Pierre Boulet

Alain Darte

Georges-Andr Silber Fr

Ric Vivien

Loop parallelization algorithms: from parallelism extraction to code generation

Keywords: automatic parallelization, nested loops, parallelization algorithms, loop fusion, synchronizations, code generation Parall lisation automatique, boucles imbriqu es, algorithmes de parall lisation, fusion de boucles, synchronisations, g n ration de code automatic parallelization, nested loops, parallelization algorithms, loop fusion, synchronizations, code generation

In this paper, we s u r v ey loop parallelization algorithms, analyzing the dependence representations they use, the loop transformations they generate, the code generation schemes they require, and their ability to incorporate various optimizing criteria such as maximal parallelism detection, permutable loops detection, minimization of synchronizations, easiness of code generation, etc. We complete the discussion by presenting new results related to code generation and loop fusion for a particular class of multi-dimensional schedules, called shifted linear schedules. We demonstrate that algorithms based on such s c hedules, while generally considered as too complex, can indeed lead to simple codes.

Introduction

Loop transformations have been shown useful for extracting parallelism from regular nested loops for a large class of machines, from vector machines and VLIW machines to multiprocessor architectures. Several surveys have already presented in details the tremendous list of possible loop transformations (see for example the survey by Bacon, Graham and Sharp 4], or Wolfe's book 38]), and their particular use. Two additional surveys have presented the link between loop parallelization algorithms and dependence analysis: in 40], Yang, Ancourt and Irigoin characterize, for each loop transformation used to reveal parallelism, the minimal dependence abstraction needed to check its validity in 15], a complementary study is proposed that answers the dual question: for a given dependence abstraction, what is the simplest algorithm that detects maximal parallelism?

Loop parallelization algorithms consist in nding a good loop transformation that reveals parallelism. But it is only a step in the compilation process: further optimizations must be taken into account (depending on the machine for which the code is to be compiled) such a s t h e c hoice of the granularity of the parallel program, the data distribution, the optimization of communications, etc. Thus, to generate e cient parallel codes, a loop parallelization algorithm must be able, either to consider optimization criteria that are more accurate than the simple detection of parallel loops, or to generate an intermediate abstract parallel code that is simple enough so that further optimizations can still be performed.

In this paper, we survey loop parallelization algorithms with this compilation process in mind. In Section 2, we explain why detecting parallel loops is not su cient to generate parallel codes, taking the example of the compilation of High Performance Fortran. In Section 3, we present di erent loop parallelization algorithms proposed in the literature, recalling the dependence representations they use, the loop transformations they generate, and their capabilities to incorporate various optimizing criteria such as maximal parallelism detection, permutable loops detection, minimization of synchronizations, easiness of code generation, etc. In Section 4, we present the code generation techniques involved by these loop transformations.

The rest of the paper is devoted to a more accurate description of two particular optimization problems: how to generate codes that are as simple as possible (Section 5) and how to handle loop fusion (for example to minimize s y n c hronizations) in loop parallelization algorithms (Section 6). These last two sections present new results. Finally, w e give some conclusions in Section 7.

Compilation of parallel loops 2.1 Abstract parallel code

A loop is parallel if there are no dependences between di erent iterations of the loop or, in other words, if there are no dependences carried by the loop. Consequently, all iterations of the loop can be executed concurrently on di erent processors. Many languages and compilers o er means for the programmer to express that a loop is parallel and to map data among processors. The INDEPENDENT directive of HPF 21] asserts to the compiler that the iterations in the do loop that follows the directive m a y be executed concurrently without changing the semantics of the program. The programmer (or a parallelizing algorithm) asserts that no iteration can interfere with any other iteration. Figure 1: A sequential do loop and its precedence graph. The precedence graph of Figure 1 represents the execution order of the statements in a sequential loop. The edges of the graph imply an order for the execution of the statements. If there is an edge from S a (k) to S b (l), it means that S a (k) must be executed before S b (l) 1 . This 1 S a (k) means execution of the statement S a for the loop index value k.

order is imposed by the semantic of do loops. The precedence graph of Figure 2 for the same code but with the INDEPENDENT directive is simpler: all the edges between two di erent iterations have been removed. It means that the computer may execute the iterations in parallel, if the arrays are well mapped. Actually, in the example of Figure 1, there are no data dependences between S a and S b since the operations do not use the same memory locations. Thus, an iteration i of the loop may be executed either as: S a (i) before S b (i), S b (i) before S a (i), o r a s S a (i) in parallel with S b (i). More precisely, w e h a ve the precedence graph of Figure 3: with this type of code, the compiler has a high degree of liberty to produce the executable parallel code. uses data computed by S a (i) (the array reference A i]). This time, we m ust enforce the precedence graph of the INDEPENDENT loop (Figure 2), i.e. we m ust execute S a (i) before S 0 b (i). There is a loop independent dependence, a dependence that lies inside the loop body, independent of the iteration. The compiler has a smaller degree of liberty to produce the code. Furthermore, the mapping of the arrays is important: the owner computes rule implies that the processor that owns the left hand side of the computation computes it. If A i] and C i ; 1] are not on the same processor, some communications and synchronizations may b e generated in the loop itself.

This brief discussion shows that even with an INDEPENDENT directive, the actual generation of the parallel code has a variable degree of di culty. The question is: given a parallel loop, how to produce the most e cient executable parallel code? And even more, how t o produce any parallel code? We are going to deal with these questions in the next section.

Executable parallel code

Consider again the example of Figure 3. An HPF compiler may produce two t ypes of code, following the owner computes rule. The rst type is the simplest expression of the owner computes rule on the entire iteration space. For each element of computation, the code tests if this element of computation is owned by the executor. This gives a parallel code like t h e one in Figure 4(a). To m a k e this code more e cient, communications can be moved outside of the loop if array accesses are known at compile-time. Nevertheless, it remains ine cient since each processor spans the entire iteration space. 4: Two t ypes of parallel executable codes for the code of Figure 3.

do i = 1 N if is_local(B i]) send(B i]) if is_local(A i]) A i] = receive(B i]) if is_local(D i]) send(D i]) if is_local(C i]) C i] = receive(D i]) enddo (Communication : get slice of B) (Communication : get slice of D) do i = my_A_slice_start, my_A_slice_stop A i] = B i] enddo do i = my_C_slice_start, my_C_slice_stop C i] = D i] enddo (a) (b) Figure
If the code to compile is simple enough and if the compiler is smart enough, a second approach is possible in which each processor computes only the slice of the array i t o wns, as in the code of Figure 4(b). Note that the distribution of the code in two loops is not needed if both slices are the same, for example if both arrays are mapped the same way. Now, consider the case where there is a loop independent dependence as in the example modi ed with statement S 0

b . An HPF compiler could generate a code like in Figure 5(a).

Here, the communication for A c a n n o t b e j u s t m o ved outside of the loop as before, since we must communicate something that is computed inside the loop. A possibility is to distribute the loop to obtain the general scheme: a parallel loop, a global synchronization, a parallel loop. Another possibility i s t o c hoose a good mapping such t h a t A i] and C i ; 1] are owned by the same processor, so that the loop independent dependence takes place inside a processor. In this case, we can even generate a code such as in Figure 5(b).

do i = 1 N if is_local(B i]) send(B i]) if is_local(A i]) A(i) = receive(B i]) send(A i]) endif if (is_local(C i ; 1]) C i ; 1] = receive(A i]) enddo (Communication : get slice of B) do i = my_A_slice_start, my_A_slice_stop A i] = B i] C i ; 1] = A i] enddo (a) (b)
Figure 5: Two t ypes of parallel executable codes for the code with S 0 b .

If A and C are not mapped to the same processor, these is a last possibility. Indeed, some compilers o er the ON HOME directive 2 , modifying the owner computes rule. In the previous example, we can force the compiler to produce a code that computes C i ; 1] at the same place as A i], b y generating temporary arrays or by duplicating some computations with the help of some overlap areas (as ADAPTOR does). This kind of code can be much more di cult to produce, because the compiler needs to have a precise knowledge of array accesses in order to produce the communications.

As we h a ve just mentioned, compiling parallel loops with loop independent dependences is quite di cult. One could argue that, in this case, a compiler should always compile a parallel loop with multiple statements as a succession of parallel loops with a single statement, interleaved with some communications/synchronizations. In other words, why not always implement loop distribution rather than loop fusion? Why trying to produce codes with large loop bodies?

The advantages of loop fusion are well-known. First, synchronization is a costly operation. Therefore, minimizing the number of synchronizations is important. Second, even if loop fusion increases the size of the loop, which can have a negative impact on cache and register performance, it can improve data reuse by m o ving references closer together in time, making them more likely to still reside in cache or registers [START_REF] Wolfe | Optimizing Supercompilers for Supercomputers[END_REF][START_REF] Lim | Maximizing parallelism and minimizing synchronization with a ne transforms[END_REF]. This is of major importance with the development o f c a c he memory hierarchies. Reuse provided by fusion can even be made explicit by using scalar replacement to place array references in a register. Furthermore, fusion decreases loop overhead, increasing the granularity of parallelism, and allowing easier scalar optimizations, such as subexpression elimination.

The examples above illustrate that even if an abstract code is parallel, it can be di cult for a compiler to produce an e cient executable code. This fundamental aspect of automatic parallelization has to be taken into account: generating parallel loops is not su cient for generating e cient parallel executable programs. When designing parallel loop detection algorithms, we m ust consider various criteria: of course the maximization of the degree of parallelism, but also the feasibility of the code generation, the minimization of synchronizations, the exibility of the algorithm, the possibility of loop fusion, etc. Indeed, the detection of parallelism is a rst step in the compilation scheme: it should not produce codes that are so complex that no further optimizations are possible.

Loop parallelization algorithms

The structure of nested loops allows the programmer to describe parameterized sets of computations as an enumeration, but in a particular order, called the sequential order. Many loop transformations have been proposed to change the enumeration order so as to increase the e ciency of the code, see for example the survey by Bacon, Graham and Sharp 4]. However, most of these transformations are still applied in an ad-hoc fashion, through heuristics, and only a few of them are generated fully automatically by loop parallelization algorithms.

In this section, we give a quick summary of the loop transformations that are captured by these loop parallelization algorithms (Section 3.2). Before, in Section 3.1, we recall the dependence abstractions used to check t h e v alidity of the transformations used by these algorithms. Finally, in Section 3.3, we list the main loop parallelization algorithms that have been proposed in the literature, with a survey of their main characteristics (see Table 1).

All these algorithms apply to a particular type of codes: nested loops, possibly non perfectly nested, but in which the control can be statically de ned, in other words loops with no jumps and no conditionals (except conditionals that can be captured statically, for example when control dependences can be converted to data dependences, or when the conditional restricts statically the range of the loop counters). Classically, loop bounds are supposed to be a ne functions of some parameters and of surrounding loop counters, with unit steps, so that the computations associated to a given statement S can be described by a subset (actually the integral points of a polyhedron) D S of Z n S , w h e r e n S is the number of loops surrounding S. D S is called the iteration domain of S, and the integral vectors in D S the iteration vectors. T h e i-th component of an iteration vector is the value of the counter of the i-th loop surrounding S, c o u n ting from the outermost to the innermost loop. To e a c h I 2 D S corresponds a particular execution of S denoted by S(I). In the sequential order, all computations S(I) are executed following the lexicographical order de ned on the iteration vectors. If I and J are two v ectors, we write I lex J if I is lexicographically strictly smaller than J, a n d I lex J if I lex J or I = J.

Dependence abstractions

Data dependence relations between operations are de ned by Bernstein's conditions 5]. Two operations are dependent if both operations access the same memory location and if at least one of the accesses is a write. The dependence is directed according to the sequential order, from the rst executed operation to the last one. We write S(I) ;! S 0 (J) if the statement S 0 at iteration J depends on the statement S at iteration I. Dependences are captured through a directed acyclic graph, called the reduced dependence g r aph (RDG), or statement level dependence graph. Each v ertex of the RDG is identi ed with a statement of the loop nest, and there is an edge from S to S 0 if there exists at least one pair (I J) 2 D S D S 0 such that S(I) ;! S 0 (J). An edge between S and S 0 is labeled using various dependence abstractions or dependence approximations, depending on the dependence analysis and on the input needed by the loop parallelization algorithm. Except for a ne dependences (see below), a dependence S(I) ;! S 0 (J) is represented by a n a p p r o ximation of the distance vector J ; I. I f S and S 0 do not have the same domain, only the components of the vector J ;I, that correspond to the n S S 0 loops surrounding both statements, are de ned. Classical representations of distance vectors (by increasing precision) are: Dependence level: introduced by Allen and Kennedy in 1, 2]. A distance vector J ; I is approximated by an element l (the level) i n 1 n S S 0] f1g, de ned as 1 if J ; I = 0 , or as the largest integer such that the l ; 1 rst components of the distance vector are zero. When l = 1, the dependence is said loop independent, a n d loop carried otherwise. Direction vector: rst described by Lamport in 28], then by W olfe in 37]. A s e t o f distance vectors between S and S 0 is represented by a n S S 0 -dimensional vector, called the direction vector, whose components belong to Z f g (Z f + ;g). I t s i-th component i s an approximation of the i-th component of the distance vectors: z+ means z, z; means z, and means any v alue.

Dependence polyhedron: introduced by Irigoin and Triolet 26]. A set of distance vectors between S and S 0 is approximated by a subset of Z n S S 0 , de ned as the integral points of a polyhedron. This is an extension of the direction vector abstraction.

A ne dependences: used by F eautrier 18] to express dependence relations when exact dependence analysis is feasible. A set of dependences S(I) ;! S 0 (J) can be represented by an a ne function f that expresses I in terms of J (I = f(J)) or the converse, subject to a ne inequalities that restrict the range of validity of the dependence.

Loop transformations

We only focus here on the transformations that are captured by the loop parallelization algorithms presented in Section 3.3.

Statement reordering: the order of statements in a loop body is modi ed. Statement reordering is valid if and only if loop independent dependences are preserved.

Loop distribution: a loop, surrounding several statements, is split into several identical loops, each surrounding a subset of the original statements. The validity of loop distribution is related to the construction of the strongly connected components of the RDG (without considering dependences carried by an outer loop).

Unimodular loop transformations: a unimodular loop transformation is a change of basis (in Z n S) applied on the iteration domain D S . The computations are described through a new iteration vector I 0 = UIwhere U is an integral matrix of determinant 1 or ;1. A ne transformations: a general a ne transformation de nes a new iteration vector I 0 for each statement S by an a ne function I 0 = M S I + S . M S is a non parameterized non singular square integral matrix of size n S , a n d S is a possibly parameterized vector.

The linear part may be unimodular or not. Such a transformation is valid if and only if S(I) ;! S 0 (J)) M S I + S lex M S 0 J + S 0 :

Tiling: this transformation consists in rewriting a set of n loops into 2n loops, by de ning tiles of size (t 1 : : : t n): I = (i 1 : : : i n) is transformed into I 0 = (i 1 t 1 : : : i n t n i 1 mod t 1 : : : i n mod t n). A su cient condition for tiling is that the n original loops are fully permutable.

Parallelization algorithms

In the following, the optimality of an algorithm has to be understood with respect to the dependence abstraction it uses. For example, the fact that Allen and Kennedy's algorithm is optimal for maximal parallelism detection means that a parallelization algorithm which takes as input the same information as Allen and Kennedy's algorithm, namely a representation of dependences by dependence level, cannot nd more parallelism that Allen and Kennedy's algorithm does.

Lamport's algorithm 28] considers perfectly nested loops whose distance vectors are supposed to be uniform (constant) except for some xed components. It produces a set of vectors, best known as Lamport's hyperplanes , that form a unimodular matrix. Lamport proposed an extension of this algorithm to handle statement reordering, extension which can also schedule independently the left-and right-hand sides of assignments. Lamport's algorithm is related to linear schedules (see 12]) and to multi-dimensional schedules.

Allen and Kennedy's algorithm 2] is based on the decomposition of the reduced dependence graph into strongly connected components. It uses dependences represented by levels, and transforms programs by loop distribution and statement reordering. It is optimal for maximal parallelism detection (see 16]). The minimization of synchronizations is considered through loop fusion (see Section 6.1). However, it is not really adapted (because of the poor dependence abstraction) to the detection of outer parallelism and permutable loops.

Wolf and Lam's algorithm 36] is a reformulation of Lamport's algorithm to the case of direction vectors. It produces a unimodular transformation that reveals fully permutable loops in a set of perfectly nested loops. As a set of d fully permutable loops can be rewritten as one sequential loop and d;1 parallel loops, it can also detect parallel loops. The dependence abstraction it uses is sharper than the one in Allen and Kennedy's algorithm. However, the structure of the RDG is not considered. It is optimal for maximal parallelism detection if the only information on direction vectors with no knowledge of the dependence graph structure.

Feautrier's algorithm [START_REF] Feautrier | Data ow analysis of array and scalar references[END_REF][START_REF] Feautrier | Some e cient solutions to the a ne scheduling problem, part I: onedimensional time[END_REF] produces a general a ne transformation. It can handle perfectly nested loops as well as non perfectly nested loops as long as exact dependence analysis is feasible. It relies on a ne dependences. The a ne transformation is build as a solution of linear programs obtained by the a ne form of Farkas' lemma 35] applied to dependence constraint equations. Although Feautrier's algorithm is the most powerful algorithm for detecting innermost parallelism in loops with a ne dependences, it is not optimal since it turns out that a ne transformations are not su cient. Moreover, it is not adapted, a priori, to the detection of outer parallelism and permutable loops.

Darte and Vivien's algorithm 14] is a simpli cation of Feautrier's algorithm to the case of dependences represented by dependence polyhedra (an example being direction vectors). It also produces an a ne transformation, but of a restricted form, called shifter linear schedule (see Section 5.1). It is optimal for maximal parallelism detection if dependences are approximated by dependence polyhedra. Since it is simpler than Feautrier's algorithm, more optimizing criteria can be handled: the detection of permutable loops and outer parallelism (see 13]), and the minimization of synchronizations through loop fusion (see Section 6.2). Furthermore, the code generation is simpler (see Section 5). However, it may nd less parallelism than Feautrier's algorithm when exact dependence analysis is feasible because of its restricted choice of transformations.

Lim and Lam 30] is an extension of Feautrier's algorithm whose goal is to detect fully permutable loops and outer parallel loops. As Feautrier's algorithm, it relies on a description of dependences as a ne dependences. It uses the a ne form of Farkas' lemma and the Fourier-Motzkin elimination. Lim and Lam's algorithm has the same qualities and weaknesses as Feautrier's algorithm: it is, in theory, v ery powerful, but no guarantee is given concerning the easiness of code generation. Indeed, many solutions are equivalent r e l a t i v ely to the criteria they optimize: choosing the simplest solution is not explained in Lim and Lam's algorithm, and code generation is not addressed.

Code generation

Once the program has been analyzed and some loop transformation has been found, it remains to generate the code corresponding to the transformed program. In the current section, we review the techniques that currently exist to handle this last problem. We g o from the simplest transformations to the most complicated ones. We skip in the discussion loop distribution and statement reordering for which code generation is straightforward.

Unimodular transformations

Unimodular transformations apply to perfect loop nests whose iteration domains are convex polyhedra. They are important for code generation because they guarantee that, if the original iteration domain is a convex polyhedron, the iteration domain of the transformed loop nest is also a convex polyhedron. It means that the code generation problem simpli es to lexicographically scanning the integer points of a convex polyhedron.

The other part of the code generation is to express the array access functions with respect to the new loop indices. Since a unimodular transformation is invertible (with integral inverse), it is easy to express the array access functions with respect to the new loop indices.

Let U be the matrix of the unimodular transformation, I the iteration vector of the original loop nest, I 0 = UIthe iteration vector of the transformed loop nest, we j u s t h a ve to replace everywhere in the loop nest body I by U ;1 I 0 .

We present n o w t h e t wo classical approaches for the polyhedron scanning problem: the Fourier-Motzkin pairwise elimination and the simplex algorithm.

Fourier-Motzkin elimination. Ancourt and Irigoin rst proposed this technique in 3]

and it has then been used in several prototype compilers [START_REF]The group of Pr. Lengauer. The loopo project[END_REF][START_REF] Picouleau | Two new NP-complete scheduling problems with communication delays and unlimited number of processors[END_REF][START_REF]High Performance Fortran Language Speci cation[END_REF]. The idea is to use a projection algorithm to nd the loop bounds for each dimension. The polyhedron is represented as usually by a system of inequalities. At e a c h step of the Fourier-Motzkin pairwise elimination algorithm, some inequalities are added to the system to build a triangular (see Figure 6). The system describing the transformed polyhedron and its transformation by the Fourier-Motzkin elimination of i 0 2 are:

(1 i 0 2 n 1 i 0 1 ; i 0 The main drawback of this algorithm is that it can generate redundant inequalities. Their elimination requires a powerful test also based on the Fourier-Motzkin elimination or on the simplex algorithm 22]. If some redundant inequalities are not removed, some iterations may be empty in the resulting loop nest, causing overhead. The better the elimination, the fewer empty iterations. Although the Fourier-Motzkin elimination has super-exponential complexity for big problems, it remains fast for small problems, and works well in practice.

Simplex algorithm. The second approach to compute the loop bounds uses an extended version of the simplex algorithm: indeed one has to be able to solve parametric integer linear problems in rational numbers. This method has been proposed by Collard, Feautrier and Risset in 11] and has been used in at least three experimental parallelizers [START_REF] Bernstein | Analysis of programs for parallel processing[END_REF][START_REF] Ois | Code generation in automatic parallelizers[END_REF][START_REF] Gerasoulis | On the granularity and clustering of directed acyclic task graphs[END_REF].

The basic idea is to build a polyhedra D k for each loop index i k in which outer indices are considered as parameters and to search for the extrema of i k in D k so as to nd the loop bounds. It has been shown in 11] that this resolution can be done using PIP 17], a parametric dual simplex implementation, and that the result is expressed as the ceiling of the maximum of a ne expressions for the lower bound and the oor of the minimum of a ne expressions for the upper one. On the example of Figure 6, the result is the same.

This algorithm produces no empty iterations but may i n troduce oor and ceiling operations. The complexity of the simplex algorithm is exponential in the worst case but polynomial on the average and so also works well in practice. Chamski 9] addresses the problem of control overhead by replacing extrema operations by conditionals at the expense of code duplication.

Non-unimodular linear transformations

When dealing with non-unimodular transformations, the classical approach 29] is to decompose the transformation matrix into its Hermite normal form 35] to get back t o t h e unimodular case. An algorithm based on column operations on an integral nonsingular matrix T transforms it into the product HU(= T) where U is unimodular and H is a nonsingular, lower triangular, nonnegative matrix, in which e a c h r o w has a unique maximum entry, which is its diagonal entry. Once the transformation U has been considered, it is easy to handle the matrix H: each diagonal element corresponds to a multiplication of the loop counter and can be coded with steps in the loop indices, and the other non-zero entries are shifts. Figure 7 shows the example of the transformation of a 2-D loop nest by

; 2 0 1 3 . do i 1 = lb i 1 , ub i 1 do i 2 = lb i 2 , ub i 2 : : : enddo enddo do i 0 1 = 2lb i 1 , 2ub i 1 , 2 do i 0 2 = i 0 1
2 + 3 lb i 2 , i 0 1 2 + 3 ub i 2 , 3

: : : Xue presented in 39] another method to deal with non-unimodular transformations. It is based on Fourier-Motzkin elimination to compute the loop bounds and on Hermite decomposition to compute the steps and shifting constants.

enddo enddo

Extensions

Perfect loop nests with one-dimensional shifted linear schedules. In 6], Boulet and Dion explain how to deal with a ne transformations which share the same linear part and shift the rst transformed loop index with constants, one constant for each statement in the body of the original loop nest. Moreover, they handle the case of rational schedules, transformations whose rst dimension may h a ve rational entries. The basic idea is to decompose the transformation into a unimodular one and then handle the rational part and the shifting constants with a two-dimensional time combined with loop splitting to avoid control overhead.

Non perfect loop nests with one-dimensional schedules. Collard presents in 10] a method to produce code when each statement of a non perfect loop nest has been assigned an a ne one-dimensional schedule. His scheme is to build a global outer time loop and to add guards around the statements to compute them only when necessary. T h e g o a l i s t o reduce control overhead.

General a ne case. Kelly, Pugh and Rosset present in 27] a method to generate code for the general a ne case, that is a non perfect loop nest transformed with a possibly di erent a ne transformation for each statement. Their transformation is based on Presburger arithmetic implemented in the Omega library 34]. They also address the problem of control overhead versus code duplication. The problem is to be able to scan an arbitrary union of polyhedra. In the next section, we present a simpler code generation scheme for the case of shifted linear schedules. [START_REF] Bacon | Compiler transformations for high-performance computing[END_REF] Code generation for shifted linear schedules General a ne schedules are necessary to capture and manipulate non perfectly nested loops. However, applying such a transformation is not straightforward in the general case, and may lead to complex codes with nasty guards, loop steps, loop bounds and array access functions, as illustrated by the following example.

Example 1: Consider two statements S and S 0 with the same iteration domain f1 i j k Ng. Assume that S(i j k) and S 0 (i j k) are mapped, using a multi-dimensional schedule, respectively to (i ; j i + j i + j + 2 k) and (i ; j + 1 i + j + 2 k). A possibility i s to generate the code of Figure 8. Notice that this code is already optimized: a more naive approach w ould have k ept both S and S 0 inside the same t 3 loop and all conditionals in this innermost loop. Furthermore, some natural conditionals such a s t 1 n ; 1 for statement S 0 have been removed since they are redundant. do t 1 = ;n + 1 n do t 2 = m a x (t 1 + 2 ;t 1 + 2) min(t 1 + 2 n + 1 ;t 1 + 2 n + 3) if t 1 + t 2 mod 2 and t 1 + t 2 2n do t 3 = t 2 + 2 t 2 + 2 n 2 S((t 1 + t 2)=2 (t 2 ; t 1)=2 (t 3 ; t 2)=2) enddo endif if t 1 + t 2 + 1 m o d 2 and t 2 + t 1 5 do t 3 = 1 n S 0 ((t 1 + t 2 ; 3)=2 (t 2 ; t 1 ; 1)=2 t 3) enddo endif enddo enddo Figure 8: A code with modulos.

The complexity of this type of code generation is mainly due to the two following facts: In a non perfect loop nest, the statements may h a ve di erent iteration domains. Therefore, in order to schedule them simultaneously and to write the corresponding code, we need to be able to scan (i.e. describe by loops) an arbitrary union of polyhedra, even if all statements have the same multi-dimensional schedule.

A m ulti-dimensional a ne schedule can be viewed as a change of basis applied to the iteration domain. Therefore, as soon as the schedules of two statements are di erent, we need once again to be able to scan an union of polyhedra, even if all statements have the same iteration domain. The goal of this section is to present a new code generation scheme that leads to clean, simple, and easily understandable codes. This is made possible because we restrict the set of schedules that we consider, so as to circumvent t h e t wo di culties stated above. We consider only particular multi-dimensional a ne schedules, called multi-dimensional shifted linear schedules. We show that if all iteration domains are the same in the original code, up to a translation (a typical example is when the original code is perfectly nested), then the code generation for such s c hedules is a lot simpler, and leads to cleaner codes. Indeed, the code generation can be seen as a hierarchical combination of loop distribution, loop bumping (i.e. adding a constant to a loop counter), and matrix transformation, where each statement can be considered independently (thus avoiding the complicated problem of overlapping di erent polyhedra). Furthermore, we s h o w that, given a shifted linear schedule , it is possible to build an equivalent shifted linear schedule 0 , e q u i v alent in the sense that the nature of the loops (sequential, parallel or permutable) in the transformed code is preserved, and such that the code generation for 0 involves only unimodular transformations and loop bumping.

Shifted linear schedules

We use the following notations. If M is a matrix, M] k denotes the k-th row o f M, M] k] denotes the matrix whose rows are the rst k rows of M, a n d M] i j] denotes the square sub-matrix of M, i n tersection of the rows and columns of M from i to j.

To m a k e the discussion simpler, we consider that all iteration domains have the same dimension n (i.e. for any statement S, n S = n) so that all iteration vectors and all matrices have the same size (otherwise we can complete the iteration vectors with ending 0). As recalled in Section 3.2, a multi-dimensional a ne schedule is de ned for each statement S by a n i n tegral square nonsingular matrix M S of size n and an integral vector S of size n. We write = (M S S). The computation S(I) associated to the iteration vector I before transformation is associated to the iteration vector M S I + S after transformation. A multidimensional function = (M S S) i s a v alid schedule if and only if: S(I) ;! S 0 (J)) M S I + S lex M S 0 J + S 0

(1)

We s a y that a dependence S(I) ;! S 0 (J) is satis ed b y at level k if: M S I + S] k ; 1] = M S 0 J + S 0] k ; 1] and M S I + S] k < M S 0 J + S 0] k Equation 1 guarantees that k is always well-de ned: any dependence is satis ed at some level k, and for a unique k. W e denote by k S S 0 the maximal level at which some dependence between S and S 0 is satis ed, and by c S S 0 the maximal level c such t h a t M S] c] = M S 0] c].

De nition 1. A m ulti-dimensional a ne schedule = (M S S) is shifted linear if, for any statements S and S 0 , M S] k S S 0] = M S 0] k S S 0], i.e. if k S S 0 c S S 0 .

In other words, a multi-dimensional a ne schedule is shifted linear if S and S 0 have t h e same linear part for the outermost levels as long as there exists a dependence between S and S 0 not yet satis ed. Note that, as recalled in Section 3.3, looking for such s c hedules is not penalizing if dependences are approximated by a polyhedral approximation of distance vectors (for example direction vectors) and if the main objective is the detection of the maximal degree of parallelism.

Code generation scheme

Remember the code generation scheme for a single statement S. If the matrix M S is not unimodular, we use the Hermite form M S = H S U S where U S is unimodular, H S non negative, lower triangular, and each non diagonal component o f H S is strictly smaller than the diagonal component o f s a m e r o w. Then, we transform the code rst using U S , then using the loop skewing H S . Here, we h a ve m ultiple statements, di erent matrices M S , and di erent constants S , therefore we m ust apply a di erent unimodular transformation, a di erent l o o p skewing, and a di erent loop bumping for each statement. Fortunately, b y construction of the Hermite form 35], we h a ve:

M S] k] = M S 0] k]) H S] k] = H S 0] k] and U S] k] = U S 0] k]
Therefore, while all dependences between two statements S and S 0 are not satis ed, all loops that surround S and S 0 are the same (up to a constant): we j u s t h a ve to generate the codes for S and S 0 separately, and to fuse the two c o d e s i n to a single one until level k S S 0 . Then, for the remaining dimensions, since there are no more dependences between S and S 0 , t h e two codes do not need to be perfectly matched: one can just write them one above the other, and the resulting code remains correct. In other words, in this restricted case, there is no need for a complicated algorithm for scanning a union of polyhedra.

The code generation process is the following. We write M S = H S U S and S = H S q S + r S where q S and r S are integral vectors where each component o f r S is non negative and strictly smaller than the corresponding diagonal element o f H S (this decomposition is unique). Then, we decompose the transformation S : I ! M S I + S in four steps, 1 S : I ! U S I, 2 S : I ! I + q S , 3 S : I ! H S I, 4 S : I ! I + r S : 1 S is a unimodular transformation, 2 S i s a l o o p bumping, 3 S i s a l o o p s k ewing, and 4 S consists simply in writing the code in the r S -th position in the loop body (because the code at this point is a code with loop steps). Note that when H S is diagonal, there is no need to really multiply the counter by the diagonal component: we c a n k eep the original counter and avoid steps and oor functions. We will use this technique in Section 5.3.

Back to Example 1: We nd the two unimodular transformations U S : (i j k) ! (i ; j j j + k) and U S 0 : (i j k) ! (i ; j j k), a n d t h e t wo s k ewing transformations H S : (i j k) ! (i i+2 j i+2 k) and H S 0 : (i j k) ! (i i+2 j k). F urthermore q S = r S = (0 0 0), and q S 0 = (1 0 0), r S 0 = (0 1 0). W e n d t h e t wo i n termediate codes of Figure 9 by applying the transformations U S and U S 0 , and the loop bumping by q S and q S 0 . Then, we apply the loop skewings H S and H S 0 , and the displacements by r S and r S 0 . W e get the two codes of Figure 10. merging the two codes, we get the code of Figure 11. Loop peeling could be used to remove as many conditionals as possible if this turns out to be more e cient. Notice also that the two conditionals t 1 n ; 1 and t 2 ; n + 2 could be removed since they are redundant with the other constraints.

Equivalent s c hedules and unimodularity

In terms of parallelism extraction, multi-dimensional schedules may be used for detecting either parallel and sequential loops, or permutable loops as a rst step before tiling. We s a y that two s c hedules and 0 are equivalent if, in both transformed codes, the nature of the loops (parallel or sequential in the rst case, permutable in the second case) is the same.

Let us analyze how dependences in the original code are transformed if we use the code generation process described in Section 5.2. If S(I) ;! S 0 (J) is satis ed at level k: U S I + q S] k ; 1] = U S 0 J + q S 0] k ; 1] and r S] k ; 1] = r S 0] k ; 1]

U S I + q S] k U S 0 J + q S 0] k U S I + q S] k = U S 0 J + q S 0] k) r S] k < r S 0] k (2)
In other words, a dependence satis ed at level k is either loop carried at level k, w h e n U S I + q S] k < U S 0 J + q S 0] k , o r loop independent at level k, and in this latter case r S < r S 0 . A loop at level k is then parallel in the transformed code, if there is no dependence carried at level k between any t wo statements surrounded by this loop. We point out that the nature do t 1 = ;n + 1 n do t 2 = m a x (t 1 + 2 ;t 1 + 2) min(t 1 + 2 n ;t 1 + 2 n + 2) 2 if t 1 n ; 1 and t 2 ; t 1 + 2 n do t 3 = t 2 + 2 t 2 + 2 n 2 S((t 1 + t 2)=2 (t 2 ; t 1)=2 (t 3 ; t 2)=2) enddo endif if t 1 ; n + 2 and t 2 ; t 1 + 4 do t 3 = 1 n S 0 ((t 1 + t 2)=2 ; 1 (t 2 ; t 1)=2 t 3) of a dependence (loop carried or loop independent) is not fully speci ed by the schedule = (M S S) itself, but depends on the way w e write the code. For example, handling the constants S di erently may c hange the nature of a dependence (but not the level at which it is satis ed). Therefore, the equivalence of two s c hedules has to be understood with respect to the code generation we use. We h a ve the following result:

Theorem 1. For any shifted linear schedule = (M S S), there exists a shifted l i n e ar schedule 0 = (M 0 S 0 S), e quivalent for parallel and sequential loops, and such that M 0 S = H 0 S U 0 S where H 0 S is non-negative diagonal and U 0 S unimodular.

Proof. See the extended proof in the appendix A. We build 0 as follows. We write H S = K S H 0 S where H 0 S is the diagonal matrix such t h a t H 0 S and H S have the same diagonal. Then 0 = (K ;1 S M S K ;1 S H S q S + r S) = (H 0 S U S H 0 S q S + r S) is a shifted linear schedule equivalent for parallel and sequential loops.

We n o w consider schedules used for detecting maximal blocks of permutable loops. A maximal block of nested loops, from level i to level j, i s p e r m utable in the transformed code if for all statements S and S 0 surrounded by these loops, for any dependence S(I) ;! S 0 (J)

satis ed at a level between i and j, the dependence distance is non negative, i.e.:

M S I + S] i ; 1] = M S 0 J + S 0] i ; 1]) M S I + S] j] M S 0 J + S 0] j]

(3) Once again, since we address only shifted linear schedules, we consider only blocks, surrounding statements S and S 0 , whose maximal level j is smaller than c S S 0 . Theorem 2. For any shifted linear schedule = (M S S), there exists a shifted l i n e ar schedule 0 = (M 0 S 0 S), e quivalent for permutable loops, and such that M 0 S = H 0 S U 0 S where U 0 S is unimodular and H 0 S is positive diagonal, with all entries equal to 1 except possibly for each last level of a block of permutable loops containing S.

Proof. The technique is to de ne, for each statement S, a w ell chosen loop skewing G S (see the construction in the appendix B) such t h a t G S M S = H 0 S U 0 S . T h e n 0 = (G S M S bG S S c) is a shifted linear schedule equivalent for permutable loops. When generating code for revealing permutable loops, we m a y w ant that permutable loops are perfectly nested. This is not the case with the code generation scheme proposed in Section 5.2 because of the constants r S . Each time two statements have di erent v alues of r S for the same loop, the resulting code is non perfectly nested (except of course at the innermost level). Therefore, for general a ne schedules, we m a y need to enforce loops to be perfectly nested by not decomposing the constants S into q S and r S . H o wever, the resulting code would be much more complicated. This is the reason why w e impose in Theorem 2 that the components of H 0 S are equal to 1, except for the last level of a block o f p e r m utable loops. Then, the code is easy to generate for the outermost block. To m a k e sure that it is also simple for inner blocks, we impose that r S] i S S 0 ; 1] = r S 0] i S S 0 ; 1] where i S S 0 is the rst level of the innermost block of permutable loops surrounding S and S 0 . F ortunately, this technical condition is true for shifted linear schedules that are built by the algorithm proposed in 13] for which w e d e v eloped these simpli cation techniques.

Back to Example 1: We assume that the rst two dimensions correspond to a block of permutable loops. Following the proof of Theorem 2, we n d t h e t wo l o o p s k ewing transformations G S : (i j k) ! (i i + j ;i + k) and G S 0 : i j k ! (i i + j k) which l e a d to the schedule (i ; j 2i 2j + 2 k) for S and (i ; j + 1 2i + 3 k) for S 0 . W e get the nal equivalent code of Figure 12 which is quite simpler. do t 1 = ;n + 1 n do t 2 = m a x (t 1 + 1 1) min(t 1 + n n + 1) if t 1 n ; 1 and t 2 n do t 3 = t 2 ; t 1 + 1 t 2 ; t 1 + n S(t 2 t 2 ; t 1 t 3 ; t 2 + t 1) enddo endif if t 1 ; n + 2 and t 2 2 do t 3 = 1 n S 0 (t 2 ; 1 t 2 ; t 1 t 3) It is shown in the appendices A and B that the nature of each l o o p (n o t o n l y p e r m utable, but also parallel and sequential) is preserved. As noticed in Section 5.2, all loop steps are unit steps, and there is no use of oor or ceiling functions, even if the transformation is non unimodular. This is because the loop skewings (the Hermite forms of the schedule) are diagonal, and because there is no need to really multiply the loop counter by the diagonal component. This demonstrates that shifted linear schedules have nice properties, for maximal parallelism detection as well as for code generation.

Reducing the number of synchronizations

In this section, we recall how the fusion of parallel loops is handled in Allen and Kennedy's algorithm so as to reduce the number of synchronizations (see 8]). We s h o w that the problem becomes much more di cult if loop bumping and loop fusion are combined. We show t h e NP-completeness of the problem, even in the simple case of uniform dependences, and we propose an integer linear programming method to solve i t .

Fusion of parallel loops

Consider a piece of code only composed of parallel loops. Consider the dependences that take place inside t h e c o d e (i n o t h e r w ords, if the code is surrounded by some loops, do not consider dependences carried by these loops), and in particular dependences between di erent l o o p s (inter-dependences). The fusion of two parallel loops is valid and gives one parallel loop if there is no inter-dependence between these two l o o p s , o r i f a l l i n ter-dependences become loop independent after fusion. Otherwise, the semantics of the code is not preserved or the loop produced is sequential. An inter-dependence that is not loop independent after fusion is called fusion preventing.

The technique to minimize the number of parallel loops after fusion is the following. The goal is to assign to each statement S a nonnegative i n teger p(S) that indicates which parallel loop contains S after fusion. Let e be a dependence from statement S to statement S 0 . Then, after fusion, the loop containing S must appear, in the new loop nest, before the loop containing S 0 : p(S) p(S 0). F urthermore, if this dependence is fusion preventing, S and S 0 cannot be in the same loop after fusion: p(S) + 1 p(S 0). T o m i n i m ize the total number of parallel loops after fusion, we just have to minimize the label of the last loop, max S p(S).

To obtain the desired loop nest, we place in the same parallel loop all statements with the same value p, and parallel loops are ordered by increasing p. The formulation is thus: ;! S 0 s.t. e is fusion preventing p(S) + 1 p(S 0) The reader can recognize a classical scheduling problem: p(S) is the maximal weight o f a dependence path ending in S, where the weight o f a n e d g e i s d e n e d a s 1 if the edge is fusion preventing, and 0 otherwise. Therefore, a greedy algorithm is optimal and polynomial.

An extension of this technique has been proposed in 31] to handle both the fusion of parallel loops and the fusion of sequential loops. It consists in two steps. First the fusion of parallel loops is performed as above, except that additional fusion preventing edges are added each time there is a dependence path between two statements that goes through a sequential loop. Then, the similar technique is used for sequential loops. As noticed by Mc Kinley and Kennedy, the total number of loops may not be minimal, but the number of parallel loops is and, therefore, the number of synchronizations.

Fusion of parallel loops and shifted linear schedules

We n o w consider the particular case of the generation of parallel loops with shifted linear schedules (see Section 5.1). We suppose that k loops have already been generated, and that all the dependences are satis ed by these loops, except some dependences that form an acyclic graph G a .

The code generation technique proposed in Section 5.2 would generate the n;k remaining loops, by placing each statement in a separate set of nested parallel loops so that the dependences of the acyclic graph are satis ed at level k as loop independent. Here, we w ant to do better. We w ant to generate as few parallel loops as possible and no sequential loops, in order to have, once again, the maximal parallelism while minimizing synchronizations.

We consider the case where one loop remains to be built (k = n ; 1): the general case is similar if we decide that two statements share all or none of their surrounding parallel loops. Once again, we try to place in the same parallel loop only statements for which t h e schedule is de ned by the same linear part (shifted linear schedule). Practically, w e are given a v ector X that will be used to generate the last loop, and we try to generate constants S so as to fully de ne the schedule. If S and S 0 are to be placed in the same parallel loop, we m ust nd two constants S and S 0 such that, for each dependence e : S(I) ! S 0 (J), X(J ; I) + S 0 ; S = 0 so that the dependence becomes loop independent. To m a k e t h e link with Section 6.1, here we try to fuse more parallel loops using in addition loop bumping. This gives more freedom, but makes the optimal solution more di cult to nd.

We assume that the dependences in G a are uniform. We denote by w(e) the quantity X(J ; I) associated with the edge e. Remark that when G a is acyclic, if considered as an undirected graph, one can always choose the constants S so that all statements can be placed in the same parallel loop. On the other hand, if G a has an (undirected) cycle, this may not be possible. Indeed, consider an undirected cycle in G a , C = P We point out that solving the linear program above is exponential for two reasons: rst, the number of undirected elementary cycles can be exponential, and second, we use integer linear programming. Nevertheless, in practice, G a is usually very small, thus the program is solvable in reasonable time. However, in theory, the problem is NP-complete, as stated by the following theorem.

Theorem 3. Let G a be an acyclic directed g r aph where e ach edge e has a weight w(e) 2 Z.

Given an integer S for each vertex S, we de ne the quantity w (e) for each edge e = (S e S 0 e) by w (e) = 0 if w(e)+ S 0 e ; Se = 0 , a n d w (e) = 1 otherwise. The weight of a path is de ned as the sum of the weights w (e) of its edges. Then, nding values for S which minimize the maximal weight of a path in G a is NP-complete.

Proof. The proof is by reduction of the fusion problem from the UET-UCT scheduling problem (Unitary Execution Time -Unitary Communication Time), see the appendix.

We illustrate the methods described in Sections 6.1 and 6.2 with the program of Figure 13. Because of the non zero dependences the simple fusion builds three di erent parallel loops (see Figure 14) when the fusion with loop bumping only builds two parallel loops.

do i = 1, n a i] = 1 b i] = 1 c i] = a i ; 1] + b i] d i] = a i] + b i ; 1] e i] = d i] + d i ; 1]
i = 1, n a i] = 1 b i] = 1 enddo dopar i = 1, n c i] = a i ; 1] + b i] d i] = a i] + b i ; 1] enddo dopar i = 1, n e i] = d i] + d i ; 1] enddo dopar i = 1, n + 1 if i n then a i] = 1 if 1 < i then b i ; 1] = 1 if i n then d i] = a i] + b i ; 1] enddo dopar i = 1, n c i] = a i ; 1] + b i] e i] = d i] + d i ; 1]
enddo Figure 14: Optimal solution for simple fusion, and for fusion with loop bumping.

Conclusion

We h a ve proposed a comparative study of loop parallelization algorithms, insisting on the program transformations they produce, on the code generation scheme they need, and on their capabilities to incorporate various optimization criteria such as the detection of parallel loops, the detection of permutable loops, the minimization of synchronizations through loop fusion, and the easiness of code generation. The simplest algorithm (Allen and Kennedy's algorithm) is of course not able to detect as much parallelism as the most complex algorithm (Feautrier's algorithm and its variants or extensions). However, the code generation it involves is straightforward and sharp optimizations such as the maximal fusion of parallel loops can be taken into account. For more complex algorithms, the loop transformations are obtained as solutions of linear programs, minimizing one criterion: no guarantee is given concerning the simplicity of the solution, or its quality with respect to a second optimization criterion. In other words, for complex algorithms, it remains to demonstrate that generating a clean solution is feasible. We gave some hints in this direction. We s h o wed that, for algorithms based on shifted linear schedules, code generation is guaranteed to be simple, and that loop fusion can be handled (even if it can be expensive in theory).

A fundamental problem remains to be solved in the future: the link between parallelism detection and data mapping. Indeed, a parallel loop can be e ciently executed only if an adequate data mapping is proposed. This question is related to complex problems such a s automatic alignment and distribution, scalar and array privatization, duplication of computations, etc.

A Parallel loops and shifted linear schedules We r s t p r o ve some properties of loop skewing related to parallel and sequential loops.

Lemma 1. Let = (M S S) be a shifted linear schedule, where M S = H S U S , S = H S q S + r S . Suppose given, for each statement S, a r ational matrix G S , lower triangular, with diagonal greater than 1, s u c h t h a t G S M S is integral and for any statements S and S 0 , G S] k S S 0] = G S 0] k S S 0]. Then, 0 = (G S M S G S H S q S + r S) is a shifted l i n e ar schedule, and the level at which a dependence is satis ed and its nature a r e the same for and for 0 .

Proof. Note rst that 0 is integral since G S H S is integral if and only if G S M S is integral. Furthermore, G S M S] k S S 0] = G S 0 M S 0] k S S 0]. Let us compute the Hermite form of G S M S . We h a ve G S M S = G S H S U S , and G S H S is lower triangular, but not necessarily non negative. Actually, the Hermite form of G S H S is G S H S = H 0 S T S where T S is lower triangular (since G S H S is lower triangular) and unimodular. Furthermore, by construction of the Hermite form, it can be checked that T S] k S S 0] = T S 0] k S S 0]. Thus the Hermite form of G S M S is G S M S = H 0 S U 0 S where H 0 S = G S H S T ;1 S and U 0 S = T S U S . Finally, since the diagonal of G S is greater than 1, G S H S q S + r S = H 0 S T S q S + r S is the desired unique decomposition of G S H S q S + r S into H 0 S q 0 S + r 0 S with q 0 S = T S q S and r 0 S = r S .

Consider now a dependence S(I) ;! S 0 (J) satis ed at level k for . It remains to check whether Equation 2 is satis ed the same way with U 0 S , q 0 S and r 0 S . U S 0 J + q S 0] k] ; U S I + q S] k] is a non negative v ector of size k whose rst k ; 1 rst components are null. Thus, multiplying by T S , w e nd that U 0 S 0 J + q 0 S 0] k] ; U 0 S I + q 0 S] k] and U S 0 J + q S 0] k] ;

U S I + q S] k] are equal since T S] k] = T S 0] k] and all diagonal components of T S are 1. Furthermore, by construction, r S = r 0 S . This proves that the dependence is also satis ed at level k in 0 and has the same nature (loop carried or loop independent).

Lemma 1 is the key property to simplify schedules used for detecting sequential and parallel loops. This leads to the following result: Theorem 1. For any shifted linear schedule = (M S S), there exists a shifted l i n e ar schedule 0 = (M 0 S 0 S), e quivalent for parallel and sequential loops, and such that M 0 S = H 0 S U 0 S where H 0 S is positive diagonal and U 0 S unimodular.

Proof. We write H S = K S D S where D S is the diagonal matrix such t h a t D S and H S have t h e same diagonal. Then, K ;1 S is lower triangular with diagonal equal to 1, a n d K ;1 S c S S 0] = K ;1 S 0 c S S 0] since K S] c S S 0] = K S 0] c S S 0] and since K S and K S 0 are lower triangular. Moreover, K ;1 S M S = D S H ;1 S H S U S = D S U S which i s i n tegral. Finally, b y Lemma 1, 0 = (K ;1 S M S K ;1 S H S q S + r S) = (D S U S D S q S + r S) is an equivalent s c hedule.

B Permutable loops and shifted linear schedules

We denote by j S S 0 the maximal level c S S 0 o f a b l o c k of permutable loops that surround both S and S 0 and by i S S 0 the rst level of this innermost block. We rst need a lemma.

Lemma 2. Let = (M S S) be a shifted l i n e ar schedule. Suppose given, for each statement S, a r ational matrix G S , lower triangular, such that G S M S is integral, and G S] j S S 0] = G S 0] j S S 0] for any statements S and S 0 . If, for any maximal block of permutable loops from level i to level j surrounding S, G S] i j] is non negative and all components of the last row of G S] i j] are g r eater than 1, then, 0 = (G S M S bG S S c) is a shifted linear schedule, and permutable loops for are p ermutable loops for 0 .

Proof. Consider a block of permutable loops from level i to level j, surrounding two statements S and S 0 , and a dependence S(I) ;! S 0 (J) satis ed for at level k, w i t h i k j.

We e v aluate the vector D = G S 0 (M S 0 J + S 0);G S (M S I + S). S i n c e G S] j S S 0] = G S 0] j S S 0] and since G S] i j] is non negative and lower triangular, D] k ; 1] = 0 and D] j] 0. F urthermore, all components of the last row o f G S] i j] = G S 0] i j] are greater than 1, t h us D] j 1. Therefore, the evaluation of bDc shows that the dependence is carried at level k 0 with k k 0 j. F urthermore, the components of the distance vector D are non negative a t least until level j. T h i s p r o ves that the structure of the blocks of permutable loops are the same for and for 0 .

We n o w can prove the desired property f o r s c hedules used for detecting permutable loops:

Theorem 2. For any shifted linear schedule = (M S S), there exists a shifted l i n e ar schedule 0 = (M 0 S 0 S), e quivalent for permutable loops, and such that M 0 S = H 0 S U 0 S where U 0 S is unimodular, and H 0 S is positive diagonal, with all entries equal to 1, except possibly for each last level of a block of permutable loops containing S.

Proof. The construction of Theorem 1 is not su cient to guarantee that permutable loops are preserved: the matrix G S in Lemma 2 needs additional properties. We start from H ;1 S , and for each block o f p e r m utable loops from level i to level j (starting from the innermost block), we use a process similar to the (left) Hermite decomposition of H ;1 S i j], m ultiplying on the left by a unimodular matrix: we a d d a m ultiple of the (j;1)-th row o f H ;1 S to the j-th row so that the (j;1)-th component o f t h e j-th row is non negative and smaller than the diagonal component of the same column. Then, we repeat the operation for the (j;2)-th column, manipulating the j-th and (j;1)-th rows with the (j;2)-th row, and so on, until the i-th row. Actually, w e slightly modify this process for each step, so that all components of the last row o f H ;1 S i j] are greater than the diagonal component of the same row (which is not necessarily true if we only simulate the Hermite form).

With this process, we end up with a decomposition H ;1 S = T S R S where T S is unimodular and R S has the properties mentioned above. Moreover, by construction and since H ;1 S j S S 0] = H ;1 S 0 j S S 0], w e h a ve T S] j S S 0] = T S 0] j S S 0] and R S] j S S 0] = R S 0] j S S 0]. Let H 0 S be the diagonal matrix whose components are the diagonal components of H S , e xcept those, equal to 1, that do not correspond to the last level of a block of permutable loops containing S. Then, G S = H 0 S R S satis es the conditions of Lemma 2, and thus 0 = (G S M S bG S S c) is a shifted linear schedule, equivalent t o for permutable loops.

Furthermore, G S M S = H 0 S T ;1 S U S : 0 has the desired form.

C Minimization of synchronizations with loop fusion and loop bumping

We p r o ve that the minimization of synchronizations with loop fusion and loop bumping is NP-complete. As stated in Section 6, we need to prove the following:

Theorem 3. Let G a be an acyclic directed g r aph where e ach edge e has a weight w(e) 2 Z.

Given an integer S for each vertex S, we de ne the quantity w (e) for each edge e = (S e S 0 e) by w (e) = 0 if w(e)+ S 0 e ; Se = 0 , a n d w (e) = 1 otherwise. The weight of a path is de ned as the sum of the weights w (e) of its edges. Then, nding values for S which minimize the maximal weight of a path in G a is NP-complete.

Proof. The decision problem associated to the fusion problem is: given a non negative constant D, can we n d a v alue for each S such that the maximal weight w (P) of a path P in G a is less than D? This problem is obviously in NP: given some values for the S , t h e maximal path weight i n G a can be computed in linear time, and compared to D. where each v ertex v 2 V has a weight equal to 1 (the duration of the task v), and each edge e 2 E has a weight (the communication time) equal to 1 if both extremities of e are not mapped to the same processor, and 0 otherwise. The goal is to de ne for each task v a processor (v) and an execution date t (v) such that each processor computes only one task at a time, and such that the total execution time 1 + m a x v2V t (v) is minimized. We point out that the DAG t o b e s c heduled can be assumed with no multi-edge and no transitive e d g e since such edges correspond to redundant constraints for the scheduling problem. We will make this (classical) assumption in the rest of the proof.

It has been proved in 32] that the UET-UCT problem is NP-complete. Moreover, the study in 23] shows that the optimal solution can be searched among solutions whose mapping is a linear clustering, i.e. a mapping such t h a t (u) = (v) may occur only if there is a directed path from u to v, o r f r o m v to u. Restricting to linear clusterings makes the problem simpler to formulate (even if, of course, it remains NP-complete). Indeed, given a linear clustering , the problem of determining the execution date t is a classical DAG s c heduling problem. The constraints for the execution times t (v) are: for each e d g e e = (u v), t (v) t (u) + 1 if (u) = (v) (execution of u) t (v) t (u) + 2 if (u) 6 = (v) (execution of u plus communication to v)

In other words, each task v can be scheduled as soon as possible: its execution ends at time u (v) = t (v) + 1 , and u (v) can be de ned as the maximal weight (counting the weights of both edges and vertices) of a path ending at v.

We n o w reduce this UET-UCT linear clustering problem to our fusion problem by t h e following polynomial construction. We transform each D AG G s for the scheduling problem (as said above with no multi-edges and no transitive edges) into a DAG G a (with some multi-edges) for the fusion problem. For each e d g e e in G s , w e de ne in G a two v ertices h e (h for head) and t e (t for tail) and an edge from h e to t e of weight w = 1 . F or each pair of edges e and f (e 6 = f) i n G s that both leave (or both enter) the same vertex, we d e n e i n G a an edge from h e to t f , and an edge from h f to t e both with weight w = 0 . This rst part of the construction is illustrated in Figure 15. For each pair of edges e and f in G s such t h a t e enters the vertex that f leaves, we de ne two edges in G a from t e to h f with respective weights w = 0 and w = 1 . This second part of the construction is illustrated in Figure 16. We extend this construction to a vertex v with no predecessors (resp. no successors) by de ning an additional vertex t v (resp. h v), and two edges from t v to h e (resp. from t e to h v) with respective w eights w = 0 and w = 1 , for each e d g e e that leaves v (resp. enters v). For example, the graph G s of Figure 17 Following the notations we used previously, for a linear clustering , w e denote by u (v) the maximal weight of a path (sum of vertex and edge weights) in G s ending at v: u (v) can be interpreted as the time step at which v completes execution. For a loop bumping , we denote by p (v) the maximal weight of a path (sum of edge weights w (e)) i n G a ending at v: p (v) can be interpreted as the label (counting from 0) of the parallel loop in which v should be placed. We n o w explain the correspondence between p and t .

We rst point out that, when the DAG G s has no multi-edge, and no transitive edge (as we assumed), a mapping is a linear clustering if and only if, for each v ertex v, at most one of the successors (resp. predecessors) of v is mapped to the same processor as v. W e use this local characterization hereafter.

Each v ertex v in G s corresponds in G a to a complete bipartite subgraph of G a with vertices of the form t e corresponding to edges that enter v, a n d v ertices of the form h f corresponding to edges that leave v (see for example the dotted circles in Figure 18). Each h f is a successor of each t e , a n d h f (resp. t e) has no other predecessor (resp. successor). Thus, whatever the loop bumping , a l l p (h f), for the edges f that leave v, are equal (more precisely equal to 1 plus the maximal value among the p (t e) where e enters v): we denote this common value by p (v). W e h a ve p (v) p (u) + 1 : traversing a dotted circle costs 1. Furthermore, because of the undirected cycles of non zero weight s u c h as those in Figure 15, p (v) = p (u) + 1 is possible for only one predecessor u (resp. successor v) o f v (resp. u).

Therefore, we can de ne a linear clustering such t h a t (u) = (v) if and only if there is an edge from u to v with p (v) = p (u) + 1 . Then, t (v) = u (v) ; 1 = p (v) ; 1 de nes a valid schedule and max v2Gs u (v) = m a x h2Ga p (h).

Conversely, suppose given a linear clustering , and the corresponding u . W e s h o w t h a t it is possible to de ne a loop bumping and the corresponding p 's such t h a t max v2Gs u (v) = max h2Ga p (h). W e de ne as follows: for each edge e = (u v) in G s such that (u) = (v), we let he = 1 and for all edges f = (w v), f 6 = e, w e let t f = 1 . F or all other vertices in G a , the value of is 0. Since G s has no multi-edge and no transitive edge, and since is a linear clustering, the value of for all vertices is uniquely de ned. Furthermore, with this particular choice for , the weights of paths in G a and G s are strongly related. If (u) = (v), then all edges from a vertex h e corresponding to u to a vertex t f corresponding to v have a n ull weight, therefore the constraint that links p (u) and p (v) is p (v) p (u) + 1 . I f (u) 6 = (v), t h e n the edge from h e to t e remains of weight w = 1 (since its weight 1 + te ; he is either 1 or 2 but never 0). Therefore the constraint that links p (u) and p (v) is p (v) p (u) + 2 .

Therefore, for all vertices u 2 G s , u (u) = p (u). This proves that the maximal weight of a path is the same in G a and in G s . The NP-completeness of our loop fusion problem follows.

Figure 2 :

 2 Figure 2: A simple independent do loop and its precedence graph.

Figure 3 :

 3 Figure 3: A simple independent do loop and its precedence graph (actual graph). However, suppose now t h a t w e replace statement S b by S 0 b : C i ; 1] = A i]. S 0 b (i)

Figure 6 :

 6 Figure 6: Unimodular example.

Figure 7 :

 7 Figure 7: Non-unimodular example.

Figure 11 :

 11 Figure 11: Combination of the two c o d e s .

Figure 12 :

 12 Figure 12: Equivalent code for Example 1.

 ; 1 1g, i.e. a cycle that can use an edge backwards (e = ;1) o r f o r w ards (e = 1). De ne the weight o f C as w(C) = P e2C e w(e). If all dependences of C are transformed into loop independent dependences, then w(C) = 0 . C o n versely, i f w(C) 6 = 0 , then for at least one edge e = (S e S 0 e) of the cycle, S 0 e has to be placed in a parallel loop after the parallel loop that surrounds S e . This remark leads to the following integer linear program 8 for each undirected elementary cycle C: that solves the problem: p(S) is the label of the parallel loop in which S should be placed. Indeed, by construction, the subgraph G 0 a of G a formed by the edges e = (S e S 0 e) for which p(S e) = p(S 0 e) only contains undirected cycles C such t h a t w(C) = 0 . Therefore, one can build the desired constants S such that for all edge e 2 G 0 a , w(e) + S 0 e ; Se = 0 . 20

Figure 13 :

 13 Figure 13: Original code and its dependence graph.

 dopar

Now, to prove

 the NP-completeness, we use a polynomial reduction from the UET-UCT problem 32]. The UET-UCT problem (Unitary Execution Time, Unitary Communication Time) is a scheduling problem with unbounded number of processors, and with execution and communication delays. It is de ned by a D AG (Directed Acyclic Graph) G = (V E)

 is transformed into the graph G a of Figure 18 (dotted circles indicate vertices that correspond to a given vertex of the initial graph). Note that, by construction, all undirected elementary cycles of G a have a n o n z e r o w eight.

Figure 15 :Figure 16 :

 1516 Figure 15: First part of the translation.

Figure 17 :Figure 18 :

 1718 Figure 17: UET-UCT graph.

Table 1 :

 1 A comparison of various loop parallelizing algorithms. system were each loop index depends only on the previous loop indices and on parameters. As many inequalities can de ne a loop bound, we h a ve t o t a k e the maximum of the lower loop bounds and the minimum of the upper loop bounds. Let us take an example: a square domain transformed by combination of loop skewing and loop interchange

	Algorithms Dependence Loop Maximal Synchro. Code Tiling abstraction transformations degree of // Fusion generation Dependence level Optimal Yes Very easy No Allen-Kennedy 2] Multiple statements Distribution Non perfect Direction vectors Optimal No Easy Yes Wolf-Lam 36] One statement Unimodular Perfect Polyhedra Optimal Partial yes Quite easy Yes Darte-Vivien 14] Multiple statements Shifted linear Perfect A ne (exact) Sub-optimal No Complicated No A ne Feautrier 20] Multiple statements Non perfect A ne (exact) Yes Sub-optimal ? ? A ne Lim-Lam 30] Multiple statements Non perfect

 The displacements are visualized by nop operations. Finally,

	do t 1 = ;n + 1 n; 1 do t 2 = m a x (1 ;t 1 + 1) , min(n ;t 1 + n) do t 3 = t 2 + 1 t 2 + n S(t 1 + t 2 t 2 t 3 ; t 2)	do t 1 = ;n + 2 n do t 2 = m a x (1 ;t 1 + 2) min(n ;t 1 + n + 1) do t 3 = 1 n S 0 (t 1 + t 2 ; 1 t 2 t 3)
	enddo	enddo
	enddo	enddo
	enddo	enddo
	Figure 9: Separate codes after unimodular transformation.
	do t 1 = ;n + 1 n; 1 do t 2 = m a x (t 1 + 2 ;t 1 + 2) , min(t 1 + 2 n ;t 1 + 2 n) 2 do t 3 = t 2 + 2 t 2 + 2 n 2 S(t 1 +t 2 2 t 2 ;t 1 2 t 3 ;t 2 2) enddo	do t 1 = ;n + 2 n do t 2 = m a x (t 1 + 2 ;t 1 + 4) , min(t 1 + 2 n ;t 1 + 2 n + 2) 2 nop do t 3 = 1 n S 0 (t 1 +t 2 2 ; 1 t 2 ;t 1 2 t 3)
	nop	enddo
	enddo	enddo
	enddo	enddo
	Figure 10: Separate codes after loop skewing.

This directive is an approved extension of HPF 2.0 and some compilers have already implemented it, like A D APTOR 7], an HPF compiler by Thomas Brandes.