms �Section ����� Before� in Section ���� we recall the
dependence abstractions used to check the validity of the transformations used by these
algorithms� Finally� in Section ���� we list the main loop parallelization algorithms that have
been proposed in the literature� with a survey of their main characteristics �see Table ���
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All these algorithms apply to a particular type of codes� nested loops� possibly non
perfectly nested� but in which the control can be statically de	ned� in other words loops
with no jumps and no conditionals �except conditionals that can be captured statically�
for example when control dependences can be converted to data dependences� or when the
conditional restricts statically the range of the loop counters�� Classically� loop bounds are
supposed to be a�ne functions of some parameters and of surrounding loop counters� with
unit steps� so that the computations associated to a given statement S can be described by
a subset �actually the integral points of a polyhedron� DS ofZnS� where nS is the number of
loops surrounding S� DS is called the iteration domain of S� and the integral vectors in DS

the iteration vectors� The i�th component of an iteration vector is the value of the counter
of the i�th loop surrounding S� counting from the outermost to the innermost loop� To each
I � DS corresponds a particular execution of S denoted by S�I�� In the sequential order� all
computations S�I� are executed following the lexicographical order de	ned on the iteration
vectors� If I and J are two vectors� we write I �lex J if I is lexicographically strictly smaller
than J � and I �lex J if I �lex J or I � J �

��� Dependence abstractions

Data dependence relations between operations are de	ned by Bernstein�s conditions ��� Two
operations are dependent if both operations access the same memory location and if at least
one of the accesses is a write� The dependence is directed according to the sequential order�
from the 	rst executed operation to the last one� We write S�I� �� S��J� if the statement
S� at iteration J depends on the statement S at iteration I� Dependences are captured
through a directed acyclic graph� called the reduced dependence graph �RDG�� or statement
level dependence graph� Each vertex of the RDG is identi	ed with a statement of the loop
nest� and there is an edge from S to S� if there exists at least one pair �I� J� � DS � DS�

such that S�I� �� S��J�� An edge between S and S� is labeled using various dependence
abstractions or dependence approximations� depending on the dependence analysis and on
the input needed by the loop parallelization algorithm� Except for a�ne dependences �see
below�� a dependence S�I� �� S��J� is represented by an approximation of the distance

vector J � I� If S and S� do not have the same domain� only the components of the vector
J� I� that correspond to the nS�S� loops surrounding both statements� are de	ned� Classical
representations of distance vectors �by increasing precision� are�

Dependence level� introduced by Allen and Kennedy in �� ��� A distance vector J � I
is approximated by an element l �the level� in ��� nS�S� � � f�g� de	ned as � if J � I � ��
or as the largest integer such that the l� � 	rst components of the distance vector are zero�
When l ��� the dependence is said loop independent� and loop carried otherwise�

Direction vector� 	rst described by Lamport in ���� then by Wolfe in ���� A set of
distance vectors between S and S� is represented by a nS�S� �dimensional vector� called the
direction vector� whose components belong to Z� f�g � �Z�f���g�� Its i�th component is
an approximation of the i�th component of the distance vectors� z� means 	 z� z� means

 z� and � means any value�
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Dependence polyhedron� introduced by Irigoin and Triolet ���� A set of distance vec�
tors between S and S� is approximated by a subset of ZnS�S�� de	ned as the integral points
of a polyhedron� This is an extension of the direction vector abstraction�

A�ne dependences� used by Feautrier ��� to express dependence relations when exact
dependence analysis is feasible� A set of dependences S�I� �� S��J� can be represented by
an a�ne function f that expresses I in terms of J �I � f�J�� or the converse� subject to
a�ne inequalities that restrict the range of validity of the dependence�

��� Loop transformations

We only focus here on the transformations that are captured by the loop parallelization
algorithms presented in Section ����

Statement reordering� the order of statements in a loop body is modi	ed� Statement
reordering is valid if and only if loop independent dependences are preserved�

Loop distribution� a loop� surrounding several statements� is split into several identical
loops� each surrounding a subset of the original statements� The validity of loop distribution
is related to the construction of the strongly connected components of the RDG �without
considering dependences carried by an outer loop��

Unimodular loop transformations� a unimodular loop transformation is a change of
basis �inZnS� applied on the iteration domain DS � The computations are described through
a new iteration vector I � � UI where U is an integral matrix of determinant � or ���
Unimodular loop transformations are combinations of loop interchange� loop reversal� and
loop skewing� A unimodular transformation U is valid if and only if Ud �lex � for each non
null distance vector d�

A�ne transformations� a general a�ne transformation de	nes a new iteration vector
I � for each statement S by an a�ne function I � � MSI � �S � MS is a non parameterized
non singular square integral matrix of size nS � and �S is a possibly parameterized vector�
The linear part may be unimodular or not� Such a transformation is valid if and only if
S�I� �� S��J��MSI � �S �lex MS�J � �S� �

Tiling� this transformation consists in rewriting a set of n loops into 	n loops� by de	ning
tiles of size �t�� � � � � tn�� I � �i�� � � � � in� is transformed into I � � �i� t�� � � � � in tn� i� mod
t�� � � � � in mod tn�� A su�cient condition for tiling is that the n original loops are fully
permutable�

��� Parallelization algorithms

In the following� the optimality of an algorithm has to be understood with respect to the
dependence abstraction it uses� For example� the fact that Allen and Kennedy�s algorithm is
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optimal for maximal parallelism detection means that a parallelization algorithm which takes
as input the same information as Allen and Kennedy�s algorithm� namely a representation
of dependences by dependence level� cannot 	nd more parallelism that Allen and Kennedy�s
algorithm does�

Lamport�s algorithm ���� considers perfectly nested loops whose distance vectors are
supposed to be uniform �constant� except for some 	xed components� It produces a set of
vectors� best known as �Lamport�s hyperplanes�� that form a unimodular matrix� Lamport
proposed an extension of this algorithm to handle statement reordering� extension which
can also schedule independently the left� and right�hand sides of assignments� Lamport�s
algorithm is related to linear schedules �see ���� and to multi�dimensional schedules�

Allen and Kennedy�s algorithm ��� is based on the decomposition of the reduced
dependence graph into strongly connected components� It uses dependences represented
by levels� and transforms programs by loop distribution and statement reordering� It is
optimal for maximal parallelism detection �see ����� The minimization of synchronizations
is considered through loop fusion �see Section ����� However� it is not really adapted �because
of the poor dependence abstraction� to the detection of outer parallelism and permutable
loops�

Wolf and Lam�s algorithm �	
� is a reformulation of Lamport�s algorithm to the case
of direction vectors� It produces a unimodular transformation that reveals fully permutable
loops in a set of perfectly nested loops� As a set of d fully permutable loops can be rewritten as
one sequential loop and d�� parallel loops� it can also detect parallel loops� The dependence
abstraction it uses is sharper than the one in Allen and Kennedy�s algorithm� However� the
structure of the RDG is not considered� It is optimal for maximal parallelism detection if the
only information on direction vectors with no knowledge of the dependence graph structure�

Feautrier�s algorithm ��� ��� produces a general a�ne transformation� It can handle
perfectly nested loops as well as non perfectly nested loops as long as exact dependence
analysis is feasible� It relies on a�ne dependences� The a�ne transformation is build as
a solution of linear programs obtained by the a�ne form of Farkas� lemma ��� applied
to dependence constraint equations� Although Feautrier�s algorithm is the most powerful
algorithm for detecting innermost parallelism in loops with a�ne dependences� it is not
optimal since it turns out that a�ne transformations are not su�cient� Moreover� it is not
adapted� a priori� to the detection of outer parallelism and permutable loops�

Darte and Vivien�s algorithm ���� is a simpli	cation of Feautrier�s algorithm to the
case of dependences represented by dependence polyhedra �an example being direction vec�
tors�� It also produces an a�ne transformation� but of a restricted form� called shifter linear
schedule �see Section ����� It is optimal for maximal parallelism detection if dependences are
approximated by dependence polyhedra� Since it is simpler than Feautrier�s algorithm� more
optimizing criteria can be handled� the detection of permutable loops and outer parallelism
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�see ����� and the minimization of synchronizations through loop fusion �see Section �����
Furthermore� the code generation is simpler �see Section ��� However� it may 	nd less par�
allelism than Feautrier�s algorithm when exact dependence analysis is feasible because of its
restricted choice of transformations�

Lim and Lam �	�� is an extension of Feautrier�s algorithm whose goal is to detect fully
permutable loops and outer parallel loops� As Feautrier�s algorithm� it relies on a descrip�
tion of dependences as a�ne dependences� It uses the a�ne form of Farkas� lemma and the
Fourier�Motzkin elimination� Lim and Lam�s algorithm has the same qualities and weak�
nesses as Feautrier�s algorithm� it is� in theory� very powerful� but no guarantee is given
concerning the easiness of code generation� Indeed� many solutions are equivalent relatively
to the criteria they optimize� choosing the simplest solution is not explained in Lim and
Lam�s algorithm� and code generation is not addressed�

� Code generation

Once the program has been analyzed and some loop transformation has been found� it
remains to generate the code corresponding to the transformed program� In the current
section� we review the techniques that currently exist to handle this last problem� We go
from the simplest transformations to the most complicated ones� We skip in the discussion
loop distribution and statement reordering for which code generation is straightforward�

��� Unimodular transformations

Unimodular transformations apply to perfect loop nests whose iteration domains are convex
polyhedra� They are important for code generation because they guarantee that� if the
original iteration domain is a convex polyhedron� the iteration domain of the transformed
loop nest is also a convex polyhedron� It means that the code generation problem simpli	es
to lexicographically scanning the integer points of a convex polyhedron�

The other part of the code generation is to express the array access functions with respect
to the new loop indices� Since a unimodular transformation is invertible �with integral
inverse�� it is easy to express the array access functions with respect to the new loop indices�
Let U be the matrix of the unimodular transformation� I the iteration vector of the original
loop nest� I � � UI the iteration vector of the transformed loop nest� we just have to replace
everywhere in the loop nest body I by U��I ��

We present now the two classical approaches for the polyhedron scanning problem� the
Fourier�Motzkin pairwise elimination and the simplex algorithm�

Fourier�Motzkin elimination� Ancourt and Irigoin 	rst proposed this technique in ��
and it has then been used in several prototype compilers ��� ��� ���� The idea is to use a
projection algorithm to 	nd the loop bounds for each dimension� The polyhedron is repre�
sented as usually by a system of inequalities� At each step of the Fourier�Motzkin pairwise
elimination algorithm� some inequalities are added to the system to build a �triangular�
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system were each loop index depends only on the previous loop indices and on parameters�
As many inequalities can de	ne a loop bound� we have to take the maximum of the lower
loop bounds and the minimum of the upper loop bounds� Let us take an example� a square

domain transformed by combination of loop skewing and loop interchange
�
i�
�

i�
�

�
�
�
� �
� �

��
i�
i�

�
�see Figure ��� The system describing the transformed polyhedron and its transformation
by the Fourier�Motzkin elimination of i�

�
are�

�
� 
 i�

�

 n

� 
 i�� � i�� 
 n

Fourier�Motzkin
����������
elimination of i�

�

���
��
	 
 i�

�

 	n

� 
 i�
�

 n

i�� � n 
 i�� 
 i�� � �

do i� � �� n
do i� � �� n

� � �

enddo
enddo

�
i�
�

i�
�

�
�

�
� �
� �

��
i�
i�

�
������������

do i�� � �� �n
do i�� � max��� i��� n�� min�n� i�� � ��

� � �

enddo
enddo

Figure �� Unimodular example�

The main drawback of this algorithm is that it can generate redundant inequalities� Their
elimination requires a powerful test also based on the Fourier�Motzkin elimination or on the
simplex algorithm ���� If some redundant inequalities are not removed� some iterations
may be empty in the resulting loop nest� causing overhead� The better the elimination� the
fewer empty iterations� Although the Fourier�Motzkin elimination has super�exponential
complexity for big problems� it remains fast for small problems� and works well in practice�

Simplex algorithm� The second approach to compute the loop bounds uses an extended
version of the simplex algorithm� indeed one has to be able to solve parametric integer linear
problems in rational numbers� This method has been proposed by Collard� Feautrier and
Risset in ��� and has been used in at least three experimental parallelizers �� ��� ����

The basic idea is to build a polyhedra Dk for each loop index ik in which outer indices
are considered as parameters and to search for the extrema of ik in Dk so as to 	nd the
loop bounds� It has been shown in ��� that this resolution can be done using PIP ����
a parametric dual simplex implementation� and that the result is expressed as the ceiling
of the maximum of a�ne expressions for the lower bound and the �oor of the minimum of
a�ne expressions for the upper one� On the example of Figure �� the result is the same�

This algorithm produces no empty iterations but may introduce �oor and ceiling op�
erations� The complexity of the simplex algorithm is exponential in the worst case but
polynomial on the average and so also works well in practice� Chamski �� addresses the
problem of control overhead by replacing extrema operations by conditionals at the expense
of code duplication�

��



��� Non�unimodular linear transformations

When dealing with non�unimodular transformations� the classical approach ��� is to de�
compose the transformation matrix into its Hermite normal form ��� to get back to the
unimodular case� An algorithm based on column operations on an integral nonsingular
matrix T transforms it into the product HU �� T � where U is unimodular and H is a non�
singular� lower triangular� nonnegative matrix� in which each row has a unique maximum
entry� which is its diagonal entry� Once the transformation U has been considered� it is easy
to handle the matrix H� each diagonal element corresponds to a multiplication of the loop
counter and can be coded with steps in the loop indices� and the other non�zero entries are
shifts� Figure � shows the example of the transformation of a ��D loop nest by

�
� �
� �

�
�

do i� � lbi� � ubi�
do i� � lbi� � ubi�

� � �

enddo
enddo

do i�� � �lbi� � �ubi� � �

do i�� �
i�
�

�
	 �lbi� �

i�
�

�
	 �ubi� � �

� � �

enddo
enddo

Figure �� Non�unimodular example�

Xue presented in ��� another method to deal with non�unimodular transformations�
It is based on Fourier�Motzkin elimination to compute the loop bounds and on Hermite
decomposition to compute the steps and shifting constants�

��� Extensions

Perfect loop nests with one�dimensional shifted linear schedules� In ��� Boulet
and Dion explain how to deal with a�ne transformations which share the same linear part
and shift the 	rst transformed loop index with constants� one constant for each statement
in the body of the original loop nest� Moreover� they handle the case of rational schedules�
transformations whose 	rst dimension may have rational entries� The basic idea is to de�
compose the transformation into a unimodular one and then handle the rational part and
the shifting constants with a two�dimensional time combined with loop splitting to avoid
control overhead�

Non perfect loop nests with one�dimensional schedules� Collard presents in ��� a
method to produce code when each statement of a non perfect loop nest has been assigned
an a�ne one�dimensional schedule� His scheme is to build a global outer time loop and to
add guards around the statements to compute them only when necessary� The goal is to
reduce control overhead�

General a�ne case� Kelly� Pugh and Rosset present in ��� a method to generate code
for the general a�ne case� that is a non perfect loop nest transformed with a possibly di�er�
ent a�ne transformation for each statement� Their transformation is based on Presburger
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arithmetic implemented in the Omega library ���� They also address the problem of control
overhead versus code duplication� The problem is to be able to scan an arbitrary union of
polyhedra� In the next section� we present a simpler code generation scheme for the case of
shifted linear schedules�

� Code generation for shifted linear schedules

General a�ne schedules are necessary to capture and manipulate non perfectly nested loops�
However� applying such a transformation is not straightforward in the general case� and may
lead to complex codes with nasty guards� loop steps� loop bounds and array access functions�
as illustrated by the following example�

Example �� Consider two statements S and S� with the same iteration domain f� 

i� j� k 
 Ng� Assume that S�i� j� k� and S��i� j� k� are mapped� using a multi�dimensional
schedule� respectively to �i� j� i� j� i� j � 	k� and �i� j � �� i� j � 	� k�� A possibility is
to generate the code of Figure �� Notice that this code is already optimized� a more naive
approach would have kept both S and S� inside the same t� loop and all conditionals in this
innermost loop� Furthermore� some natural conditionals such as t� 
 n� � for statement S�

have been removed since they are redundant�

do t� � �n� �� n
do t� � max�t� � 	��t� � 	��min�t� � 	n� ���t� � 	n� 
�
if t� � t� mod 	 and t� � t� 
 	n
do t� � t� � 	� t� � 	n� 	
S��t� � t���	� �t� � t���	� �t� � t���	�

enddo

endif

if t� � t� � � mod 	 and t� � t� 	 �
do t� � �� n
S���t� � t� � 
��	� �t� � t� � ���	� t��

enddo

endif

enddo

enddo

Figure �� A code with modulos�

The complexity of this type of code generation is mainly due to the two following facts�

� In a non perfect loop nest� the statements may have di�erent iteration domains� There�
fore� in order to schedule them simultaneously and to write the corresponding code�
we need to be able to scan �i�e� describe by loops� an arbitrary union of polyhedra�
even if all statements have the same multi�dimensional schedule�

��



� A multi�dimensional a�ne schedule can be viewed as a change of basis applied to the
iteration domain� Therefore� as soon as the schedules of two statements are di�erent�
we need once again to be able to scan an union of polyhedra� even if all statements
have the same iteration domain�

The goal of this section is to present a new code generation scheme that leads to clean�
simple� and easily understandable codes� This is made possible because we restrict the set
of schedules that we consider� so as to circumvent the two di�culties stated above� We
consider only particular multi�dimensional a�ne schedules� called multi�dimensional shifted

linear schedules� We show that if all iteration domains are the same in the original code� up
to a translation �a typical example is when the original code is perfectly nested�� then the
code generation for such schedules is a lot simpler� and leads to cleaner codes� Indeed� the
code generation can be seen as a hierarchical combination of loop distribution� loop bumping
�i�e� adding a constant to a loop counter�� and matrix transformation� where each statement
can be considered independently �thus avoiding the complicated problem of overlapping
di�erent polyhedra��

Furthermore� we show that� given a shifted linear schedule �� it is possible to build an
equivalent shifted linear schedule ��� equivalent in the sense that the nature of the loops
�sequential� parallel or permutable� in the transformed code is preserved� and such that the
code generation for �� involves only unimodular transformations and loop bumping�

��� Shifted linear schedules

We use the following notations� If M is a matrix� �M �
k
denotes the k�th row of M � �M � �k�

denotes the matrix whose rows are the 	rst k rows of M � and �M � �i� j� denotes the square
sub�matrix of M � intersection of the rows and columns of M from i to j�

To make the discussion simpler� we consider that all iteration domains have the same
dimension n �i�e� for any statement S� nS � n� so that all iteration vectors and all matrices
have the same size �otherwise we can complete the iteration vectors with ending ��� As
recalled in Section ���� a multi�dimensional a�ne schedule � is de	ned for each statement S
by an integral square nonsingular matrix MS of size n and an integral vector �S of size n�
We write � � �MS� �S�� The computation S�I� associated to the iteration vector I before
transformation is associated to the iteration vector MSI� �S after transformation� A multi�
dimensional function � � �MS� �S� is a valid schedule if and only if�

S�I� �� S��J��MSI � �S �lex MS�J � �S� ���

We say that a dependence S�I� �� S��J� is satis�ed by � at level k if�

�MSI � �S � �k � �� � �MS�J � �S�� �k � �� and �MSI � �S�k � �MS�J � �S� �k

Equation � guarantees that k is always well�de	ned� any dependence is satis	ed at some
level k� and for a unique k� We denote by kS�S� the maximal level at which some dependence
between S and S� is satis	ed� and by cS�S� the maximal level c such that �MS � �c� � �MS� � �c��

De�nition �� A multi�dimensional a�ne schedule � � �MS � �S� is shifted linear if� for any
statements S and S�� �MS� �kS�S� � � �MS� � �kS�S� �� i�e� if kS�S� 
 cS�S� �
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In other words� a multi�dimensional a�ne schedule is shifted linear if S and S� have the
same linear part for the outermost levels as long as there exists a dependence between S
and S� not yet satis	ed� Note that� as recalled in Section ���� looking for such schedules is
not penalizing if dependences are approximated by a polyhedral approximation of distance
vectors �for example direction vectors� and if the main objective is the detection of the
maximal degree of parallelism�

��� Code generation scheme

Remember the code generation scheme for a single statement S� If the matrix MS is not
unimodular� we use the Hermite form MS � HSUS where US is unimodular� HS non nega�
tive� lower triangular� and each non diagonal component of HS is strictly smaller than the
diagonal component of same row� Then� we transform the code 	rst using US � then using the
loop skewing HS� Here� we have multiple statements� di�erent matrices MS � and di�erent
constants �S � therefore we must apply a di�erent unimodular transformation� a di�erent loop
skewing� and a di�erent loop bumping for each statement� Fortunately� by construction of
the Hermite form ���� we have�

�MS� �k� � �MS� � �k� � �HS � �k� � �HS� � �k� and �US� �k� � �US� � �k�

Therefore� while all dependences between two statements S and S� are not satis	ed� all loops
that surround S and S� are the same �up to a constant�� we just have to generate the codes
for S and S� separately� and to fuse the two codes into a single one until level kS�S� � Then�
for the remaining dimensions� since there are no more dependences between S and S�� the
two codes do not need to be perfectly matched� one can just write them one above the other�
and the resulting code remains correct� In other words� in this restricted case� there is no
need for a complicated algorithm for scanning a union of polyhedra�

The code generation process is the following� We write MS � HSUS and �S � HSqS � rS
where qS and rS are integral vectors where each component of rS is non negative and strictly
smaller than the corresponding diagonal element of HS �this decomposition is unique�� Then�
we decompose the transformation �S � I �MSI � �S in four steps� ��S � I � USI� ��S � I �
I � qS� ��S � I � HSI� ��S � I � I � rS � ��S is a unimodular transformation� ��S is a loop
bumping� ��S is a loop skewing� and ��S consists simply in writing the code in the rS �th
position in the loop body �because the code at this point is a code with loop steps�� Note
that when HS is diagonal� there is no need to really multiply the counter by the diagonal
component� we can keep the original counter and avoid steps and �oor functions� We will
use this technique in Section ����

Back to Example �� We 	nd the two unimodular transformations US � �i� j� k� � �i �
j� j� j � k� and US� � �i� j� k� � �i � j� j� k�� and the two skewing transformations HS �
�i� j� k�� �i� i�	j� i�	k� and HS� � �i� j� k�� �i� i�	j� k�� Furthermore qS � rS � ��� �� ���
and qS� � ��� �� ��� rS� � ��� �� ��� We 	nd the two intermediate codes of Figure � by applying
the transformations US and US� � and the loop bumping by qS and qS��

Then� we apply the loop skewings HS and HS� � and the displacements by rS and rS� � We
get the two codes of Figure ��� The displacements are visualized by nop operations� Finally�
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do t� � �n� �� n � �
do t� � max����t� � ���

min�n��t� � n�
do t� � t� � �� t� � n
S�t� � t�� t�� t� � t��

enddo

enddo

enddo

do t� � �n� 	� n
do t� � max����t� � 	�

min�n��t� � n� ��
do t� � �� n
S��t� � t� � �� t�� t��

enddo

enddo

enddo

Figure �� Separate codes after unimodular transformation�

do t� � �n� �� n � �
do t� � max�t� � 	��t� � 	��

min�t� � 	n��t� � 	n�� 	
do t� � t� � 	� t� � 	n� 	
S� t��t�

�
� t��t�

�
� t��t�

�
�

enddo

nop

enddo

enddo

do t� � �n� 	� n
do t� � max�t� � 	��t� � ���

min�t� � 	n��t� � 	n � 	�� 	
nop

do t� � �� n
S�� t��t�

�
� �� t��t�

�
� t��

enddo

enddo

enddo

Figure ��� Separate codes after loop skewing�

merging the two codes� we get the code of Figure ��� Loop peeling could be used to remove
as many conditionals as possible if this turns out to be more e�cient� Notice also that the
two conditionals t� 
 n � � and t� 	 �n � 	 could be removed since they are redundant
with the other constraints�

��� Equivalent schedules and unimodularity

In terms of parallelism extraction� multi�dimensional schedules may be used for detecting
either parallel and sequential loops� or permutable loops as a 	rst step before tiling� We say
that two schedules � and �� are equivalent if� in both transformed codes� the nature of the
loops �parallel or sequential in the 	rst case� permutable in the second case� is the same�

Let us analyze how dependences in the original code are transformed if we use the code
generation process described in Section ���� If S�I� �� S��J� is satis	ed at level k�

�USI � qS� �k � �� � �US�J � qS�� �k � �� and �rS� �k � �� � �rS�� �k � ��
�USI � qS�k 
 �US�J � qS� �

k

�USI � qS�k � �US�J � qS��
k
� �rS�k � �rS� �

k

���

In other words� a dependence satis	ed at level k is either loop carried at level k� when
�USI � qS�k � �US�J � qS��

k
� or loop independent at level k� and in this latter case rS � rS��

A loop at level k is then parallel in the transformed code� if there is no dependence carried at
level k between any two statements surrounded by this loop� We point out that the nature
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do t� � �n� �� n
do t� � max�t� � 	��t� � 	��min�t� � 	n��t� � 	n � 	�� 	
if t� 
 n� � and t� 
 �t� � 	n
do t� � t� � 	� t� � 	n� 	
S��t� � t���	� �t� � t���	� �t� � t���	�

enddo

endif

if t� 	 �n� 	 and t� 	 �t� � �
do t� � �� n
S���t� � t���	 � �� �t� � t���	� t��

enddo

endif

enddo

enddo

Figure ��� Combination of the two codes�

of a dependence �loop carried or loop independent� is not fully speci	ed by the schedule
� � �MS � �S� itself� but depends on the way we write the code� For example� handling the
constants �S di�erently may change the nature of a dependence �but not the level at which
it is satis	ed�� Therefore� the equivalence of two schedules has to be understood with respect
to the code generation we use� We have the following result�

Theorem �� For any shifted linear schedule � � �MS � �S�� there exists a shifted linear

schedule �� � �M �

S� �
�

S�� equivalent for parallel and sequential loops� and such that M �

S �
H �

SU
�

S where H �

S is non�negative diagonal and U �

S unimodular�

Proof� See the extended proof in the appendix A� We build �� as follows� We write HS �
KSH

�

S where H �

S is the diagonal matrix such that H �

S and HS have the same diagonal� Then
�� � �K��

S MS�K
��

S HSqS � rS� � �H �

SUS �H
�

SqS � rS� is a shifted linear schedule equivalent
for parallel and sequential loops�

We now consider schedules used for detecting maximal blocks of permutable loops� A
maximal block of nested loops� from level i to level j� is permutable in the transformed code
if for all statements S and S� surrounded by these loops� for any dependence S�I� �� S��J�
satis	ed at a level between i and j� the dependence distance is non negative� i�e��

�MSI � �S� �i� �� � �MS�J � �S�� �i� ��� �MSI � �S � �j� 
 �MS�J � �S� � �j� ���

Once again� since we address only shifted linear schedules� we consider only blocks� sur�
rounding statements S and S�� whose maximal level j is smaller than cS�S� �

Theorem �� For any shifted linear schedule � � �MS � �S�� there exists a shifted linear

schedule �� � �M �

S� �
�

S�� equivalent for permutable loops� and such that M �

S � H �

SU
�

S where

U �

S is unimodular and H �

S is positive diagonal� with all entries equal to � except possibly for

each last level of a block of permutable loops containing S�
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Proof� The technique is to de	ne� for each statement S� a well chosen loop skewing GS �see
the construction in the appendix B� such that GSMS � H �

SU
�

S � Then �� � �GSMS� bGS�Sc�
is a shifted linear schedule equivalent for permutable loops�

When generating code for revealing permutable loops� we may want that permutable
loops are perfectly nested� This is not the case with the code generation scheme proposed
in Section ��� because of the constants rS � Each time two statements have di�erent values
of rS for the same loop� the resulting code is non perfectly nested �except of course at the
innermost level�� Therefore� for general a�ne schedules� we may need to enforce loops to be
perfectly nested by not decomposing the constants �S into qS and rS � However� the resulting
code would be much more complicated� This is the reason why we impose in Theorem �
that the components of H �

S are equal to �� except for the last level of a block of permutable
loops� Then� the code is easy to generate for the outermost block� To make sure that it is
also simple for inner blocks� we impose that �rS � �iS�S� � �� � �rS�� �iS�S� � �� where iS�S� is the
	rst level of the innermost block of permutable loops surrounding S and S�� Fortunately�
this technical condition is true for shifted linear schedules that are built by the algorithm
proposed in ��� for which we developed these simpli	cation techniques�

Back to Example �� We assume that the 	rst two dimensions correspond to a block
of permutable loops� Following the proof of Theorem �� we 	nd the two loop skewing
transformations GS � �i� j� k� � �i� i� j��i � k� and GS� � i� j� k � �i� i � j� k� which lead
to the schedule �i � j� 	i� 	j � 	k� for S and �i � j � �� 	i � 
� k� for S�� We get the 	nal
equivalent code of Figure �� which is quite simpler�

do t� � �n� �� n
do t� � max�t� � �� ���min�t� � n� n� ��
if t� 
 n� � and t� 
 n
do t� � t� � t� � �� t� � t� � n
S�t�� t� � t�� t� � t� � t��

enddo

endif

if t� 	 �n� 	 and t� 	 	
do t� � �� n
S��t� � �� t� � t�� t��

enddo

endif

enddo

enddo

Figure ��� Equivalent code for Example ��

It is shown in the appendices A and B that the nature of each loop �not only permutable�
but also parallel and sequential� is preserved� As noticed in Section ���� all loop steps are
unit steps� and there is no use of �oor or ceiling functions� even if the transformation is
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non unimodular� This is because the loop skewings �the Hermite forms of the schedule� are
diagonal� and because there is no need to really multiply the loop counter by the diagonal
component� This demonstrates that shifted linear schedules have nice properties� for maximal
parallelism detection as well as for code generation�

� Reducing the number of synchronizations

In this section� we recall how the fusion of parallel loops is handled in Allen and Kennedy�s
algorithm so as to reduce the number of synchronizations �see ���� We show that the problem
becomes much more di�cult if loop bumping and loop fusion are combined� We show the
NP�completeness of the problem� even in the simple case of uniform dependences� and we
propose an integer linear programming method to solve it�

��� Fusion of parallel loops

Consider a piece of code only composed of parallel loops� Consider the dependences that take
place inside the code �in other words� if the code is surrounded by some loops� do not consider
dependences carried by these loops�� and in particular dependences between di�erent loops
�inter�dependences�� The fusion of two parallel loops is valid and gives one parallel loop
if there is no inter�dependence between these two loops� or if all inter�dependences become
loop independent after fusion� Otherwise� the semantics of the code is not preserved or the
loop produced is sequential� An inter�dependence that is not loop independent after fusion
is called fusion preventing�

The technique to minimize the number of parallel loops after fusion is the following� The
goal is to assign to each statement S a nonnegative integer p�S� that indicates which parallel
loop contains S after fusion� Let e be a dependence from statement S to statement S��
Then� after fusion� the loop containing S must appear� in the new loop nest� before the loop
containing S�� p�S� 
 p�S��� Furthermore� if this dependence is fusion preventing� S and S�

cannot be in the same loop after fusion� p�S� � � 
 p�S��� To minimize the total number
of parallel loops after fusion� we just have to minimize the label of the last loop� maxS p�S��
To obtain the desired loop nest� we place in the same parallel loop all statements with the
same value p� and parallel loops are ordered by increasing p� The formulation is thus���

�
maxS p�S� s�t� p�S� 	 � and

� S
e
�� S� s�t� e is not fusion preventing� p�S� 
 p�S��

� S
e
�� S� s�t� e is fusion preventing� p�S� � � 
 p�S��

The reader can recognize a classical scheduling problem� p�S� is the maximal weight of a
dependence path ending in S� where the weight of an edge is de	ned as � if the edge is fusion
preventing� and � otherwise� Therefore� a greedy algorithm is optimal and polynomial�

An extension of this technique has been proposed in ��� to handle both the fusion of
parallel loops and the fusion of sequential loops� It consists in two steps� First the fusion
of parallel loops is performed as above� except that additional fusion preventing edges are
added each time there is a dependence path between two statements that goes through a

��



sequential loop� Then� the similar technique is used for sequential loops� As noticed by
Mc Kinley and Kennedy� the total number of loops may not be minimal� but the number of
parallel loops is and� therefore� the number of synchronizations�

��� Fusion of parallel loops and shifted linear schedules

We now consider the particular case of the generation of parallel loops with shifted linear
schedules �see Section ����� We suppose that k loops have already been generated� and
that all the dependences are satis	ed by these loops� except some dependences that form an
acyclic graph Ga�

The code generation technique proposed in Section ��� would generate the n�k remain�
ing loops� by placing each statement in a separate set of nested parallel loops so that the
dependences of the acyclic graph are satis	ed at level k as loop independent� Here� we want
to do better� We want to generate as few parallel loops as possible and no sequential loops�
in order to have� once again� the maximal parallelism while minimizing synchronizations�

We consider the case where one loop remains to be built �k � n � ��� the general case
is similar if we decide that two statements share all or none of their surrounding parallel
loops� Once again� we try to place in the same parallel loop only statements for which the
schedule is de	ned by the same linear part �shifted linear schedule�� Practically� we are given
a vector X that will be used to generate the last loop� and we try to generate constants �S
so as to fully de	ne the schedule� If S and S� are to be placed in the same parallel loop�
we must 	nd two constants �S and �S� such that� for each dependence e � S�I� � S��J��
X�J � I� � �S� � �S � � so that the dependence becomes loop independent� To make the
link with Section ���� here we try to fuse more parallel loops using in addition loop bumping�
This gives more freedom� but makes the optimal solution more di�cult to 	nd�

We assume that the dependences in Ga are uniform� We denote by w�e� the quantity
X�J � I� associated with the edge e� Remark that when Ga is acyclic� if considered as
an undirected graph� one can always choose the constants �S so that all statements can
be placed in the same parallel loop� On the other hand� if Ga has an �undirected� cycle�
this may not be possible� Indeed� consider an undirected cycle in Ga� C �

P
e�C

�ee where
�e � f��� �g� i�e� a cycle that can use an edge backwards ��e � ��� or forwards ��e � ���
De	ne the weight of C as w�C� �

P
e�C �ew�e�� If all dependences of C are transformed into

loop independent dependences� then w�C� � �� Conversely� if w�C� �� �� then for at least
one edge e � �Se� S

�

e� of the cycle� S�

e has to be placed in a parallel loop after the parallel
loop that surrounds Se� This remark leads to the following integer linear program����

���
maxS p�S� s�t� p�S� 	 � and
� e � �Se� S

�

e�� p�Se� 
 p�S�

e�
w�C� �� ��

P
e�C

p�S�

e� 	 � �
P

e�C
p�Se�

for each undirected elementary cycle C�

that solves the problem� p�S� is the label of the parallel loop in which S should be placed�
Indeed� by construction� the subgraph G�

a of Ga formed by the edges e � �Se� S
�

e� for which
p�Se� � p�S�

e� only contains undirected cycles C such that w�C� � �� Therefore� one can
build the desired constants �S such that for all edge e � G�

a� w�e� � �S�

e
� �Se � ��

��



We point out that solving the linear program above is exponential for two reasons� 	rst�
the number of undirected elementary cycles can be exponential� and second� we use integer
linear programming� Nevertheless� in practice� Ga is usually very small� thus the program is
solvable in reasonable time� However� in theory� the problem is NP�complete� as stated by
the following theorem�

Theorem 	� Let Ga be an acyclic directed graph where each edge e has a weight w�e� �Z�
Given an integer �S for each vertex S� we de�ne the quantity w��e� for each edge e � �Se� S

�

e�
by w��e� � � if w�e���S�

e
��Se � �� and w��e� � � otherwise� The weight of a path is de�ned

as the sum of the weights w��e� of its edges� Then� �nding values for �S which minimize the

maximal weight of a path in Ga is NP�complete�

Proof� The proof is by reduction of the fusion problem from the UET�UCT scheduling prob�
lem �Unitary Execution Time � Unitary Communication Time�� see the appendix�

We illustrate the methods described in Sections ��� and ��� with the program of Figure ���
Because of the non zero dependences the simple fusion builds three di�erent parallel loops
�see Figure ��� when the fusion with loop bumping only builds two parallel loops�

do i � �� n
a�i� � �
b�i� � �
c�i� � a�i� �� 	 b�i�
d�i� � a�i� 	 b�i� ��
e�i� � d�i� 	 d�i� ��

enddo

a

c

b

1
0 0

e

1

d

10

Figure ��� Original code and its dependence graph�

dopar i � �� n
a�i� � �
b�i� � �

enddo
dopar i � �� n

c�i� � a�i� �� 	 b�i�
d�i� � a�i� 	 b�i� ��

enddo
dopar i � �� n

e�i� � d�i� 	 d�i� ��
enddo

dopar i � �� n	 �
if i � n then a�i� � �
if � � i then b�i� �� � �
if i � n then d�i� � a�i� 	 b�i� ��

enddo
dopar i � �� n

c�i� � a�i� �� 	 b�i�
e�i� � d�i� 	 d�i� ��

enddo

Figure ��� Optimal solution for simple fusion� and for fusion with loop bumping�
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� Conclusion

We have proposed a comparative study of loop parallelization algorithms� insisting on the
program transformations they produce� on the code generation scheme they need� and on
their capabilities to incorporate various optimization criteria such as the detection of parallel
loops� the detection of permutable loops� the minimization of synchronizations through loop
fusion� and the easiness of code generation�

The simplest algorithm �Allen and Kennedy�s algorithm� is of course not able to detect
as much parallelism as the most complex algorithm �Feautrier�s algorithm and its variants
or extensions�� However� the code generation it involves is straightforward and sharp opti�
mizations such as the maximal fusion of parallel loops can be taken into account� For more
complex algorithms� the loop transformations are obtained as solutions of linear programs�
minimizing one criterion� no guarantee is given concerning the simplicity of the solution�
or its quality with respect to a second optimization criterion� In other words� for complex
algorithms� it remains to demonstrate that generating a �clean� solution is feasible� We
gave some hints in this direction� We showed that� for algorithms based on shifted linear
schedules� code generation is guaranteed to be simple� and that loop fusion can be handled
�even if it can be expensive in theory��

A fundamental problem remains to be solved in the future� the link between parallelism
detection and data mapping� Indeed� a parallel loop can be e�ciently executed only if an
adequate data mapping is proposed� This question is related to complex problems such as
automatic alignment and distribution� scalar and array privatization� duplication of compu�
tations� etc�
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A Parallel loops and shifted linear schedules

We 	rst prove some properties of loop skewing related to parallel and sequential loops�

Lemma �� Let � � �MS� �S� be a shifted linear schedule� where MS � HSUS� �S �
HSqS � rS � Suppose given� for each statement S� a rational matrix GS � lower triangular�

with diagonal greater than �� such that GSMS is integral and for any statements S and S��

�GS� �kS�S� � � �GS� � �kS�S� �� Then� �� � �GSMS� GSHSqS � rS� is a shifted linear schedule� and

the level at which a dependence is satis�ed and its nature are the same for � and for ���

Proof� Note 	rst that �� is integral since GSHS is integral if and only if GSMS is integral�
Furthermore� �GSMS� �kS�S� � � �GS�MS� � �kS�S� �� Let us compute the Hermite form of GSMS�
We have GSMS � GSHSUS � and GSHS is lower triangular� but not necessarily non negative�
Actually� the Hermite form of GSHS is GSHS � H �

STS where TS is lower triangular �since
GSHS is lower triangular� and unimodular� Furthermore� by construction of the Hermite
form� it can be checked that �TS� �kS�S� � � �TS�� �kS�S� �� Thus the Hermite form of GSMS

is GSMS � H �

SU
�

S where H �

S � GSHST
��

S and U �

S � TSUS� Finally� since the diagonal of
GS is greater than �� GSHSqS � rS � H �

STSqS � rS is the desired unique decomposition of
GSHSqS � rS into H �

Sq
�

S � r�S with q�S � TSqS and r�S � rS�
Consider now a dependence S�I� �� S��J� satis	ed at level k for �� It remains to

check whether Equation � is satis	ed the same way with U �

S� q
�

S and r�S� �US�J � qS� � �k� �
�USI � qS� �k� is a non negative vector of size k whose 	rst k � � 	rst components are null�
Thus� multiplying by TS� we 	nd that �U �

S�J � q�S� � �k�� �U �

SI � q�S� �k� and �US�J � qS�� �k��
�USI � qS� �k� are equal since �TS� �k� � �TS�� �k� and all diagonal components of TS are ��
Furthermore� by construction� rS � r�S � This proves that the dependence is also satis	ed at
level k in �� and has the same nature �loop carried or loop independent��

Lemma � is the key property to simplify schedules used for detecting sequential and
parallel loops� This leads to the following result�

Theorem �� For any shifted linear schedule � � �MS � �S�� there exists a shifted linear

schedule �� � �M �

S� �
�

S�� equivalent for parallel and sequential loops� and such that M �

S �
H �

SU
�

S where H �

S is positive diagonal and U �

S unimodular�

Proof� We write HS � KSDS where DS is the diagonal matrix such that DS and HS have the
same diagonal� Then� K��

S is lower triangular with diagonal equal to �� and
�
K��

S

�
�cS�S� � ��

K��

S�

�
�cS�S�� since �KS � �cS�S� � � �KS� � �cS�S�� and since KS and KS� are lower triangular�

Moreover� K��

S MS � DSH
��

S HSUS � DSUS which is integral� Finally� by Lemma �� �� �
�K��

S MS �K
��

S HSqS � rS� � �DSUS�DSqS � rS� is an equivalent schedule�

B Permutable loops and shifted linear schedules

We denote by jS�S� the maximal level 
 cS�S� of a block of permutable loops that surround
both S and S� and by iS�S� the 	rst level of this innermost block� We 	rst need a lemma�
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Lemma �� Let � � �MS� �S� be a shifted linear schedule� Suppose given� for each statement

S� a rational matrix GS � lower triangular� such that GSMS is integral� and �GS � �jS�S�� �
�GS� � �jS�S� � for any statements S and S�� If� for any maximal block of permutable loops from

level i to level j surrounding S� �GS � �i� j� is non negative and all components of the last row

of �GS � �i� j� are greater than �� then� �� � �GSMS� bGS�Sc� is a shifted linear schedule� and

permutable loops for � are permutable loops for ���

Proof� Consider a block of permutable loops from level i to level j� surrounding two state�
ments S and S�� and a dependence S�I� �� S��J� satis	ed for � at level k� with i 
 k 
 j�
We evaluate the vectorD � GS��MS�J��S���GS�MSI��S�� Since �GS � �jS�S� � � �GS� � �jS�S��
and since �GS� �i� j� is non negative and lower triangular� �D� �k � �� � � and �D� �j� 	 �� Fur�
thermore� all components of the last row of �GS� �i� j� � �GS� � �i� j� are greater than �� thus
�D�

j
	 �� Therefore� the evaluation of bDc shows that the dependence is carried at level k�

with k 
 k� 
 j� Furthermore� the components of the distance vector D are non negative at
least until level j� This proves that the structure of the blocks of permutable loops are the
same for � and for ���

We now can prove the desired property for schedules used for detecting permutable loops�

Theorem �� For any shifted linear schedule � � �MS � �S�� there exists a shifted linear

schedule �� � �M �

S� �
�

S�� equivalent for permutable loops� and such that M �

S � H �

SU
�

S where

U �

S is unimodular� and H �

S is positive diagonal� with all entries equal to �� except possibly for

each last level of a block of permutable loops containing S�

Proof� The construction of Theorem � is not su�cient to guarantee that permutable loops are
preserved� the matrix GS in Lemma � needs additional properties� We start from H��

S � and
for each block of permutable loops from level i to level j �starting from the innermost block��
we use a process similar to the �left� Hermite decomposition of

�
H��

S

�
�i� j�� multiplying on

the left by a unimodular matrix� we add a multiple of the �j����th row of H��

S to the j�th
row so that the �j����th component of the j�th row is non negative and smaller than the
diagonal component of the same column� Then� we repeat the operation for the �j�	��th
column� manipulating the j�th and �j����th rows with the �j�	��th row� and so on� until the
i�th row� Actually� we slightly modify this process for each step� so that all components of
the last row of

�
H��

S

�
�i� j� are greater than the diagonal component of the same row �which

is not necessarily true if we only simulate the Hermite form��
With this process� we end up with a decomposition H��

S � TSRS where TS is unimod�
ular and RS has the properties mentioned above� Moreover� by construction and since�
H��

S

�
�jS�S� � �

�
H��

S�

�
�jS�S��� we have �TS� �jS�S� � � �TS�� �jS�S�� and �RS � �jS�S� � � �RS� � �jS�S� ��

Let H �

S be the diagonal matrix whose components are the diagonal components of HS � ex�
cept those� equal to �� that do not correspond to the last level of a block of permutable
loops containing S� Then� GS � H �

SRS satis	es the conditions of Lemma �� and thus
�� � �GSMS � bGS�Sc� is a shifted linear schedule� equivalent to � for permutable loops�
Furthermore� GSMS � H �

ST
��

S US � �� has the desired form�
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C Minimization of synchronizations with loop fusion

and loop bumping

We prove that the minimization of synchronizations with loop fusion and loop bumping is
NP�complete� As stated in Section �� we need to prove the following�

Theorem 	� Let Ga be an acyclic directed graph where each edge e has a weight w�e� �Z�
Given an integer �S for each vertex S� we de�ne the quantity w��e� for each edge e � �Se� S

�

e�
by w��e� � � if w�e���S�

e
��Se � �� and w��e� � � otherwise� The weight of a path is de�ned

as the sum of the weights w��e� of its edges� Then� �nding values for �S which minimize the

maximal weight of a path in Ga is NP�complete�

Proof� The decision problem associated to the fusion problem is� given a non negative con�
stant D� can we 	nd a value for each �S such that the maximal weight w��P � of a path P
in Ga is less than D� This problem is obviously in NP� given some values for the �S� the
maximal path weight in Ga can be computed in linear time� and compared to D�

Now� to prove the NP�completeness� we use a polynomial reduction from the UET�UCT
problem���� The UET�UCT problem �Unitary Execution Time� Unitary Communication
Time� is a scheduling problem with unbounded number of processors� and with execution
and communication delays� It is de	ned by a DAG �Directed Acyclic Graph� G � �V�E�
where each vertex v � V has a weight equal to � �the duration of the task v�� and each
edge e � E has a weight �the communication time� equal to � if both extremities of e are
not mapped to the same processor� and � otherwise� The goal is to de	ne for each task v a
processor ��v� and an execution date t��v� such that each processor computes only one task
at a time� and such that the total execution time � � maxv�V t��v� is minimized� We point
out that the DAG to be scheduled can be assumed with no multi�edge and no transitive edge
since such edges correspond to redundant constraints for the scheduling problem� We will
make this �classical� assumption in the rest of the proof�

It has been proved in��� that the UET�UCT problem is NP�complete� Moreover� the
study in��� shows that the optimal solution can be searched among solutions whose map�
ping � is a linear clustering� i�e� a mapping such that ��u� � ��v� may occur only if there is
a directed path from u to v� or from v to u� Restricting to linear clusterings makes the prob�
lem simpler to formulate �even if� of course� it remains NP�complete�� Indeed� given a linear
clustering �� the problem of determining the execution date t� is a classical DAG scheduling
problem� The constraints for the execution times t��v� are� for each edge e � �u� v��	

t��v� 	 t��u� � � if ��u� � ��v� �execution of u�
t��v� 	 t��u� � 	 if ��u� �� ��v� �execution of u plus communication to v�

���

In other words� each task v can be scheduled as soon as possible� its execution ends at time
u��v� � t��v� � �� and u��v� can be de	ned as the maximal weight �counting the weights of
both edges and vertices� of a path ending at v�

We now reduce this UET�UCT linear clustering problem to our fusion problem by the
following polynomial construction� We transform each DAG Gs for the scheduling problem
�as said above with no multi�edges and no transitive edges� into a DAG Ga �with some
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multi�edges� for the fusion problem� For each edge e in Gs� we de	ne in Ga two vertices he
�h for head� and te �t for tail� and an edge from he to te of weight w � �� For each pair of
edges e and f �e �� f� in Gs that both leave �or both enter� the same vertex� we de	ne in Ga

an edge from he to tf � and an edge from hf to te both with weight w � �� This 	rst part of
the construction is illustrated in Figure ��� For each pair of edges e and f in Gs such that
e enters the vertex that f leaves� we de	ne two edges in Ga from te to hf with respective
weights w � � and w � �� This second part of the construction is illustrated in Figure ���
We extend this construction to a vertex v with no predecessors �resp� no successors� by
de	ning an additional vertex tv �resp� hv�� and two edges from tv to he �resp� from te to hv�
with respective weights w � � and w � �� for each edge e that leaves v �resp� enters v�� For
example� the graph Gs of Figure �� is transformed into the graph Ga of Figure �� �dotted
circles indicate vertices that correspond to a given vertex of the initial graph�� Note that�
by construction� all undirected elementary cycles of Ga have a non zero weight�

e f g

te tf

he hf hg

tg

1 1 1
0

0

0 0

Figure ��� First part of the translation�

1
0

1 0

1
0

1 0 1
0

Figure ��� Second part of the translation�

Following the notations we used previously� for a linear clustering �� we denote by u��v�
the maximal weight of a path �sum of vertex and edge weights� in Gs ending at v� u��v�
can be interpreted as the time step at which v completes execution� For a loop bumping ��
we denote by p��v� the maximal weight of a path �sum of edge weights w��e�� in Ga ending
at v� p��v� can be interpreted as the label �counting from �� of the parallel loop in which v
should be placed� We now explain the correspondence between p� and t��

We 	rst point out that� when the DAG Gs has no multi�edge� and no transitive edge �as
we assumed�� a mapping � is a linear clustering if and only if� for each vertex v� at most one
of the successors �resp� predecessors� of v is mapped to the same processor as v� We use
this local characterization hereafter�

Each vertex v in Gs corresponds in Ga to a complete bipartite subgraph of Ga with
vertices of the form te corresponding to edges that enter v� and vertices of the form hf
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Figure ��� UET�UCT graph�
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Figure ��� Transformed graph�

corresponding to edges that leave v �see for example the dotted circles in Figure ���� Each
hf is a successor of each te� and hf �resp� te� has no other predecessor �resp� successor��
Thus� whatever the loop bumping �� all p��hf�� for the edges f that leave v� are equal �more
precisely equal to � plus the maximal value among the p��te� where e enters v�� we denote
this common value by p��v�� We have p��v� 	 p��u���� traversing a �dotted circle� costs ��
Furthermore� because of the undirected cycles of non zero weight such as those in Figure ���
p��v� � p��u� � � is possible for only one predecessor u �resp� successor v� of v �resp� u��
Therefore� we can de	ne a linear clustering � such that ��u� � ��v� if and only if there is
an edge from u to v with p��v� � p��u� � �� Then� t��v� � u��v�� � � p��v�� � de	nes a
valid schedule and maxv�Gs u��v� � maxh�Ga p��h��

Conversely� suppose given a linear clustering �� and the corresponding u�� We show that
it is possible to de	ne a loop bumping � and the corresponding p��s such thatmaxv�Gs u��v� �
maxh�Ga p��h�� We de	ne � as follows� for each edge e � �u� v� in Gs such that ��u� � ��v��
we let �he � � and for all edges f � �w� v�� f �� e� we let �tf � �� For all other vertices in Ga�
the value of � is �� Since Gs has no multi�edge and no transitive edge� and since � is a linear
clustering� the value of � for all vertices is uniquely de	ned� Furthermore� with this particular
choice for �� the weights of paths in Ga and Gs are strongly related� If ��u� � ��v�� then all
edges from a vertex he corresponding to u to a vertex tf corresponding to v have a null weight�
therefore the constraint that links p��u� and p��v� is p��v� 	 p��u� � �� If ��u� �� ��v�� then
the edge from he to te remains of weight w� � � �since its weight � � �te � �he is either �
or 	 but never ��� Therefore the constraint that links p��u� and p��v� is p��v� 	 p��u� � 	�
Therefore� for all vertices u � Gs� u��u� � p��u�� This proves that the maximal weight
of a path is the same in Ga and in Gs� The NP�completeness of our loop fusion problem
follows�
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