Pierre Fraigniaud 
  
Cyril Gavoille 
  
Local Memory Requirement of Universal Routing Schemes

Keywords: communication on parallel and distributed networks, compact routing tables, near-shortest path routing communication sur r eseaux parall eles et distribu es, tables de routages compactes, routages de

In this paper, we deal with the compact routing problem, that is the problem of implementing routing schemes that use a minimum memory size on each router. A universal routing scheme is a scheme that applies to all networks. In 13], Peleg and Upfal showed that one can not implement a universal routing scheme with less than a total of (n 1+1=(2s+4) ) memory bits for any routing scheme satisfying that the maximum ratio b e t ween the lengths of the routing paths and the lengths of the shortest paths, that is the stretch factor, is b o u n d e dby s. In 6], Fraigniaud and Gavoille improve this bound by proving that universal routing schemes of stretch factors at most 2 use a total of (n 2 ) memory bits in the worst-case. Recently, Gavoille and P erenn es 9] showed that, in fact, in the worst-case, (n) routers of an n-node network may require up to (n log n) memory bits for shortest path routing. In this paper, we extend this result by showing that, for any constant ", 0 < " < 1, (n " ) routers of an n-node network may require up to (n log n) memory bits even if each routing path is of length up to twice the distance b e t ween its source and its destination.

1 Introduction and statement of the problem One of the most important measure of complexity of routing scheme is the size of the routing information that must b estored locally and globally in a network. In this paper, we use a similar model as the one introduced by Peleg and Upfal in 13]. A routing function R is a triple (I H P ) consisting of initialization, header, and port functions, respectively. For any two distinct nodes u and v, R produces a path u = u 0 u 1 : : : u k = v of nodes, and a sequence h 0 h 1 : : : h k of headers such that h 0 = I(u v), P(u k h k ) = , and for all i, 1 i < k, H(u i h i ) = h i+1 , P(u i h i ) = (u i u i+1 ). We are interested in the distributed way of implementing routing functions. In this paper, we assume that nodes are labeled by integers in f1 : : : n g, and that the output p o r t sof each node x are labeled by integers in f1 : : : deg(x)g, where n and deg(x) are the total numb e rof nodes in the network and the degree of the node x, respectively.

A routing scheme is a function that returns a routing function R for any network G. For instance, the shortest path interval routing scheme 14, 15] is the selection, for any network G, of a shortest path routing function R whose implementation is based on grouping in intervals the destination addresses associated to each arc, and whose aim is to minimize the numb e rof intervals p e rlink. For any network, the obtained routing function R may require a large numb e rof intervals but it exists. The shortest path interval routing scheme is therefore said to b euniversal because it applies to all networks. On the contrary, the shortest Both authors are supported by the research programs ANM and PRS of the CNRS, and by the DRET of the DGA.

1 path 1-interval routing scheme, that is the routing scheme that returns a shortest path routing function that can b eimplemented using a unique interval p e rlink, is only partial in the sense that there exist networks for which no such routing scheme exists 5].

We consider the standard model of p o i n t-to-point communication networks described as nite connected symmetric digraphs G = (V E ). In the following, we denote by n the numb e rof vertices of such a graph.

The vertices represent the processors or the nodes of the network, and the edges represent bidirectional communication links b e t ween the nodes (to each edge corresponds two symmetric arcs). A vertex can directly communicate with its neighb o r sonly, and messages b e t ween nonadjacent vertices are sent along a path connecting them in the network. In the following, we always refer to nite connected symmetric digraph by the simple term graph.

Let G b eany graph, and let x b eany vertex of G. For every routing function R on G, we denote by MEM(G R x) the minimum memory requirement of R in x. The parameter MEM(G R x) is simply the Kolmogorov complexity 10] of the local computation of R in x. Of course, the memory requirement is de ned for a xed coding strategy. From the de nition above, the memory requirement does not take into account the size of the header. Indeed, to b eas general as possible, we allow headers to b eof unbounded size. We then de ne, for any routing function R on a graph G:

the global memory requirement as MEM global (G R) = P x MEM(G R x) the local memory requirement as MEM local (G R) = max x MEM(G R x).
The stretch factor of a routing function R on a graph G is denoted by s(R G), and satis es s(R G) = max x6 =y d R (x y) d G (x y) where d G (x y) denotes the distance b e t ween x and y in G, and d R (x y) denotes the length of the routing path b e t ween x and y constructed by R. For every stretch factor s, the global memory requirement of G is MEM global (G s) = min R MEM global (G R), and the local memory requirement of G is MEM local (G s) = min R MEM local (G R), where the minima are taken over all the routing functions R on G of stretch factor at most s.

It is interesting to consider both global and local memory requirements because it is possible that MEM global (G s) n MEM local (G s) for some graph G of n vertices, and for some stretch factor s. That is, informally, the global memory requirement does not indicate whether the routing information can b eevenly balanced b e t ween all the routers. On the contrary, the local memory requirement does not indicate whether all the routers need such a large memory.

For example, MEM local (H n 1) = O(log n), where H n is the hypercube of order n, by using e-cube routing 3]. It is known that, for all acyclic graphs 14], for all outer-planar graphs 7], and for all unit circular-arc graphs 5] G of order n and of maximum degree d, MEM local (G 1) = O(d log n) because the 1-interval routing scheme applies to these graphs (1 interval p e rarc). For every chordal graph G, it is shown in 11] and 13] that MEM global (G 3) = O(n log 2 n). Let us consider the complete graph K n of order n. In general, in a vertex x, a local routing function R in x on K n is stored with (n log n) bits for a random labeling of the ports of x, or a p o r tlabeling chosen by an adversary. Indeed, an adversary can choose some p e r m utation b e t ween the n ; 1 port-labels and the n ; 1 neighbors of x in such a way that reaching any neighb o rof x implies to know the full description of , i.e. dlog 2 ((n ; 1)!)e = (n log n) bits. However, it is easy to see that some other routing functions (using suitable p o r tlabeling) can b edescribed locally with O(log n) bits. Therefore, we have MEM local (K n 1) = O(log n).

The following table summarizes the state of the art on the local and global memory requirements, and the best known memory complexity of universal routing schemes on networks of order n as a function of the stretch factor s. When no reference is indicated, routing tables are the b e s tknown routing scheme. stretch local memory requirement global memory requirement s = 1

(n log n) 9] (n 2 log n) 9] 1 < s < 2 (n) y 6] (n 2 ) 6] O(n log n) O(n 2 log n) 2 s < 3 (n 1=(2s+4) ) y 13] (n 1+1=(2s+4) ) 13] O(n log n) O(n 2 log n) 3 s < 16 (n 1=(2s+4) ) y 13] (n 1+1=(2s+4) ) 13] O(n log n) O(n 1+1=blog 2 (s+1)c log 2 n) 1] 16 s < 87 (n 1=(2s+4) ) y 13] (n 1+1=(2s+4) ) 13] O(n 1=b p s=4c log 2 n) 2] O(n 1+1=blog 2 (s+1)c log 2 n) 1] s 87 (n 1=(2s+4) ) y 13] (n 1+1=(2s+4) ) 13] O( p sn 1=b p s=4c log 2 n) 2] O(s 3 n 1+1=b(s;3)=12c log n) 13] s = O(log n) (1) y 13] (n) 13] O(e p log n log 3=2 n) 2] O(n log 4 n) 13] s = O( p n) (1) y 13] (n) 13] O(e p log n log 3=2 n) 2] O(n log n) 12]
y Bounds derived from the lower bound of the global memory requirement. Comments.

In the referenced papers, the b o u n d son the memory requirement of the routing schemes are always given in term of n 1=k where k 1 is an integer function raising with the stretch factor. Table 1 presents results in an other way so that one can compare them as a function of the stretch factor.

In 1], the stretch factor is at most 2 k ; 1, and the routing scheme allows non uniform cost on the arcs. Another routing scheme is proposed in 1]. It locally requires at most O(k(d + n 1=k ) l o g n) memory bits on any vertex of degree d for every stretch factor at most 2 3 k ; 1. Therefore, this routing scheme is e cient in the case of bounded degree networks.

In 2], the stretch factor is at most 16k 2 , and the routing scheme allows non uniform cost on the arcs. The bound on the local memory requirement is given as a function of the diameter of the network: O(k n 1=k log n log D) bits p e rrouter. In order to compare all the results, we consider the worst-case, that is D = O(n). Headers, and vertex labeling are of size O(log n) bits. Note that n 1= p log n = e p log n . In 13], the stretch factor is at most 12k + 3. However, the routing scheme does not support non uniform cost on the arc. Moreover, the routing scheme proposed in this paper is not evenly balanced on all the routers. This is why we can not use this routing scheme for the upper bound on the local memory requirement. Headers are of size O(log n) bits, but this routing scheme uses a vertex labeling on O(log 2 n) bits. For large value of the stretch factor, this scheme gives a tight upper bound on the global memory requirement.

As one can see in the table, for a stretch factor s < 16, and for the local memory requirement, the b e s t known universal routing scheme is the one based on routing tables. It is of rst interest to know whether this b o u n dis tight because, in practice, near-shortest path routing schemes are the most important. We will show that, indeed, this b o u n dis tight for any stretch factor s < 2.

Theorem 1 For any stretch factor s, 1 s < 2, for any constant ", 0 < " < 1, and for any n, there exists an n-node network G n in which (n " ) routers require (n log n) bits each to code any routing function of stretch at most s. To prove this result, we will extend the tools introduced in 4, 8]. In particular, we will de ne the generalized matrices of constraints (Section 2), and the generalized graphs of constraints (Section 3). Section 4 gives the proof of Theorem 1. Finally, Section 5 contains some concluding remarks, and open problems.

Generalized Matrices of Constraints

In this section, we introduce a more general and p o werful de nition of matrix of constraints 4, 8] to improve the lower bound on the local memory requirement of universal routing schemes for stretch factor s < 2.

We will specify the routing constraints using the label of the output p o r tthat a vertex must use to send a message. More formally, we de ne a generalized matrix of constraints as follows.

De nition 1 Let G = (V E ) be a graph, and s be any real 1. A generalized matrix of constraints of G of stretch factor s is a p q integer matrix M = (m i j ), i 2 f1 : : : p g and j 2 f1 : : : q g, such that the entries of the row i of M are in f1 : : : j 1 j q fm i j gjg, i 2 f1 : : : p g. Moreover, there exist two sets of vertices A = fa i j 1 i pg V and B = fb j j 1 j qg V , and there exist p functions i : f1 : : : j 1 j q fm i j gjg ! E, i 2 f1 : : : p g, satisfying: for every routing function R = (I H P ) on G of stretch factor at most s, and for every (i j), 1 i p, 1 j q, i (m i j ) = P(a i I (a i b j ))

Informally, if M = (m i j ) is a generalized matrix of constraints of a graph G, De nition 1 means that there exists two subsets of vertices A and B such that every near-shortest path b e t ween a i 2 A to b j 2 B starts with the arc e i j which is locally labeled by the integer m i j . In the following, we call constrained vertices the vertices of the set A, and target vertices the vertices of the set B. The matrices of constraints de ned in 4, 8] can b eseen as a restricted case of the generalized matrices of constraints de ned above when the degree is 2. Subsequently, generalized matrices of constraints are called matrices of constraints for short.

Figure 1 shows a matrix of constraints of shortest path of the Petersen-graph, with the constrained vertices A = fa 1 : : : a 5 g, and the target vertices B = fb 1 : : : b 5 g. For example, on this graph, every shortest path from vertex a 3 to vertex b 2 has to start with the arc (a 3 b 1 ). It means that it is possible to

x the labels of the incident arcs of the vertices of A such that every shortest path routing function on the Petersen-graph uses p o r t1 to send a message from a 3 to b 2 .

If M is a matrix of constraints of a graph G, then, from De nition 1, any matrix obtained from M by p e r m utation of rows and columns, and by permutation of entries of each row is also a matrix of constraints of G. It simply corresponds to another labeling of the vertices and arcs of G. Of course, vertex and arc labeling of G have signi cant implications on the size of the coding of a routing function R on G (see the example of the complete graph in Section 1 on the page 2). By hypothesis, we are looking for the b e s tlabeling so that we obtain the most compact coding of R.

b 1 b 2 b 3 b 4 b 5 a 1 1 1 2 2 3 a 2 1 1 2 2 3 a 3 1 1 2 2 3 a 4 1 1 2 2 3 a 5 1 2 2 1 3 De nition 2 Let M = (m i j ), and M 0 = (m 0 i j ) be two p q integer matrices, i 2 I = f1 : : : p g and j 2 J = f1 : : : q g. We set M M 0 if and only if there exist two permutations r of I and c of J, and p permutations i of f1 : : : j j2J fm i j gjg, i 2 I, such that, for every i 2 I, and for every j 2 J: m 0 i j = i (m r(i) c(j) ):

The relation is an equivalence relation because r, c and i , i 2 f1 : : : p g, are bijective functions. M M 0 means that M 0 can b eobtained from M by permutation of the rows and of the columns, and by p e r m utation of the entries of each rows. Permutations i are related with arc labeling. Permutations c and r are related with vertex labeling (of constrained and target vertices).

We can de ne a canonical representative of each equivalent class of integer matrices. In the following, we choose as canonical representative of a set of p q integer matrices M = (m i j ) the matrix M 0 M that minimizes the integer P i j m i j q (p;i)q+(q;j) . This integer is called the index of the matrix. It can b e understood as the value of the integer l 1 l 2 : : : l p , where l i denotes the i-th row of M, represented in base q.

Notation. For every triple of integers (p q d), we denote by d-M p q the set of canonical representatives of the di erent equivalence classes of for the p q integer matrices with entries in f1 : : : d g. For example 3-M 2 3 is the set:

3-M 2 3 = 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 3 1 1 2 1 1 2 1 1 2 1 2 1 1 1 2 1 2 3 1 2 3 1 2 3 (1)
This example shows that every 2 3 integer matrices with entries from f1 2 3g is equivalent to one of the matrices of 3-M 2 3 . For example matrix 1 2 2 1 3 2 is of index 479, and is equivalent (under ) to the matrix 1 1 2 1 2 3 2 3-M 2 3 which is of minimum index 396.

Lemma 1 For every triple of integers (p q d), d pq p! q! ( d!) p = 2 ((pq;pd) log d;q log q;p log p) jd-M p q j Proof. There are d pq p q integer matrices with entries in f1 : : : d g. At most p!q! matrices are equivalent under row and column p e r m utation, and, for each row, there are at most d! distinct results obtained by p e r m utation of entries inside the row (therefore at most (d!) p permutations for all the rows). Hence there are at least d pq =(p!q!(d!) p ) distinct classes of integer matrices.

Generalized Graphs of Constraints

We will see that, for every integer matrix M, there exists a graph, called generalized graph of constraints, that has M as matrix of constraints.

Lemma 2 For every matrix M 2 d-M p q , there exists a graph G of order at most p(d + 1 ) + q such that M is a matrix of constraints of G of stretch factor < 2.

Proof. Let (p q d) b ea triple of integers, and M = (m i j ) b eany matrix in d-M p q . We construct a graph G = (V E ) composed of three distinct levels as follows: V = A B C, with A = fa 1 : : : a p g, B = fb 1 : : : b q g, and C fc i k j 1 i p and 1 k dg. Vertices are connected as follows: for every a i 2 A, fa i c i k g 2 E if and only if there exists j such that m i j = k, and fb j c i k g 2 E if and only if m i j = k. No other arc belongs to E. Isolated vertices of C are removed.

The local port labeling of vertex a i is: (a i c i k ) is labeled k. One can check that M is a matrix of constraints of G where A is the set of constrained vertices, and B is the set of target vertices. Moreover, if m i j = k, then there exits a unique path of length 2 from a i to b j : the path a i c i k b j . Moreover, the other paths from a i to b j that do not start with arc (a i c i k ) are of length at least 4. Therefore, M is a matrix of constraints of stretch factor < 2 in G. The order of G is at most p(d + 1) + q, because jAj = p, jBj = q and jCj pd.

The graphs constructed following the rules given in the proof of Lemma 2 are called generalized graphs of constraints (graphs of constraints for short). For every triple of integers (p q d), we denote by d-G p q the set of graphs of constraints of all the matrices in d-M p q . Equation 2 shows the set 3-G 2 3 . 

3-G

2 3 = 8 > > > > > > > > > > > > < > > > > > > > > > > > > :
9 > > > > > > > > > > > > = > > > > > > > > > > > > (2)
4 Proof of Theorem 1

To prove Theorem 1, we will used a \local" argument that is, for any matrix M 2 d-M p q , the routers of the constrained vertices of a graph of constraints of the matrix M are able to rebuild the matrix. Let (p q d) b ea triple of integers. For every matrix M 2 d-M p q , let G b eits graphs of constraints, and let n denote its order. Let A = fa 1 : : : a p g b ethe constrained vertices, and B = fb 1 : : : b q g b ethe target vertices. Let R b ea routing function on G such that s(R G) < 2. R uses particular vertex and arc labeling. Without loss of generality, one can assume that the output ports of vertices a i are labeled by the m i j (otherwise consider another matrix M 0 equivalent to M). By de nition, every communication b e t ween a i 2 A, and b j 2 B is sent out from a i by the output port labeled m i j . Let M B b ethe numb e rof bits necessary to code the list of the labels of the vertices of B. Let M C b ethe numb e rof bits necessary to describe a function that computes the canonical representative of any p q integer matrix with entries from f1 : : : d g. Clearly, since we can do this reasoning for every matrix M 2 d-M p q , and since there exists at least one matrix M 2 d-M p q that requires at least log 2 jd-M p q j bits to b ecoded, we get that, for this matrix: X a2A MEM(G R a) + M B + M C + O(log n) log 2 jd-M p q j: Indeed, to rebuild M, it is su cient to test all routers of the vertices in A on all the labels of the target vertices, and to store the results in a matrix M 0 . To do that, it is enough to know the routing functions R in a, a 2 A, the labels of the vertices in B, and a way to nd the canonical representative of the equivalence class of the matrix M 0 obtained. To simplify the process, one can even assume that the integers p, q and d are given on O(log n) bits.

Since the vertex-labels are in f1 : : : n g, the list of labels of B can b edescribed with M B = log 2 ; n q + O(log n) bits. Indeed, there are

; n q ways of choosing q labels among the n possible choices. Moreover M C = O(log n) because a simple algorithm depending of p, q, and d can compute all the p e r m utations of rows, columns, and entries of each rows of M in order to minimize the index. Since, for every q 2 f1 : : : n g, log 2

; n q n = O(pd + q) (see Lemma 2), it follows that X a2A MEM(G R a) = ((pq ; pd) l o g d ; q log q ; p log p)

by applying Lemma 1.

Let " b eany given constant, 0 < " < 1, and let n b elarge enough. Let p = bn " =2c, d = n 1;" ; 1, and q = bn=2c. For every matrix M 2 d-M p q , applying Lemma 2, we obtain a graph of constraints G 0 of M of order n 0 p(d + 1) + q n. We can transform G 0 in a graph G by adding a path of n ; n 0 vertices to a vertex that is not a constrained vertex nor a target vertex. Clearly, M is still a matrix of constraints with stretch factor < 2 of G, and G is of order n. Therefore, by Equation 3, X a2A MEM(G R a) = ((1 ; ")n 1+" log n) = (n 1+" log n):

Therefore, since jAj = p = (n " ), there exists at least one router a 0 2 A that requires (n log n) bits to code any routing function R on G of stretch < 2. Note that O(n log n) bits are su cient using routing tables. Therefore, at least (n " ) routers require (n log n) bits each to code any routing function on G of stretch factor < 2. This completes the proof of Theorem 1.

Conclusion

Theorem 1 implies that routing tables can not b elocally compressed (asymptotically) in the worst-case. This completes the study of the local memory requirement of universal routing scheme of stretch factor s < 2.

An interesting question would b eto ask whether we can close the gap b e t ween the b o u n dof (n 2 ) bits 6] and the upper b o u n dof O(n 2 log n) bits (using routing tables) for the global memory requirement of routing functions of stretch factor s < 2.

Another interesting question would b eto determine the smallest stretch factor for which routing tables can not b elocally compressed asymptotically, that is computing the largest stretch factor for which there exist graphs of order n that require (n log n) memory bits on at least one of their routers.

As one can see on Table 1, large stretch factors allow to strongly compress the routing information. Is it possible to reduce the upper bounds on the local memory requirement in same way as it was done for the global memory requirement?

Figure 1 :

 1 Figure 1: An example of matrix of constraints of shortest path on the Petersen-graph.

Table 1 :

 1 Best known b o u n d son the memory requirement.

  Therefore, in Table1, the entry \1 < s < 2" must b ereplaced by

	stretch local memory requirement global memory requirement
	1 < s < 2	(n log n)	(n 2 ) 6]
			O(n 2 log n)

Acknowledgments. Both authors are thankful to St ephane P erenn es for his valuable comments for the proof of Theorem 1.